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Precipitation network design for mountainous catchment
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ABSTRACT. The precipitation in mountainous region has higher spatial variability and the cortclation
#(s) between precipitation series recorded at two staticns distant s’ apart decreases with s at faster rate than
in plain region. As such, a denser network would be desitable in mountains for the estimation of areal preci-

pitation.

In this paper, the correlation approach to derive the variance of areal precipitation has been discussed and
a procedure is outlined for evaluation of network density in respect of (a) flood forecasting events, (b) long term

climatological purposes.

The scheme suggested has been illustrated for Beas catchment (area: 12509 km?) in Western Himalayas.

1. Introduction

The annual/seasonal precipitation over a mountai-
nous catchment is generally characterised by two factors,

namely,

(i) higher spatial variability, which is due mainly to
abruptly large and significant variations in terrain and

(if) the faster convergence of spatial correlation
structure to an insignificant value (Ramanathan et al.
1981).

The number of precipitation gauges required to
estimate areal mean with a specified precision usually
depends upon these two factors. As such, under similar
conditions, a mountainous basin will require higher
density of network than the plain watersheds.

In this paper, a technique for the determination of
optimum network density has been evolved by deriving
variance V(p4) of areal mean p4 as a function of tempo-
ral and spatial variations. This has been discussed in
detail in section 3.

The correlation approach between precipitations of
two stations was first used by Hershfield (1965) to design
the proper spacing between stations and subsequently
by Kagan (1966) to evaluate the errors in interpolation
of precipitation values. Later, Iturbe er al. (1974) and
Eagleson (1980) used similar concept and also intro-
duced temporal and spatial reduction factors to the

variance of areal mean. Ramanathan er al. (1981)
have given a review of the work done in network design
till 1977.

The technique evolved in this paper based on a similar
approach is illustrated for the Beas catchment. It
covers an area of 12509 sq. km between the longitudes
75°54’E-77°54'E and latitudes 31°29'N-32°27'N. The
area and number of raingauge stations lying between
different elevation ranges is given in Table 1.

The coefficient of variation of elevation field is found
to be above 50%,. It is also observed that the catchment
is partly snow bound and during winter months about
709% of the area usually comes under the seasonal
SNOW COVEr.

2. Correlation structure of precipitation field

Let there be n points of observations in a catchment of
area A. Let us form the series of seasonal or annual
precipitation for T' years for each point and compute
the product moment correlation between all possible
("C,) pairs of series. If the values of r; are plotted against
the distance between the stations (s;) the curve is expected
to exhibit a decreasing trend (dr/ds<<0). This type of
curve is generally known as the correlation structure
of seasonal/annual precipitation in the catchment.

Most of the authors have suggested the exponential
structure to capture the above trend which is

r(s) =roe (1)
(73)
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TABLE 1

Area lying between different elevation range

TABLE 2

Values of Ab® and r for various areas

Elevation Area No. of
range (A) raingauge
stations

Coefficient of range
of rainfall
( = - 100)
Ta +Xy

(m) (km?)

600 2507 1 -

600-1200 2455
1200-1800 3015
1800-2400 1275
2400-3000 1143
3000-3600 860
3600-4200 673
4200-4800 164
4800 419

Total area (4) = 12509 km?*, Mean height = 1725 m

whereas in some cases, where the rate of decrease is
smaller, a modified Bessel function,

r (s)=sbk (sb) (2)

has been observed as best fit. The distance ‘s° may be
regarded as a random variable as it may assume
different values between zero (close to it) and D (maxi-
mum possible distance between any two points in the
basin) with frequency function p(s). Form of p ()
depends on the shape of the catchment. For instance,
for a circular area (Erik Erikson 1972):

p(s)=2s[R:, 0< s<<R (3)
For other types of geometrical shape like square or
rectangular, the expressions for p(s) have been derived
by some authors (Rodriguez er al. 1974). These are
too complicated for practical computations. Moreover,
the shape of an actual basin differs significantly from
regular geometrical shape. As such, instead of going
for exact sampling distribution, we propose to adopt
Gamma p.d.f. fors. 1In that case, its frequency function
may be written as :

I
p () = —= sr1 &8, 05 e (4)
Brly B, y=-0

It may bc seen that with s 66 km and o, 34 km,
the maximum density is concentrated in 0<< s - 200 km
range and p (s > 200)-0. 1t is on this logic, we sec
that a number of distributions, namely, normal, gamma,
EV 1, 2 & 3 Pearson’s etc which arc valid for infinite
ranges are also applied to rainfall and other variables
which are bounded.

