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ABSTRACT. An economical tinie integration scheme is of vital importance for NWP model being developed
for operational use as it is required to provide high quality forecasts by using the given computer within limited

computing resources,

Split-explicit time integration scheme discussed in this paper is near five times economical

as compared to explicit scheme. In this scheme prognostic equations are splited according to the vertical modes in-

to those governing the Rossby an
incorporating suitable correction

Ftays conserving properties of mass and energy. The

requency waves.
1. Introduction

Numerical solution of the atmospheric models for
numerical weather prediction involves space discretiza-
tion and time integration of various terms of the model
equations. One of the major numerical aspect of the
operational implementation of atmospheric model is to
have more accurate, efficient and economical time integ-
ration scheme. Keeping in view of this fact, a multitude
of time integration schemes have been developed during
last two decades. Broadly these fall into four major
categories, i.e., explicit, semi-implicit, implicit and split-
explicit time integration schemes. The detail reviews
of time integration schemes are given by Lily (1965) and
Kurihara (1965). Explicit schemes are simple in design
and implementation in numerical weather prediction
model and, therefore, a number of explicit schemes such
as leapfrog, Euler, Matsuno and Lax-WendrofT have been
widely used in earlier models. However, these schemes
are conditionally stable, which imposes an upper limit
ontime step thatcan be used for successful model integ-
ration. Thus, an explicit time integration scheme is very
much inefficient and unacceptable for fine mesh models.
This led to the study and development of time integration
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d gravity modes. It cnables integrarion of the model at larger time step by
for gravity modes. The Limited Area Model (LAM) using this scheme dis-

scheme has inherent mechanism of smoothing high

schemes where time step could be several times larger
than the conventional explicit scheme. Implicit scheme
of Marchuk (1964) is the scheme which permits very lar-
ge time step but during its implementation in a model,
the computer time saved in using larger time step is lost
in solving the Helmoltz equation. The search For eco-
nomical time integration scheme led to the development
of semi-implicit and split-explicit schemes. Some of the
important economical time integration schemes currently
used in research and operational model are semi-implicit
scheme (Robert er al. 1972, 1984), split semi-implicit
scheme (Burridge 1975), split-explicit scheme (Gadd
1978, Madala 1981) and some others.

The semi-implicit scheme integrates implicitly those
terms that are primarily responsible forthe propagation
of gravity waves while the remaining terms are integratep
in a explicit manner. Most widely used semi-implicit
scheme is that of Robert et al. (1972, 1984). The imple-
mentation of this scheme requires solution of Helmoltz
equation at each time step. The algorithm of semi-im-
plicit scheme is easy and economical to apply while deal-
ing with global spectral model due to the fact that the
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harmonic functions are eigen functions of two dimen-
sional Laplacian. However, in the case of grid point
model, Helmeltz equations are to be solved iteratively,
which takes a lot of computer time. Further lateral
beu :dary condition. pose additional problem in the
implzmentation of such a semi-implicit scheme in a
limited area grid point model.

Split-explicit scheme (Gadd 1978, Madala 1981) is
designed to take caie of the propagation oi graviry
waves in an explicit manner by integrating gravity wave
component with suitable small time step which satisfies
Courant Friedrichs Levy (CFL) criteria. The basic con-
cept of the scheme lies in the evaluation of terms re-
presenting slow moving meteorological waves (Rossby
mode) with larger time step and high frequency gravity
wave with sufficiently small time step. lis implementation
in model is made efficient by integrating all the modes by
the same time step (large time step) and introducing
suitable corrections that is for the deviations caused due
to integration of fast moving gravity waves at large time
step so as to arrive at the same result which would have
been given by explicit integration of gravity modes at
small time step.

In this paper, attempt is made to study in detail the
feasibility and the performance of split-explicit time
integration scheme in the framework of a limited area
model (Mohanty ez al. 1989). The details of the split-
explicit scheme s given in Sec. 2 and its implementations
in a limited area model is presented in Sec. 3. Various
numerical experiments conducted in this study are listed
in Sec. 4, the results are discussed in Sec. 5 and conclu-
sions are summarised in Sec. 6 of the paper.

