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On the dispersion of love waves in a continuously

stratified layered earth
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ABSTRACT. Love wave dispersion equation in a continuously heterogencous layered-flat-earth has been -
studied. Different types of plausible variation of elastic parameters in each of the layers have been considered
and the corresponding displacements have been obtained. Thomson Harkell Matrix method has heen employed
to derive the dispersion equation of SH surface waves in such a layered earth,

1. Introduetion

Investigation of the earth’s interior by the
method of dispersion of surface waves has special
significance, particularly in regions where other
geophysical methods cannot be used. Study of
surface waves is used in the determination of
structure of a medium along which they propa-
gate, in the determination of the parameters of
. the source, in the identification of sub-terranean
explosions and in tracking the storms in sea
with the help of microseisms.

Since continuous variations of elastic para-
meters and density are known to exist in the crust
and mantle, various authors, wviz., Meissner
(1921), Jeffreys (1928), Ba'eman (1928), Matuzawa
(1929), Satd (1952), Mal (1962), Maulick (1965),
Avtar (1967), Sinha (1969), Chatterjee (1969,
1971), Bhattacharya (1970, 1972) considered the
propagat on of love waves im a medium in whch
elastic parameters and density are fupctions of

depth.

Kailis-Borok, Neigaus and Shkadinskaya (1965),
and Vlaar (1966) considered love wave pro-
pagation in an elastic and isotropic half space
in which the elastic parameters and density are
piecewise continuous functiors of depth.

Thomson (1950) introduced a matrix method
to determine the transmission and reflection
coefficients of plane body waves through a stra-
tified solid medium. Haskell (1953) applied
Thomson's matrix formulation to the problems
of surface waves and developed a convenient
method to compute dispersion for a multilayered
medium composed of any number of plane paral-
leled layers, This method, known as Thomson-
Haskell method has been used by Dorman, Ewing

and Oliver (1960) to calculate surface wave dis-
persion for a number of continental and oceanic
crust mantle structures. Press, Harkrider and
Seafeldt (1961), using this method with more
advanced computer, greatly improved the speed
of computation. In recent years the speed of
computation has further been improved succe-
ssively by Thrower (1965), Randak (1967),
Watson (1970). Biswas and Knopoff (1970).

The Thomson-Haskell matrix method, has been
generalized for transversely isotropic media by
Anderson (1961), which was further extended by
Saastamoinem  (1969) to a multilayered semi-
infinite medium where in each layer the modulus
of rigidity and density are functions of depth.

Since regional variatiop of structures are well
known and the structure of the upper mantle
is known to be complex, possibility of various
types of variation in elastic* parameters exists.
In the present paper the author investigated the
dispersion of love wave in a multilayered _ln.hqmo-
geneous half space in which each layer is piece-
wise continuous and the variations of elastic
parameters follow different types of mathema-
tical laws. Thomson-Haskell's technique has
been employed in the determination of frequency
equation.

9. Determination of frequency equation

Let us consider a layered flat earth, with wel-
ded contact, each layer being inhomogeneous.
Let the laws governing the variation of rigidity
and shear wave veloeity are as follows :
Case I

b poexp (p2) B=Bo/AELAE (1)
Case 11

= mpoxp@p) B=Bol—@® @)

3856




386 S. N. OHATTERJEE

Case I17

p= po(l+pzP B= By (1L p2)[(1--p2)?
—a(l-+p2)—qgl'2 (3)

Case IT
p=po(1+p2 B=p,/(l—qeos2:)12 (4)

where, uo. By, I, 7. « and g are all constants,

The z-axis is taken vertically downwards. The
geometry of the problem and direction of axes
are presented in Fig. 1. For love wave u=gp=0,
v=2(z, z) and in the absence of body forces,
the equation of motion for SH type surface waves
is a vertically inhomogencons laver (Ewing,
Jardetzky and Press 1957) in
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.
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The symbols have their usual significance,
Since p is a function of z only the equation (5)
transforms into

a2y d
= b Vip + <& (6)

P dz

If we assume

1* == J_p.—, v

the equation (6) reduces to

a2

P -5“

If we assume the motion to be S.H.M., we can
put

= ¢ (z) exp {ik (z —cl)} (8)