In this case, although a correction lactor
. W
c= fp (.s)ds/ ’ pisy ds
0

0

may also be calculated, but for all practical purpose
its value will be unity.

Ab*

011 .36
027 32
.C20 .36
.069 .28
.162 .21

The mean correlation over a given area ‘A’ is given by

E (rld) =1 = [r (8) p(s) ds

@0 i
re ¥y 1 —~-{bp+1)8
====1 e ds

B :‘y‘g

- o

"= (repy ®

b and r are constants for a particular area. The effect
of area is included in expression (5) indirectly in the
form of parameters r, . b, 8 and y as these parameters
assume different values when ‘4’ changes. Thus, if
we change the area, then b and 7 will also be changed.
If these parameters are computed for different areas
of similar shape, r may be expressed as a function of
Ab?, which is a dimensionless quantity. It is shown by
[turbe (1974), Ramanathan efr al. (1981) etc that 7 is
generally a decreasing function of 4b%. To illustrate
the variation of 7 with 452 an exercise has been carried
out using about 50 years annual rainfall data recorded by
various stations in Himachal Pradesh. The entire
region was subdivided into 5 circular zones. The form
of p.df. for s as given by Eqn. (4) has been tried.
r, b and {4 were worked out for each circle. Table 2
gives . and Ab*. The table indicates that r generally
decreases with increasing Ab2,

This relationship is useful in the sense that it ascer-
tains an appropriate network density of a catchment
based on its area (A) and the characteristic of correlation
structure (b). This has been further elaborated in
section 5.

3. Error in cstimation of arcal precipitation
(a) For long-term areal precipitation

[n the studies by Iturbe (1974) and Ramanathan et al.
(1981), it has been indicated that the variance of long-
term areal precipitation can be split into 3 multiplicative
components, namely,

(/) the variance of point rainfall process (o2),

(#) temporal reduction factor /' (7T'), which depends on
period of the data used for estimation of p4, and

(i1i) spatial reduction factor ¢ (n, r) which depends

on the number of stations ‘" used for estimation of p .
Thus,

V(ps) = o* f(T) 4 (. 1) ©)
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TABLE 3
Location An- S.D.
Station — et = A e nual of

Lat. Long. Height rain- rain- C.V.
N)  (E) (m) fall fall (%)

(cm) (cm)
Dharamsala 32° 16/ 76° 23 1211 336 184 54
Palampur 32° 08" 76° 32 1217 256 96 38
Hamirpur 31° 42 7T6° 32’ 786 142 55 40
Kangra 32° 06’ 76° 15° 701 196 53 27

Kulu 31° 57 77° 0T 1236 100 30 30

Mandi 31° 43 76° 56 752 157 25 16
Jogindernagar 31° 55" 76° 45 1221 223 56 25
Sundernagar 3¢ 3 76°-53 1193 159 27 17
Banjar 31° 38 77° 20¢ 1522 109 28 26
Jubbal 31° 47 77° 40 1891 107 20 19

In a time series, with significant autocorrelation lag 1(p),
J(T) may be evaluated from :

_ L 14p
f(T)=—. g B (@)
$(n, r) is a function of » and r; it may be shown that

P 7) =Jj‘L‘:.__l)j,

== ®

vide Appendix (B)

(b) For a rainfall event
o (G=1,2300 05000000 , ) are the rainfall amounts

recorded at n points during a rainfall event and the areal
mean is expressed by

pa=a D p ©)
=1

the variance of p4 is subjected to only spatial reduction
factor. Therefore,

V(pa) = o* ¢ (n,7)

= o2 (l‘;) (10)

n
4. Error in interpolation

There are several methods suggested for spatial inter-
polation of precipitation, e.g., a triangular grid network
in which the stations are located at apexes. It has been
shown by Kagan (1972) that in such cases the error of
interpolation depends on :

(i) the variability of point rainfall process,
(if) the network density ‘n’,

(iii) the spacing between two stations or areas of
the catchment, and correlation structure of
precipitation field.

It may be estimated from the following expression:

Ziny = C, Jl";"‘ 4-0.526 1, +/An (11)

TABLE 4
Bivariate frequency distribution of r and s

5 —2 00— .2— r.4—- 6— .8— fs
-0 .2 -4 .6 .8 1.0

0-20 1 1 2
20 - 40 1 2 3 1 7
40 - 60 6 3 L 3 16
60 - 80 1 1 2 1 5
80 - 100 1 2 3 1 1 8
100-120 2 1 3
120-140 1 1 2
140-160 1 1 2
fr 1 11 12 11 9 1 45

where C, = op/ps, 1, and b are the parameters
of correlation structure and n is the number of
raingauge stationsinanarea A. Itis mentioned that for
a square area A the spacing between two stations may
be I=+/4/n whereas for a triangular area A4,

I1=1.07 \/Aln
5. A case study : Beas catchment

In the present study, about 18 years’ precipitation data
(1952-1969) have been utilised for the ten selected sta-
tions giveninTable 3.