2, Split-explicit time integration scheme
2. 1. Governing equations

The scheme is implemented in a limited area model
with horizontal domain of the model bounded by 30° E-
120° E and 15°S-60° N with a grid resolution of 1.875
Lat./Long. model has staggerred grid (Arakawa-c)
in horizontal and sigma coordinates in the vertical.
It incorporates cumulus and planetary boundary layer
parameterization, fourth order diffusion and sponge
boundary conditions. It has five sigma (o-—p/p,)
levels in the vertical with 6=0 as the top and o— |
as the bottom boundary. The detail description of the
model equations is given by Mohanty er al. (1989). In
order to facilitate discussion of split-explicit scheme as
applied to LAM. the closed system of equations of LAM
(Mohanty et al. 1989) are given in the matrix formas -
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Fig. 1. Division of time interval 2 1 Into m-sub-iniervals for use
in the split-explicit time integration scheme

d=MT (6)

P =Ny D, (7)

where. 4 rzpresents geopotential height from the surface
terrain. A4,. 4,. Ay and ¢ contain non-linear tarms and
forcings. The dztail description of cach term is given
Eqns. (1)-(4) by Mohanty er al. (1989),

Further. the symbols with matrix notation represent the
following :
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Here p, is the surface pressure, w and v the zonal and
meridional wind components respectively, f the coriolis
parameter, T the temperature, ¢ the specific humidity
n=dodt the vertical velocity in sigma coordinate,
R the gas constant for dry air, d the potential temperature,
¢, the specific heat capacity of dry air at constant pres-
sure, D the divergence.

2.2. Split-explicit method

Governing equations of motion can be split into two
categories of motion. the Rossby modes and the gravity
modes. The Rossby modes are non-linear, slow moving
and contain most of the atmospheric energy whereas
gravity modes are linear, fast moving and contain only
small fraction of total energy. The RHS of Eqns. (1)-
(6) represent the Rossby modes while on LHS, pressure
gradient and divergence terms give rise to gravity modes.
The phase speed of the Rossby mode is at least four times
slower than the external gravity modes.

Based on these facts, attempts have been made by
various workers to carry out time integration with diffe-
rent time steps each satisfying CFL criteria of respective
mode. In this category different schemes are : split
semi-implicit scheme [Bucridge (1975)] and split-explicit
schemes [(Gadd (1978), Madala (1981)]. In the scheme
devised by Burridge, gravity modes are treated implicitly
and Rossby modes explicitly. This significantly reduces
the number of elliptical equations which need to be sol-
ved. However, its application in model leads to time tr-
uncation errors. In Gadd’s scheme both the Rossby wave
and gravity wave contributions are treated explicitly
using two time steps, smaller one for gravity modes and
larger one for the Rossby modes. This scheme also
suffers from variable time truncation errors. Madala’s
scheme (1981) provides substantial improvement over
Gadd’s scheme. In the Gadd’s method all the gravity
wave contributions are integrated with the same time
step while in Madala’s scheme each gravity mode is
treated separately. In this scheme various tems contri-
bute additively instead of multiplicatively as in ordi-
nary time-splitting methods. This provides a more accu-
rate solution than the earlier two methods. We define
CFL time steps / tg and A\ m for external gravity mode
(~ 300 ms—') and fastest Rossby mode (20 ms—!)
respectively and choose a time step /.7 such as /1<
Atm. It enables slower meteorological modes (15 & 5
ms—1) to be integrated explicitly with time step /.1
instead of A7g=Atr (in Fig. 1). Integrating Eqns,
(1) —(7) from r—/\t to ¢+ /At we obtain &

pu(t + At)—pu(t — A1) + 2At = 98
hy 8x
= 2Nt A4,(1) (12)
PV (t ":' —-t) — PV (f - .L;.f) '}‘ 2;.’ _l _ai
hy oy
=2AtA,(1) (13)
pT (1Al —pT(t— Al) +-2At My D,
=2/t Ar (1) (14)

P (A1) —pg(t — At)=2,1G()  (15)
p,(t+Ar1) — p,(t— At)+2At N; D,=0 (16)

where. the operator (—) is defined as

i r + OF
B = 2**“] p di (n

r— Lt

Since the RHS terms vary slowly over the time scale of
Rossby modes, these can be computed once every other
"t step, i.e., at time ‘1. Thus the RHS terms can be
rewritten as 21 A, (1), 2 At A, (1), 2,1 Ay(t) and
2/t G(t) respectively in Eqns. (12)-(17).

