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ABSTRACT. Steady state solutions for the nonlinéar equations which govern planetary boundary
layer flow is obtained thiough finite element method as well as by the usual finite difference technigue.
The physical phenomenon corresponds to that of a flowover a surface varying in surface roughness

and temperature along one direction. Comparison of
two techniques employed.

1. Introduction

With the rapid development of digital com-
puters the partial differential equations occurring
in various ficlds of science and technology, hither-
to unamenable to get a closed analytical solu-
tions, are solved using various numerical tech-
niques especially using the finite differences
technique. However, other engineering fields,
especially aircraft technology, in which complex
partial differential equation arises has used the
finite element method to obtain solutions. The
purpose of this paper is to develop a finite ele-
ment model for the study of heated island
effects using the relevant planetary boundary
layer (PBL) equations. For comparison purposes
a finite difference model is also developed. Due
to differential heating of land and surrounding
water mass or cooler areas, islands generate local
circulations of mesoscale proportions. The inter-
change of heat energy, momentum and moisture
between air and sea combine with the variational
properties such as terrain roughness, temperature,
size and contour features to produce a variety of
atmospheric circulations. The nature of the in-
duced perturbations depend upon the ambient
wind or the large scale flow and the degree of
siratification of the atmosphere in addition to the
above mentioned factors. Under suitable condi-
tions, the cloud formation and precipitation may
occur.
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the% results show a good agreement between the

Theoretical studies of flow over heated sur-
faces have been made by Malkus and Stern
(1953), Smith (1957), Taylor (1969) to men-
tion a few. An extensive study incorporating
non-linear effect has been done by Estoque and
Bhumralkar (1970). However, in all the above
studies either a semi-analytical approach and/or
finite difference technique has been employed to
obtain the desired solutions, In a general case,
including nonlinear effects, an analytical study
euﬁmpassi’ng the desired parameters is not
feasible. Hence a numerical technique, in this
paper finite element method, is employed to
obtain the desired solutions.

This kind of study is of interest to India as it
is conjectured that many off-shore islands may
have a considerable effect in the enhancement of
the rainfall along coastal regions. The final objec-
tive of this study is to investigate the quantitive
chanl%es in rainfall amount due to presence of
off-shore islands. For this, detailed PBL observa-
tions| are necessary. Hence, in the absence of
observational data, we present in this preliminary
study, the solutions for a homogeneous terrain,
i.e., homogeneous with respect to temperature,
roughness etc using this as our first approxima-
tion, solutions for flow over a one dimensionally
varying terrain under steady state conditions are
obtained. The procedure is to get a first approxi-
mation in simple cases and this solution is
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improved by introducing successively the varia-
tions of parameters such as temperatures or
terrain roughness to sludy their effects. The
equations are solved using Galerkin residual
procedure, an extension of Rayleigh-Ritz princi-
ple, instead of usual finite difference technique.

2. Finite element procedure vis-a-vis finite difference for
the present problem

Better or finer resolution for the dependent
variables at any particular region is obtained by
varying the size/shape of the finite element
conveniently. In the finite difference technique
finer resolution in the region where the variables
have a large gradient is obtained by varying grid
size by logarithmic transformation of a coordinate
and/or similar other transformations. This is
usually a tedious process. Moreover, the irregular
geometry of island can be better approximated
with the finite element technique rather than in
the finite difference grid system. However, it has
been found in practice that the finite element
technique require more computational {ime than
that of finite difference technique. In this study,
both finite difference and finite element techniques
were employed to check and verify the correct-
ness of calculations,

3. Flow over one dimensionally varying terrain
The appropriate governing equations, neglect-

ing the variations along y -direction are the
following:
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The last two equations are the equation of conti-
nuity and the hydrostatic relation respectively.
In these equations, R is gas constant for air, ¢,
is specific heat at constant pressure, g is gravity
and p, is 1000 mb. The horizontal pressure grad-

ient 1 g{; is to be prescribed by the large

: 1
scale geostrophic flow. The x component ;3—2
except at the top of boundary layer is to be cal-
culated wusing the hydrostatic relation at each

iteration step.

The vertical distribution of wind, temperature
and moisture over a homogeneous terrain can
be obained from the above differential equations
by neglecting non-linear advective terms.