¥
z

Fig. 1. Direction of axes and geometry of the problem

then ¢ (z) will be the solution of the differential
equation

2 2
¢ [ w? i 1 dp

d2? dz

Substituting the values of wand gin (7) we get

12 ] -

o)

Taking the lower sign, equation (10) reduces to

d2 ¢

where,

2 = — ( ;’; g + p? ) and

B2 — ( o

o i e
Bet "")

If we assume b, to be imaginary, then

(w?/By?) — I?

p iz negative.
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Again sinoe o = ke, this condition reduces to
2
Pl —= —1 13
(& ) ¢

The following substitution
& =120,z by=1ta, i=+/—1 (14)

reduces equation (11) to

f;: + [_Ti_fﬁ—l]zﬁzo (15)

where,

E=a12/202:(w'~'/8§ + p?) [ 24/(B +p—
_“’zfﬂuz) (16)

Equation (15) is satisfied by the p‘u‘abohc
cylindrical functions and the solution is given
by (Abramobitz and Stegun 1965)

¢ =Ay W (I, &)+ B W (L, —¢) (17)
Now,

(cosh 7 I)114
W(lté = —W

+4/2 G, ¥}

G, 7 F

where,
=|rd+in)|
| r a4
A i

- (19)

g5

o} (l¢—1119+

(zs—_z)f’

2-5-!-1%?—'!"( 3)5"}‘
+ (l4—17l9+ 1—) %:-;- b e

and nonzero coefficients of ¢, of £"/nl are
connected by

ente=lo,—n(n—1)o,-q (20)

As the wronskian of W(I, ¢) and W(,—§)
is nonzero, they form a fundamental system of
solutions, when ¢ - oo both W(l, ¢) and W(l,—¢)
oscillate with decreasing amplitudes which slowlv
tend towards zero as 1/4/¢ where, a3->0, s0 that
7 = o in the range of intrerest B+ p> o B

we have

W (L, 5)_0i "/(p)cxp{ (& -+ '—‘”/ﬁo}
W~ )~ A/(f) exp | B p— ot }

Thus we approach the case of homogeneous
medium provided p is neglected.  The asymp-
totic behaviour of W (I, 4~ £) shows in order
to satisfy Sommerfeld’s radiation condition.

¢=d, W (¢ (22)

This is true provided the half space is also go-
verned by the distribution given in case I.

When we take into consideraivion the
sign of the equation (10), we substitute,

£ = (o ¢*[B*4- %) 22
Y=z 4 and
| = -}/ B2 +1%)" (B+p—a?By?) (23)

upper

in the equation (10) which then transforms into

@Y 1,0 g _
et [ ate— Yty =0 @

This is a Whihaker’s equation. Remember-
ing that for 2- oo the displacement must
vanish, we have the solution

=42 W,y (8 (25)
Case I1

In this case substituting the values of y and g
in the equation (9), we get

da
¢ T [32(1 72) — (-/*”—Hoﬂ)] =0 (26

with the change of vaiiable

e~ ()5

equation (26) reduces to

dﬁ
;l%g—- £Ed=0 (28)

(1—g2) + (p%k%] (27)
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The geneval solution of (28) is given by
¢ = 4, A; (£) + B, B; () (29)

where A;(£) and B;(£)are Any functions of
the first and second kind respectively.

Case I11

Substituting the value of p and g in the diffe-
rential equation (9) and changing the vaiiable

(14-p2) (a.-2 AY. an
g = —_— _7"—&'-) '3‘-’-‘
7 By

equation (9) transforms into

dz ¢ %4 LKLy,
gt[1—F = s @
where,

wzd. wz -—%
N = ‘?2*1’— (B—oz k2) al](l

1 9) .2 02 s ;
LL+41) = ‘mﬂ {1(1—_’) P* By - dw q} (32)

assuming L to be a non negative integer,
(=]

The equation (31) 15 a Coulomb wave equa-
tion which has a regular singulatity at £=0, 4.e., for
z=—1/p which includes [(L-+1) and —L. The
general solution is given by