The u momentum Eqgn. (12) can now be rewritten as :

pa (1 At) + 248 {% [¢—¢()]

h.
1
-pau(t — At)— 2/ — K. é (1)
hy ©ox
-+ 20 Au (1) (18)

The RHS terms in Eqn. (18) are equal to explicit evalua-
tion of pu (t-+ /. t). Thus,

pai (4 )

— ©exp - Fy l _a. _
= Put® (14 At)—2A18 o [ ¢— &)

(19)

Thus split-explicit time integration is equivalent to
explicit time integration at a larger time step and

1 @ - " ;
—2At - ax [¢—-¢(r) ] which is known as
correction term. It arise due to integration of
gravity modes at large time step. The term is
computed from smaller time step.

Similarly, the other prognostic equations can be
written in the same manner, where the superscript ‘exp’
denotes values computed using explicit time integration
over 2/\ 1.

3. Implementation of the split-explicit scheme in LAM

The implementation of split-explicit time integration
scheme in a model is carried in four steps. These
are :

(i) Splitting of equations and computation of
vertical modes,

(i) Df:lcrmination of time steps corresponding to
different phase speeds based on CFL criteria,

(iii) Estimation of correction terms in eigen space,
and

(iv) Transformation from eigen space to grid space
for integration at large time step.

Of the above four, first two are dependent only
on the structure of model (number of levels) and basic
state of the atmosphere. Therefore, these are computed
only once in the beginning before first time step of the
model integration.



534 U.C. MOHANTY ef al.

3.1. Splitting  of equations and
vertical modes

While discussing split-explicit method in earlier section.
we have seen that RHS of Eqns. (1)-(6) having non-
linear terms represent the Rossby modes and on LHS
pressure gradient and divergence terms give rise to
gravity modes. By combining thermodynamic equation,
surface pressure tendency egation and hydrodynamic
equation, we arrive at following set of governing

computation of

equations:
&Pt 1 94
— - L — 0 _4" 20
ot h, &x “
v | '
P 4 == o, = A, (21)
ot hy @y
od
X 4 M, D, = A 22
v 3 D, y (22)

where, My — My M, 4 N. (RT* — 4%)
9s:ps(¢ - 'ﬁt)‘l’(RT*— Q““)p:
We linearize above equations by setting RHS equal

Lo zero to get the natural modes (eigen modes) of the
system :

apu 1 34
==k =0 23
ot hy Bx (23)
oy | T
— 4 =0 24
ar | hy &y 24
a
2% 4 My D, =0 (25)
ot

Eqns. (23) and (24) display no vertical coupling as there
are no vertical derivatives in these equations. However,
Eqn. (25) has vertical coupling because of M, matrix.
The Mj matrix represents the thickness of the different
layers of the model and their mean temperature structure
(please refer Eqns. 25, 8 &9).

If E represents the eigen vector matrix of M, (with each
column representing an eigen vector), the variations of
dependent variable can be expressed as the linear
combination of the structure functions.

Further, diagonal matrix A is defined as
A=E-1M,E (26)

where, diagonal elements of A are the cigen values of M,.
Since My contains vertical coupling, the eigen values
give the phase speeds of the vertical modes of the model.