By specifying appropriately the eddy coefficient
K (assumed to be the same for heat, momentum
and moisture transfer) we can obtain analytical
solutions. With appropriate boundary conditions
and for constant K the above equations yield the
well known Ekman relations. However, in the
real atmosphere, the eddy coefficient K is a func-
tion of altitude, stability parameter, roughness
length and the shear of basic wind. The specifica-
tion of K including the above mentioned parame-
ters is not unique. For our calculation, we have
used Blackadar (1962) formulation as above

2 (11aRi) Ri>0
K = 3

lzegg (1--aRe)™ R <0 ™

where 1=k (z-]-zo)/ (1+ "_".(i:_“'“_“))

]
A=2.7X1074 U,[f ,

Uy=(ug’+v,' 0",
a= — 3.0 and

ku=n-4 ’

2o=0.1 (Roughness length) is varied.

Since the eddy coefficient is assumed to be posi-
tive, the absolute value of QJ¥/3z is used. How-
ever, we have found in our experience, in order to
have a smooth variation of K over the entire
domain, 2V/3z should be replaced by the

expression :

G
[ (32) * RE
The scientific reason for using the above
expression is also given by Torrance ef al. (1973).

4. Method of solution

For the simple case of homogeneous terrain with
K constant, Galerkin’s technique for weighted
residuals yield (for the first two equations) the
following relations :

J.N. (K oty 2 v))dz =0 (8)
oc




|

FINITE ELEMENT MODEL FOR HEATéD ISLAND EFFECTS 303

-

1000 i

900%(,0)
800119

750
700
650{ |
600
550-
500
450
400-
350+
300
250
200
150/
1004

1
Sol6)

5
1044 (2)
gl

Fig. 1. Structure of the finite element assembly with
nodes used for homogeneous terrain calculations
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where N; is the test function. The dependent vari-
ables, u, v are now represented over a particular
finite element by the following expressions :

j=1 i=

where Nj represents a piecewise continuous function
which in this case is also the test function. Inserting
the above expressions into the integrals, integrating
by partsa system of N equations with N unknowns
are generated at the nodal points. Thus, for the entire
domain under consideration we can write the basic
equations in a compact form :

[F] [Vl = [D] (1
where[F] is a matrix consisting of the basic functions
and their derivatives over z, [D] and [V] are column
vectors consisting of constants and unknown vari-
ables u and v. The imposed boundary conditions
are included in the column vector D. We have
imposed the following boundary conditions for the
problems :

At z=0:u=0,0=0,0=20,0 =0
At z = H :u=u,;, v=0,=0, 0=0g, 0=0n
where H is the height of planetary boundary layer,

3 3
=2 Njuj, v==2N; (10)
1

and f is coriolis parameter.

o
=2
7

Fig. 2. Comparison of U velocity profile with the change
in the number of elements, for K=5 x 10* cm?/sec
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In a similar manner, now specifying the eddy
coefficient K using the expression of Blackadar
(1962) we can reduce the basic equations to a mat-
rix form. By solving this matrix equation, we obtain
the distribution of variables in the entire domain.
Since K is a variable and function of z the matrix
coefficients containing K should be evaluated at
all nodal points in order to include shear of basic
wind an{l stability parameter. The same test function
(N;) was used for Kin this analysis.

An identical approach is made use of to evaluate
temperature and humidity profile in the entire do-
main. With K as constant, the temperature and
humidity equations can be solved separately. How-
ever, with K as a function of stability parameter and
shear of basic wind for each iteration w, v compo-
nents are evaluated first and substituting these in
expression for K temperature and humidity equa-
tions are/solved. The Richardson number is assumed
to be cont.stant with height and equal to the average
value between surface and 100 metres.

|

For computational purposes, it is necessary to
specify t?le values of the variables at the boundaries,
ie., at l

z+=0 and z=H (Top of PBL)

The ass+med typical values are :
At f=0, u=0, v=0, 0=303°A, Q=14g/kg

|
|
|
|
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Fig. 3 (a). Comparison of Ekman velocity profile swith the
results obtained by F, El. Technique for K=5 x10¢

cm?/sec

At z=H, u=1000 cm sec™!, y=0, §=309°A
0=12g/kg.

At z=H, u and v specify simply the values

of geostrophic wind. For simplicity, it is
assumed y=0at z=H.

Two typical values for zo (roughness length) are

chosen ;
2z5=0.1 em (smooth and flat)
z,=100 cm  (tall grass)

Similarly the temperature at the bottom surface
(z=0) is specified either as #=303°A or
f§=313° A, the later corresponding to a heated
island surface. To test the validity of finite element
technique few runs were made with different values
of K which can vary over large range. By varying
the size of finite element the accuracy of adopted
technique is tested.