The bivariate frequency distribution, f (r, s) of differ-
ent correlations (r) and distances (s) as computed from
these ten precipitation series is shown in Table 4.

The mean correlations for various distances are :
s (km) : 10, 30, 50, 70, 90, 110, 130, 150
r : 0.75,0.61,0.34,0.42,0.28,0.37,0.20,0.20

The exponential form fitted to the above data of s
and r is

r(s)=rpe™ (12)

The estimates of ‘6’ and rp have been worked out
and are given as

ro = 0.84 and b=0.0098 km™1,

Therefore,
r(s) = .84 o008 ¢ (13)
Assuming a two parameter gamma distribution for the

random variable s, the frequency function is given by
Eqn. (4). Using the method of moments for the esti-

mation of parameters Sand y, we get
y = 4/g* and B=35/y (14

where g is the coefficient of skewness = pg/p23/2

From the stations selected in the catchment
5=66.4 km, o,—34.1 km,
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Therefore,
y=28.0 and 8-=8.3,

The mean correlation of precipitation field  may be
computed from Eqn. (6) which comes out to be » -0.45.

(i) The computation of temporal and spatial reduction
factors

The following catchment characteristics related to the
point precipitation process have been estimated using
18 years data (7= 18) for 10 stations (n=10) for Beas
catchment. The mean precipitation p=172.2 cm:
standard deviation o, - 79.0cmand C.V. -46°,.

The combined reduction factor f(T). #(n, r) to the
variance of p4 is provided in Table 7 which has been
worked out by assuming p - .25andr .45,

For reducing V(p4) to 10 9, of o,* we have the follow-
ing trade off between n and T which is presented
in Table 5 and is given by T 7.51 + 9.18/n.
Thus, for achieving 909 of accuracy in estimation of
long-term areal precipitation, the period of data is
more important than the density ol network.

(if) Estimation of areal mean of an individual storm

It has been derived in appendix that the expression for
V(p4) when py is being estimated using » point values
of rainfall over an area ‘4" is given by

2 (] )

V(pa) -

For Beas catchment r-0.45and V(p4)=0.55 o,2/n.
Taking relative error of estimate as 0.1, we have

VI [655 er
P4 n P '

s 046 [25 o
N n

or n=12

It may be inferred from the above that 12 precipitation
gauges would be required to provide the estimate of
areal precipitation with 109/ error. It may also be noted
that if the correlation structure of precipitation field is
not taken into account, the value of » would be higher for
the same level of accuracy.

TABLE 6
Depth-area relationship

Area p.-h'ﬂ=‘\,/ r
(km?)

2000 0.86
4000 0.74
6000 0.68

3000 0.63
10000 0.60
12000 0.59

(iii) Areal reduction of precipitation

If p is the point rainfall and p 4 is the areal rainfall over
an area A4 around that point, then Rodriguez ef al.
(1974) have shown the relationship between the two is
given by

Pa= AT p (15

where » is th2 expected value of correlation between two
randomly chosen pointsin area A.

For Beas catchment, the Eqn. (15) has been used to
derive the depth area relationship. The results are pro-
vided in Table 6 and in Fig. 2.

(iv) Error in interpolation

For a triangular grid with spacing /=1.07 v/ 4/n the
relative error of spatial interpolation in Beas catchment
may be computed from Eqn. (11).

Zing = 0.45 A/ 0.53 ‘

Zint

6. Summary

(i) The parameters ro--0.84 and b=1/102 km of the
correlation structure of the precipitation field in Beas
catchment suggest that r converges at short distances.
This may be attributed to the higher variability as obser-
ved in a mountainous catchment (C.V.=46%).