3.2. Determination of time step

It is seen from above that the eigen values of M,
give phase speeds of the vertical modes (natural modes)
of numerical model and there are as many natural
modes as there are layers in the model. For example,
for a five level P.E. model in tropics Egns. (1)(7), the
five eigen modes have characteristic phase velocities
of approximately 300,70,30,15 and 5 ms—, while Rossby
modes moves at about 20 ms—!. Thus we can determine
the gravity modes moving faster than the Rossby mode
requiring much smaller time steps and the remaining
modes moving slower than Rossby mode requiring

larger time step. Since the terms on the left hand side of
the Eqns. (12)-(16), namely the pressure gradient and the
divergence terms, vary over the time steps determined
by all the modes, time interval 2. is sub-divided into
m sub-intervals  of length 2 '\~ (Fig. 1). For giavity
waves with phase speeds (300, 70, 30 ms—') the value of
m for five level model is 8, 4, 2 respectively. Within these
sub-intervatls (ime step 2 * 7) the time integration is
carried out explicitly, Then we have

m
1 "
B= — E B (27)
m

n=1

where, m = 1 1d and p" = B(t— t - 2n'7)
T

Further it isseen from Eqn. (19) that the results of the
future state variables obtained by integrating the
cquations of motion by using the split-explicit finite
difference technique differ from the results obtained by
explicit time integration scheme by a deviation term
cqual to

1 5 [- _
2040 “ — ¢(n) ]

Similarly for v momentum equation. therm rdyaamic
equation and the surface pressure tandznzy 2 jaation tie

I ¢

correction  terms  are —2 \/ i 3y [¢ — & ()],
po €

2t My(D—D(1)) and 2 "\t NJ [D — D(1)] respecti-
vely, Thus in order to use the split-explicit integration
scheme we have to evaluate ¢ and D,

3.3. Estimation of correction terms in cigen space

The momentum Eqn:. (1) & (2) can be combined

to give the equation for 2? as follows :

=

-D - Tid = . A;f “4\' [38‘

i
t ‘ ‘ AT ar

(»)]

Similarly, the thermodynamic, the swface pressure ten-
dency and the hydrostatic Eqns. (3)-(5) can bz combined
0 get an equation for 3¢/2r as follows :

0 ¢

4 My D, = My Ar (29)
or

where,
My = MM, + NI (RT* — ¢*).

However, there is a practical difficulty in implementing
the split-explicit method using the above equation in
grid point space. Since different gravity modes of the
model will satisfy different CFL criteria, the magnitude
of small time step = will differ. Thus, the values of D

and E;, hence the deviation terms will be different

corresponding to different gravity modes. In order
to integrate Eqns. (28) and (29) for different
gravity modes separately, we have to transform

grid point variables to the eigen space variables, where
the modes can be treated independently,
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The homogeneous system of Eqns. (1)-(5) contain
only the gravity waves. These are the natvral gravity
modes (eigen modes) of the model and their number is
equal to the number of vertical layers in the model.
These natural gravity modes form a complete set of eigen
functions which satisfy the boundary conditions of the
model. For obtaining the correction terms for different
medes, we express the dependent variables as linear
combinations of the structure functions (the respective
columns of the eigen vector matrix E) as follows :

u= Ea
v = Eb
T=Ee - (30)
D=Ed
¢ = E.e

where. the elements of the coefficient vector a, b, ¢, dand
¢ are the amplitudes of the eigen modes. We multiply the
prognostic equations by £—1 and using the relationships
between dependent variables and the amplitude of the
eigen modes, we obtain the following spectral equations
for the wave amplitudes for the jth mode :

il

|
9 (p.ai) -+ — N
of

= E—1 A“ i 3
he ax ¢ ( ) Gh

1 s
2 (pbi) b o= (B A G2
et hr oy
= (p.¢;) - (Msd)y = (E" Ay); (33)
? i
o (P (Nad) =0 (34)

Now. the correction terms for the system of equations
(for p,a, pb. pec, pg and p, ) are :

1 9 -
E 2 A gy — 0, e
: o he ©ox [a—ea®]
22“:—1— a—‘—(" 1]
; FAY h“. a"[' [ i [ ( s

DAt My (3 —di (1)),

T
and X 2NNy [ di—d; (1)]

respectively. The summation over i is carried out for
those modes for which the split-explicit technique is used.
The above correction terms can be obtained from the
prognostic equations for e and 4. The equations for e
and d are obtained from Eqns. (28) and (29) as :
di(t + At)—d(t — AD -+ 2A1 (832 + 8y?)
X [eo—e (] =d (+A1)—di(t—A1)  (35)
and e (1-+ A1) — e, (t — A1) + 2At A [d — d, (1))