Typical results are given in accompanying figures.
Fig. 1 shows the structure of line elements in the
domain considered. Fig. 2 shows the increase in
accuracy of calculations with increase in mesh
size for K=5 10* cm2/sec. For comparison pur-
poses results obtained using analytical formulae
are also shown. :
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Fig. 3 (b). Sameas Fig. 3 (a), Temp. Profile

The temperature and humidity profile obtained
with a typical value of K are shown in Fig. 3. The
results obtained using finite element technique and
finite difference method is compared in Fig. 4 for
variable K.

To obtain solutions for flows with variation in
surface roughness and/or temperature the region is
divided into rectanguar elements.

The structure of the integrating domain, dis-
cretization into rectangular elements with nodes
at the corners, is shown in Fig. 5. The grid system
for integrations has the coordinates along z axis
shown in Table 1. Also shown the grid distances
along xeaxis. The integrating (Gaussian) point
for each element is taken at the centre for each
element. Qur efforts with two point Gaussian
integration which may be more accurate have not
been quite satisfactory. Thus, the results are for
with one point Gaussian integration only with 19
elements in each column.

The following boundary conditions, similar to
that of Estoque and Bhumralkar (1970) prescribed:
at the upwind lateral boundary :

x=0: u=u0, 2), v==v(0, z), 0=20(0, 2),

2=0(0, 2)
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Fig. 4. F. Element and F. Diff. results for homogeneous

case, z,=0.1cm
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Fig. 4 (a). Same as Fig. 4, 'l'emp.- .r.('yﬁle
at the lower boundary :
z=0 ; u=0, v=0, =0 (x, 0), 0=0(x, 0),
at the upper boundary :
z=H ; u=uy,(H), v=v, (H), 0=0(H), 0=Q(H)

The values of variables at the top boundary, z=
H, are taken indentical as given previously. For
simplicity, constant upper boundary pressure

g
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Fig.4 (b). Sameas Fig, 4, Humidity profile

p(x, H)=900 mb is prescribed. The vertical distri-
butions of the variables at the upwind lateral
boundary| x=0 are taken to be that of homo-
geneous terrain values, obtained as described in
previous section.

As befare, the variables are presented over a
particular finite element, in this case over a rect-
angle, by a linear combination of basic functions
such as :|
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Fig. 5. Finite element assembly used for one dimensional
variation calculations
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Fig. 6. Typical velocity profiles obtained at x=100 m

4 4
u=2 Nju, v=2 Nv elc.
j::l j=1

substituting these expressions into the equations
and by test function N; taken same as basis func-
tion, integrating over a finite element and assemb-
ling over the domain we obtain a set of N equations
with N unknowns, N being the number of nodal
points. Recasting these equation assembly into a
matrix form and solving, we obtain solutions of
these variables at each node, subjected to the im-
posed boundary conditions. As before, few runs
were made to determine the optimum number
elements necessary for the desired accuracy. We

900
[

HEIGHT 2fm?

0
Fig.7. Same as Fig.6,butatx=300m

have followed a similar procedure as that of Es-
toque and Bhummlkar (1970) for integrating over
the entire domain. For details the reader is referred
to the above publication.

For calculating vertical velocity and pressure
at each iteration step we have utilised the finite
difference analogues of the integrated continuity
and hydrostatic relations. This is essentially done
to save the computational time. The results obtained
by both the techniques are compared in Figs. 6-8.
Problems of computational instability which has
necessiated the use of upstream space differencing
with finite differencing scheme has not risen with
finite element technique. Further refinements in
the nodal may necessiate this. The results obtain-
ed show finite element solutions has a smoother
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Fig. 8. Temperature profiles at X =100 metres
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Fig. 9. Vertical velocity profiles at |various distances
downwind along x—axis ‘
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variation and has a better accuracy than those down wind edge of the island. This is in agreemen

o? li;lnlite difference technique. with the gg)servatrons as reported by Malkus and
ical velocity profiles obtained at various SteruL(IQ : e

By 4 Thus the results show the feasibility of adopt-

distances downwind along the x-axis are shown in _
o, ing the finite element scheme to a study of PBL

Fig. 9. It is clear from this study that a convective ! ( ]
cell develops at the edge of heated island in the equations and in some cases better accuracy in
down wind direction rather than over the island results can be obtained than finite difference

itself. Hence, precipitation can occur only at the meth"od.
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5. Conclusion

The primary objective of this paper is to develop
finite element scheme to solve PBL equations and
compare the results with finite difference scheme
results. A brief description of the adopted scheme
is given above. The application of the scheme with
real data used asinput is to be awaited. Calculations
are in progress for studying unsteady cases.
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