(ii) A lower number of precipitation gauges are re-
quired for estimation of areal precipitation with same
degree of accuracy (¢) if r is taken into account. It follows
from the following :

(@) if risnot considered

n = ( _(:(v;_)l
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TABLE 7
n
T 1 2 3 4 5 10 15 20 25 30 50 100
2 835 605 528 490  .468  .422 .06  .398  .394  .391  .385  .380
5 33 242 211 196 187 169 .162 .15  .158  .156 .15  .152
10 67 121 (106 .098 094  .084 .08 .080 .079 .078 .07  .076
15 A1 080 070 .065  .062 .056 .054  .053  .052 .052 .051 .05
20 084 061 053 .049 047 042 040 .040 .039 .039 .038 038
25 067 049 042 039 037 .034 .033 .032 .032 .031 .031  .030
30 056 .040  .035  .033  .031 .028 .026 .026 .026 .026  .026  .026
35 048 035 030 028 027  .C24  .023 .023  .023 .022 .02 .022
40 042 030 026 024 023 021 .019 .020 .020 .020 019 .09
45 037 027 023 022 .02l .019 018 018 .017 .018 .017 .01
50 033 024 021 020 019 .07 .016 .016 .06 .016 .0IS  .01S
Reduction factor f (T) § (n, r) = {;, H} {li(:*"”’}; (P=0.25; 7 = 0.45)

(b) with the consideration of r,
CV. \2 )
n= ( ) (1—r),

e
where e is the acceptableerror (%).

(iii) It is also worth noticing that while estimating
areal mean (p4) for a rainfall event, the spatial reduction
factor for V(p4) cannot be less than 7. Thus, there has to
be an optimum value of n, which minimises the product
of spatial and temporal reduction factors. For
V(pa4) = 0.1op? the trade off between n and T is given
by I'=7.549.2/n.

(iv) The relative error of spatial interpolation for a
triangular grid in respect of Beas catchment may be
reduced from 339 to 15% by raising the number of
gauges from 1 to 100.

(v) Taking the areal reduction factor for point to areal
rainfall as p4/p= y/r, the areal rainfall in Beas catchment
appears to be 78 % of point rainfall for one quarter of the
area, 70 % for half of the area, 65%, for 3/4th of the area
and 59 %, for the entire catchment.
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APPENDIX

Error in estmation of areal precipitation '

(A) Rainfall event

Let p; (i=1, 2, , n) be the precipi-
tation at point 7. The estimate of mean areal precipitation.

1
pa = 'j;f p(x:) dx; (M
A
is given approximately by
n
Pa= 2
™= Di 2

i=1]

The variance of the areal precipitation is

V(pa) = E(BA — pa)?

k()]

i (Sr) o)
A

A
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The expressiononR. H. S. has 3terms, viz.,
1

n n
| (N _ )
=F512Pigf ET:P:‘PJ'}
i=] 7“"_]

Assuming without loss of generality the deviation
from respective means we get,

= "0;[ 14+ (n— I)i']

where o2 and r represent variance and mean correlation
for the catchment respectively,

11 =

fn,d\,d\

Adding (4), (5) and (6), we get

9

V(pa) = —p (1—1) (7)

(B) Long-term areal precipitation

If rainfall process in the catchment is represented by
p(s, 1), where ‘s & ‘¢’ are the coordinates of space and
time. the estimate of long term areal precipitation :

P4 = z I p(s; 1) ds; (8)
’]—>ao

t=1 A

is given by

n T
A | N
Py = aT ZZ p(si 1)
I'.'—-_-l F:?T]
S‘? p (i 1) —

TZ_..J :_4

1 )
—=Lt 2 Ip (s, 1) ds; ]
T AT, : I :

L V(pa) - F[
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S S
HZE“&E, - AZJ » (i t)ds,J X
A
{nrzz”(“' 0]+
]_‘me[ATZf p (sin1) dv] (10)

The three expressions of R.H.S. may be further
simpliﬁed asshown below :

- - [ZZ” (56, 1) -
ZZ p(sio ) p(spy 1) +
& le”"‘" 0 p (s 1) +

i )
+ Z p (si, 1) p (55, f')}]
i=f

= —]—T'_r[uToz 4 Tn{n—1)re2 -

{ a2 pl¥1 4 n(n —1) pt—"! Fﬂ“” (1n

where p is I** autocorrelation coefficient.
1,2y & wa T4

ne [ | ! -\
- Tﬂl Tl 14 (n—--])rj

+ { 14+(m~-1) r} z pl¥1
7 Y

Now 2 py—H1 = 2 [ (p+p*
t#1=1 )

Assuming pj, = .k =

Flptpt oo T 4L
_2p
lep

(p+pY) +p

[(T 1)——— ( pT"")J (12-

WV (pa) = o (7). f(T) (13

where ¢ (n.r) - 1+ (1) and

n
1

I . . 1y T
fD=z- (l—p)T[( 1)z P( P )}
1 14p

~o -1—' P for large T and neglecting terms in 772
—P