= ¢ (I +AF) — & (t—Al) (36)

For the first step of integration of sub-interval A\,
the Euler-backward time integration method is used to
is march from time +— /¢ (i.e., point 0 in Fig. 1) to
time t— A\, t-+ /7 (point 1). Then a leapfrog scheme used
to march each successive time step /A7 until time ¢/ ¢
(over 2m;/\ =; sub-intervals). In the present study, the
time interval 2A ¢ is sub-divided into8 (m;=8) su-2
intervals for the first (external) gravity mode and 4 and
sub-intervals respectively for the second and third modes
respectively for a five layer model (K;=75). The fourth
and fifth modes travel sufficiently slow enough to be
incorporated into the large Rossby time step( /\ 7).

3.4. Transformation to grid space

The correction terms computed above are applied
to prognostic Eqn. (19) for # component (similarly
for v, T, p,) to get prognostic variable at grid point by
split-explicit method. The computation of non-linear
processes such as advection and physics iscarried out in
usual grid space at large time step :

4. Numerical experiment with the integration schemes
4.1. Efficacy of split-explicit method

In order to determine the appropriate time steps for
integration by explicit and split-explicit methods and to
demonstrate the efficiency of split-explicit method over
explicit method a number of experiments were conducted
with initialized data of 22 May 1979. Model integrations
were carried out with time steps of 120, 180, 240 and 300
seconds for explicit (leapfrog) and with time steps of
600, 900, 1200, 1500 and 1800 seconds for split-explicit
method. In the case of explicit scheme time step for the
grid length of 1.875° at 45° N lies between 240 and 300
seconds. However, during numerical experiements
model blow up after 6 hours and 2 hours with 240 and
300 seconds time steps respectively. The model could be
integrated successfully upto 48 hour with 180 seconds
only with explicit method. On the other hand, the model
integration was successful up to a period of 48 hours with
a time step as high as 1200 seconds with the split-explicit
method of integration.

Fig. 3 depict the time variations of mean absolute
divergence of 0=0.5, for the split-explicit case for time
steps of 1200, 1500 and 1800 seconds respectively, It is
seen from Fig. 3 that the model integrations failed after
approximately 7 and 9 hours with time steps of 1500 and
1800 seconds respectively. With a timestep of 1200
;econds the model integrations were successful up to 48

ours.

The comparative behaviour of explicit and split-
explicit method has been studied with the help of follow-
ing experiments :

(a) Explicit method with time step of 180 seconds (E,),

(b) Split-explicit method with time step of 180
seconds (Es),

(c) Split-explicit method with time step of 900
seconds (E3).

The results of above experiements are discussed in
Sec, 5.1 & 5.2,
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4.2. Properties of split-explicit time integration scheme

In order to demonstrate-the noise suppre_ssion charac-
teristic of split-explicit method: experiments were

conducted with initialised and uninitialised data of
22 May 1979 for both explicit & split-explicit methods,
{he results of these experiments are presented in Sec. 5.3.

5. Discussions

5.1. Comparative behaviour of explicit and split-
explicit method ,

Though an explicit scheme like leapfrog scheme is
considered inefficient due to the constraints of upper
limit on the time-step. it yields to fairly satisfactory
results with smaller time-steps within the range of CFL
limits. In order to assess the characteristics of the split-
explicit method as compared to explicit scheme. the
model was integrated separately up to 48 hours with the
two schemes with a small time step of 180 seconds,
using initialised date of 22 May 1979. At each time
step, mean absolute tendenciesof v, v and T and mean

absolute kinetic energy [Kj] and total energy [T at
each sigma surface and surface pressure tendency
[p,) were computed. In addition, surface pressure and
vertical velocity () were also monitored for a few
specified grid points.