¢$=AF;(n &)+ BGL (v, §) (33)

Case IV

Equation (9), on substitution transforms into

& ¢
3.22_(?}—29‘ cos 2z) =0 (34)
where,
2 2
p= tﬂ%’ —k ?4- and
= o® p/Bs (35)

Equation (34) is the Mather’s equation and has
the periodic solution

é = E(Amcosmz ~+ B m sin mz) (36)
m=0

CHATTERJEE

Remembering that the displacement
v = p-1F ¢ (2) exp {ik (z—et)}

we are going to apply Thomson-Haskell Matrix
method for the layered structure of the earth.
There are u differential equations, as obtained
for each layer for different cascs. The frequency
equation of love waves is obtained from these
solutions and the boundary conditions (denoting
T =1, = p(dv/dz), whe.e we omit the factor

exp {ik (z—ct) ) are
Pa—y _ 'm )
" v Lcnthc (m -1)th boundray (37)

Th—1 = Tm J

as well as for the existence of free smface waves,

n=0,
v,~>0 as z->00 (38)

Let Vyy and ¥,y be the two linearly indepen-
dent solutions as obtained in cases I to IV, Let
the general solution of the mth layer can be
written as:

Vin = Cmyy Vinyy + Consg Vimsa (39)

where Cp,; and ('y,,; are constants. Omitting
the factors of z and ¢t we get ;

:Umf,ic: k (()ﬂhl l,’m 51 + Cm,z Vm,g) alld

Tm:Gm!l F‘m(rl ]"m:1/‘32)+0m 32 F-m(d I'Tm,a/dz)
(40)

the above equations can be expressed in mattix form
as

Py =K, (2) 4y (41)
where,
U k Vm’l k Vm.-z
P, = ac |, Em= avV,. )
Tm Fu dz # dz B
Cm
q d A ——. 1
" " [Um-g] (12)

The boundary conditions, (37) can be written
as

Puoy (2) =Pau (2) (43)
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On the mth boundary ;
L)
P,(0) = ic
0
and :
4,= (%] (44)
0

assuming that

Vay >0, V, g>00832—>

Placing the origin on the (m-1)th boundary we
have from the equations

Pn(0)=K, (0)4, (45)
Setting z—d, (where d,, is the thickness of

the mth layer) in the equation (5) we have on the
mth interface ‘

Eliminating 4,, between equations (45) and
(46) we get

P (dm) = bm P (0) (47)

. where,
bm = Km (dm) Km—l (O) (48)

Equation (47) gives a relation between the
stress and displacement at the top and bottom
of the mth layer. By repeated application of
(47) and using the boundary condition (43) the
relation between P,(0) and P;(0) is found to be

where,
N= U] =+ s men ve o bl‘

The equation can be written in component form
using relation (44) as

, , 9,(0
kCysy Va1 (0)= Ny Ulz-c ) (52)
dV,, (0 9, (0
Opim(®) 2O g, 5Oy

Dividing both sides of the equations (52) and
(53) and thus eliminating 0,,, and #,(0) we get
the love wave dispersion equation as

i 1'-"1! (0) d!ls (0)
Y= @ " —ds | Mu (54)

In particular, if the lowest semi-infinite me-
dium (Fig. 1) is homogeneous, the dispersion
equation 1s

Ny + #n /1 —0%Ba? Ny = 0 (55)

3, Discussion

The problem of computations of dispersion
curves for different types of structures is under
progress. Attempts are being made to chalk-
out & computer programme using double pre-
cision to derive different phase and group
volocity curves, The aim is being to fit dispersion
data with a plausible structure. The results will
be published separately.

The dispersion equation (55) derived in the
foregoing analysis immediately brings out the
results of Love (1911) and Stonely and Tillotson
(1928) for & two and three layered structure of

ey SR BN P 9 the earth respectively. Since the aim of the pre-
(0) = bymy 152(0) (49) sent paper is to present a mathematical angly-
g L sis of the problem, no further conclusion ia
Again since P, (0) = K, (0) 4, (50) dr?Wn at present until physical phase and group
velocity curves are drawn and matched with
We have, K, (0) = 4, = NPy (0) (51) a structure.
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