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ABSTRACT. An analytical solution to the problem of steady state flow in a fully penetrating well placed in a
confined aquifer of variable thickness is presented. The thickness of the aquifer is assume’ to either decrease or in-
crease linearly from the face of the well. It is shown that the available solution for uniform aquifer thicknessis a par-
ticular case of the solution presented. The percentage error in discharge prediction in assuming the aquifer thickness

to be uniform, is caleniated and presented.

1. Introduetion and the definition of the problem

The problem of steady state flow in a fully
penetrating well placed in a confined aquifer of
uniform thickness is available in any standard
text book on hydrogeology (Davis and De Wiest
1966). It is hard to meet a practical situation
where the aquifer thickness is uniform in the
entire zone of influence. Hence two cases are
visualised where the aquifer thickness are sither
increasing or decreasing linearly from the well
face. The geometrical configuration of the aquifer
is assumed to be symmetrical with respect to the
well. Fig. 1(a) and Fig. 1 (b) give the definition
sketches of the problem considered, where,

g — Steady state discharge
h, — Water level at the well face
H — Piezometric head at the radius of influence

h = Head at any distance r,

R = Radius of influence
D, = Thickness of the aquifer at the well face
Dy = Thickness of the aquifer at the radius of
influence,

The problem is to find out the steady state
discharge and piezometric pressure distribution
for the problems explained.

2. Solution
If D, is the depth of aquifer at any distance r
then assuming Darey’s law and Dupuit’s assump-
tions to be valid and from continuity, one can
write
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where K is the permeability coefficien: of the
aquifer. Again D, can be expressed as

Dy D,

D, =D, -;.(_ﬁ'__) i @)

For decrease in thickness of the aquifer, right
hand bracketed portion of Eqn. (2) will be ne-
gative. Combining Eqns, (1) and (2)
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N’ou-dimensionaiising the above expression, one
can write
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Non-dimensional discharge
z— r/R {6)
Y= h':"H ('7)
G = Dg/D, (8)

Termed as ‘geometry parameter’

The boundary conditions of

. the problem are
given by Eqns. (9) and (10) :
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Fig. 1. Definition sketches for the problem
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b= y = yo =hu/H
and
r=R r =1
or } (10)

Integrating Eqn. (4) along with the boun-
dary condition (9), one gets the piezometric
pressure distribution as

z 1-1z,(G—1

L r Lorle(—>
y_yo - H,"R [ log (xa l'l,'CE(G—l )] {11)

Eqn. (11) gives the piezometric head distribu-
tion for any geometry paramoter G(=Dg/Dy).
For aquifer of uniform thickness G = 1 and the
insertion of G=1 in Eqn. (11) leads to the well
known piezometric head distribution for uni-
formly thick confined aquifer.

Combining Eqns. (10) and (11), one gets

H [ 14a(G—1) y
B (1—yo) = gslog ‘L ‘Eﬂ;;—} (12)

H I S
But —R—(l-—yo)— R (1 }i“.;H)

= (H—h,)/R =L (13)

where I,, may be called as average gradient.

Hence Eqn. (12) can be re-written as
0 = e
o= g @ (G—1)] 14

G

Eqn. (14) gives the non-dimensional discharge as
a function of average gradient (I,,), non-dimen-
sional well radius (z,=7,/R) and the geometry
parameter (G=Dg/D,). This relation is plotted in
Fig. 2 for G=0-1,1-0 and 10-0. For aquifer of
uniform thickness (G'=1-0), Eqn. (14) reduces to
the well known ¢, vs I, relationship as shown
in Egn. (15) below.

I @y =

0 = og (1/ay ) (15)

where ¢,, i3 the non-dimensional discharge for
uniform aquifer thickness (G=1).

The percentage error () in discharge predi-
ction in assuming the thickness of the aquifer to
be uniform, can be obtained for various values of
seometry parameter G from Hqn. (16) and is
plotted in Fig. 3.

€ = (_g*_“___g*) w 100 (16)
‘I*u. .

3, Discussion and Conclusions

From the foregoing analysis, the following con-
clusions can be drawn :

(i) Available solutions for piezometric head dis-
tribution and the variation of discharge with
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Fig. 2. Variation of non-dimensional discharge with average
gradient for different values of geometry parameter
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Fig. 3, Lrror in discharge prediction as a function of geometry parameter

average gradient for uniform aquifer thickness are
particular cases of the solutions for variable aqui-
fer thickness as derivedin Eqns. (11) and (14).

(¢2) The discharge-average gradient (g, versus
I,,) relationship is always linear for all values of
geometry parameter (. For G>>1, the discharge is
always more than the discharge predicted on the
basis of uniform aquifer thickness and for G<1,
it is just the reverse.

(#2) The error diagram as shown in Fig. 3

gives the magnitude of percentage error involved
in discharge prediction based on uniform aquifer
thickness., Over prediction by as much as 43 per-
cent is resulted when G=Dg/D,—=10 and an
underprediction of 23 per cent results when G'—
0-1.

If the geometrical configuration of the aquifer
in the fleld is similar to the one, dealt in this paper,
it is hoped that the analysis presented canbe unsed
for correct and better insight to the physics and
engineering of the problem.
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