Fig. 2. depict the time variation of above mentioned
parameters for the explicit and split-explicit forecast
runs of the model for the first day of the integration as no
significant changes are observed beyond this period. Itis
seen from Fig. 2 that the two time integration schemes
yield to nearly similar pattern of time evolution of above
mentioned parameters. In both the cases, the tendencies
of w, v, T and p, stabilise after 5-7 hours of initial
decrease and maximum decrease is shown in the case of
p.. Similarly, [Ky] and [T] values obtained from the
two forecast runs are nearly identical. However, the
magnitude of tendencies of w, v, T and p, are lesser
for the split-explicit run as opposed to the explicit forecast
run of the model. In both the cases, p, and 7
do not show large amplitude fluctuations. Thus, it can be
inferred that both the split-explicit and explicit integra-
tion of the model display similar characteristics when we
take a reasonably small time step.

It is seen from Fig. 3 the mean [Ky] and [Ty
remain almost constant (less than 109, changes).
Similarly, the model is also found to conserve the total
mass over the domain. p, and 5 which are considered
sensitive to initial data and approximations in the
specification of lateral boundaries and discretization in
space and time, do not show spurious oscillations and
vary gradually during the period of integration. Though,
the model incorporates various physical processes, in
general, the mean absolute tendency of the variables
over a very large domain should not vary sharply during
the first day forecast, as in this timeframe, the major
contributing factor for the change of tendency is accredit-
ed to the large scale dynamics. The initial decrease in the
tendency of the variables as observed may therefore, be

TABLE 1
Root mean square error — 22 May 1979

24 hr 48 hr

ey A

. — -
Levels Variables  E; B E K Y 8

(mb)

300

E, : Explicit scheme with 180 sec time step.
E, : Split-explicit scheme with 180 sec time step,
E, : Split-explicit scheme with 900 sec time step.

due to initial mutual geostrophic balance of the mass
and velocity fields.

It can be inferred that the LAM under consideration
with all its approximations, largely satisfies the essential
conserving properties of mass and energy during both
explicit (short time step) and split-explicit time inte-
gration.

5.2. Forecast performance

The foremost requirement of a time integration scheme
in a prediction model is to provide good forecast fields
and, therefore, experiments were conducted to evaluate
the forecasting performance of split-explicit time inte-
gration scheme. Forecasts for 48-hr were made from the
initial date of 22 May 1979 (12 GMT) with explicit
time integration scheme having time step of 180 sec
[E,]. split-explicit time integration scheme with time step
of 180 sec [E;] and split-explicit scheme with time step
of 900 sec [E3]. Table 1 shows 24 hours and 48 hours
root mean square [RMS] error in respect of zonal wind
[t] . meridional wind [v] and temperature [T] for above
three experiments. It brings out that the RMS error
is of the same order for all the three experiments. The
errors are least for experiment E,, followed by Ej, and
maximum for E;. Superiority of split-explicit lies in the
effective suppression of the growth of the gravity waves
during time integration,
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Fig. 4. Stream line and isotach analysis ol 48 hours forecast wi

(@) explicit scheme (/¢ — 180 s=z2), (b) split-zxplicit (
verification- field

Figs. 4 (a-d) present 48-hr forecast streamling isotach
analysis and corresponding verification field. A cut off
low was observed over north Pakistan between 500 &
300 mb_on 22 May 1979. It moved eastward and was
over Jammu & Kashmir on 23 May 1979,
It weakened rapidly and was seen as a
feeble trough over Western Himalayas on 24
May 1979 (Fig. 4d). All three integration schemes
have brought out general flow pattern and important
synoptic features like weakening of cut off low into
trough: locations of anticyclonic cells over Saudi
Arabia and southeast Asia. However, the location of the
trough is to the west of the actual position and forecast
intensity is more marked. These discrepancies in general
“are common to all the three forecast runs and, therefore,
can not be attributed to particular time integration
scheme. Forecast wind field with explicit scheme (Fig. 4a)
shows isotach maxima of 30 ms—! over Iran. which is

not seen in the split-explicit forecasts and verification
fields.

It is seen from above discussions that split-explicit time
integration scheme with larger time step gives results
which are not inferior to explicit scheme having smaller
time step and are equally good as compared to split-
explicit scheme having smaller time step. Thus, on the
grounds of both the time economy and operating

-

nd field from the initial dara of 22 May 1979 (12 GMT).
r=-180sez), (c)split-explicit ( *.r —900 sec) and (d) corresponding

performance, split-explicit ‘scheme with larger time step
is preferred over other two schemes.

