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ABSTRACT. The problem of the diurnal wind variation inside the boundary layer is treated using the diffusion
equation with a tensorial diffusion coeficient which is more adequate than the ordinary way of dealing with this ques-
tion in terms of a “fictitious viscosity’ coefficient. The correlation tensor is expressed as a random function and using
the equivu.lenoe between the diffusion anl the wnvc_eq[u;t,ion some characteristics of the solution are given. In
particular with the hypothesis of a fundamental p'anodiuity of 24 hr. for the correlation funoction, the classical
elliptical variation of the wind hodograph is obtained. An analogy is established between the general theory of
relativity with its use of Riemann spaces and the non-euclidean frame necessary for the study of the movements
in the lower layer due to the functional relation among space and time variations of diffused quantities. The
atudy is restricted to the case of homogeneous turbulence and this excludes the aEplicmhiun to the surface layer.

e

The mathematical basis are the papers of Varadhan and Zauderer concerning t

solutions of the heat and wave equations.

1. Introduction

One of the most fundamental properties of the
boundary layer, are the changes in magnitude and
direction of the wind with the height. Those changes
begin about the level of 10-20 m up to 1 km in the
middle latitudes of the earth. Below 10-20 m the
direction of the wind is constant and the speed
changes according to a logarithmic law.

This problem has been studied in particular by
the Soviet school of meteorology starting with the
"equations of motion for the atmosphere and intro-
ducing a turbulent exchange coq;ffwient- that is
supposed to be variable in time and space. This
coefficient can be looked upon as a kinematic
coefficient of viscosity which is a rather gioss
approximationsincein fact it isa correlation tensor.

In what follows we shall use a diffusion equation
for the momentum and study the asymptotic be-
haviour for small intervals of time.

2. Mathematical Model

If @ = pv is the momentum of a fluid element,
the mean concentration of 4@, P(r, t) satis-
fies the following differential equation (Batchelor

1949) :

Ap t
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where Kj; is the diffusion coefficient.

We must add the boundary conditions

Lim P (r, t) = j + boundary condtitions
t -0

behaviour of the asymptotic

Eq. (1) is the equivalent of the Helmholtz Eq.
(Frisch 1969) that is,

YOV (k)R ()P (k)=] (2
where
k = wave number

¥ — wave function
n = refraction index

We are interested in studying the behaviour of
¥ when k — oo that is for movements at the small
scales. The asymptotic behaviour of (1) and (2)
for t—>0 and k- oo have been studied by
Varadhan (1967) and Zauderer (1970). The coeffi-
cients Kk in (1) determiine a Reimaniann metric
with a length invariant d2 (r, t). It is possible to
show (Varadhan 1967) that

Lim [—2¢ log P(r, t)]=d® (r, 1) (3)
-0
8. Analysis of the asympfotic approximation
We suppose that k;; is a random variable
analytic and stationary. After Wehrle (1944)
the most general correlation function in this case
is

R (r, r) = cos (r—Mr) (4)
r=1l—4
r=|n-n|

where,

the bar stands for the ‘mean of’ and 2 M and are
two random numbers defined by a probability
law
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» Fig. 1 The horizontal axis is parallel to the isobar at the ground, rl @nd r2 are related,
with the maximum heights where the wind is geostrophic,.

[ (my, w')
We takeQ andM without too much dispersion,
which is equivalent to linearize the problem and
we Introduce the folluwing parameters :

—_—

m, = §, m, = M
o= M o = M2
h=0"

The quadratic invariant fornt that
to Ke. (4) is (Wehrle 1944) -
d® (e, t) = o® 1% — 2m, m," rr + o'2

corresponds

(5)
the characteristic Eq. d2(r, t)=0 represents a
conic which can be :

hyperbola
(mym,")* — 4 026 = 0 parabola
= ellipse

In our case m, ~ o and m ' ~ o
then (m, m,")>—4¢? o2 <o
This means a transfer of momentum or energy
where the propagation surface has the properties
of an ellipsoid of revolution.

Taking for the main period of (4) 24Ar, we have
for d*( 1, t ) the geometric Fig. 1.

The fundamental solution of Eq. (1) gives the
probabilities of transition of the diffusion Process
X(7) associated with the equation and the asymp-
totic approximation (3) gives the behaviour of X(r)
when the time intervals are small.

Let us see Fig. 1, the vector r gives the magni-
tude of log P(r,?) and it is easy to obtain the quali-

tative behaviour of the changes of v in magnitude
and direction.

We see that the changes of the wind in time and
space are not independent. Concerning the magni-
tude of v thereisaminimum towards 24k, 04 and
a maximum towards 127 (it seems infinite due to
the linearized hypothesis).

Il we take the horizontal axis parallel to the
isobars we get for 68—18k a wind parallel to the
isobars, that is geostrophic. Afternoon there is a
reversal of direction.

4, Conelusions

Wethink we have shown that the main characte-
ristics of the diurnal wind variation can be obtain-
ed from a diffusion equation. We have taken into
account turbulence,introducing as diffusion coeffi-
cient a random function which defines the metric of
a Reimaniann space. This fact, limit us to the case
of homogenuous turbulence and the validity of
Eq.(1) is subject to caution for the layers too near
to the ground. Any other differential equation has
the same limitations since the mathematical tech-
niques are not yet developed to deal with the
general problen.

Any how we can conclude that the movement in
the lower layers should not be studied in the frame
of Huclidean space where the variables of spzce
and time are independents problems of boundary
layers, vortex mo'ion and in general turbulence
are closely related to the mathematical framework
built by the physical theory of relativity.
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