5.3. Noise suppression characteristic of the split-
explicit method

The split-explicit time integration technique employs
much smaller time steps to treat the fast moving gravity
modes. Unlike the split-implicit scheme, an split-
explicit time differencing scheme does not suffer from
severe truncation errors (Gadd 1978). In view of the
above, the split-explicit time differencing scheme
suppresses and does not permit generation of gravity
wave noise. In order to illustrate this characteristic, the
model was integrated with the uninitialized data of
22 May 1979 with split-explicit technique and with the
explicit method respectively. In the case of the split-
explicit forecast run of the model, a time step of 900
seconds was used while for the explicit case, a smaller
time step of 180 seconds was used.

The model could be successfully integrated even with
the uninitialized data with split-explicit time difference
scheme up to a period of 48 hours. On the other hand, the
model integrations failed after 16 hours of integration by
the conventional explicit scheme. This result is based on
Jjust one example and have been taken with caution,
because initialisation is any way important.
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Fig. 5. Time-series during one day forecasts obtained by splitsexplicit (0————0) and explicit (> <) methods

of time integration with uninitialised initial data, (a) lu]. ) Tl (@) TTi, @) [pl, (&) (KE), (F) [TE], (8) ps and (h) @

Fig. 5 depict the changes in various parameters (as in
Fig. 3) during the integrations of the model by the above
mentioned two time difference schemes. It can be seen that
), [v., [T, and[p,] grow rapidly after one to two
hours during the explicit run. Similarly [Kg} and [Tg] show
a progressive rapid rise after a few hours of the model run.
On the other hand, [u,],[v /), [T ,]and [p] showa
initial rapid fall during the first 6-8 hours of model
integration by the split-explicit method and become
almost constant thereafter. A similar nature of decrease
in these parameters are noticed during the split-
explicit run with uninitialised data as against the similar
forecast run with initialised data (Fig. 3). It is, therefore,
attributable to the initial balancing of mass and motion
field by the model itself during its integration. The mean
kinetic energy and mean total energy remain almost
constant by the split-explicit time integration method.
Fig. 5 also depict time evolution of surface pressure ()
and R (at ¢=0.5) at a specified location (30°N, 65° E)

during the integrations of the model by explicit and
split-explicit time difference methods. The time series of
P, and o by explicit method shows considerable oscilla-
tions (as much as 10 mb). On the other hand p, and o
fluctuations during the model integration by the split-
explicit technique are smaller and quite realistic.

From the above discussions, it is apparent that
during the model integration by explicit method with
uninitialised input data, gravity wave noise grows and
contaminates the meteorological fields to the extent of
blowing up the model integration after a few hours. On
the other hand, the split-explicit time integration with
uninitialised input data leads to mutual balance of mass
and motion fields. It also effectively suppresses growtn of
high amplitude gravity wave oscillations during the
integration of the model. The main concept behind the
split-explicit scheme is toJapply a time averaging of the
high frequency modes during their integration with smaller
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time steps. Thus, the split-explicit technique of time
integration has an inherent mechanism of smoothing
high frequency modes and hence to some extent operates
like a dynamic initialisation.

6. Conclusions

(i) The split-explicit and explicit time integration
schemes lead to nearly same results with a
small time step and initialised input data set.
Further from the results it can be inferred that
the LAM displays conserving properties of mass
and energy during both explicit and split-explicit
time integration.

(if) The results of the study with initialised input
data show that the split-explicit time integration
is nearly five times more economical than the
explicit method in terms of time step.

(iii) An explicit time integration with uninitialised
input fields leads to failure of integrations
after a few hours even with a small time step. On
the other hand, a split-explicit method with
uninitialised input data and with large time step
is found to effectively suppress gravity wave
noise for model integration up to 48 hours. Thus.
the split-explicit time integration technique has
an inherent mechanism of smoothing high
frequency waves.

(iv) Split-explicit schemes as used in limited area
model simulates general flow pattern and impor-
tant synoptic feature very well up to 48 hours and
its root mean square errors for wind and
temperature are less compared to explicit scheme.
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