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Basic approximations for large scale motion in equatorial regions

KIRIT S. YAINIK

National Aeronautical Laboratory, Bangalore

ABSTRACT. An exploratory studv of approximations for the equatorial region is given to stress the
rapid variation of coriolis parameter with latitude, and the consequential differences in the length scales in
meridional and zonal directions. The resulting cquations retain coriolis as well as non-linear inertia terms in
zonal momentum balance. This approximation for dominantly zonal flow is supplemented with another for a
sublayer near the equator where the meridional flow might be dominant in case of large interhemispheric

transport, as in monsoon over the Indian Ocean.

1. Introduction

Approximations  built around geostrophic
motion, such as the well known quasi-geostrophic
approximation (Charney 1955), have proved to be
of considerable utility in providing an analytical
framework for numerical and theoretical studies.
While detailed scale analysis (Phillips 1963) is
available to provide a theoretical basis for these
approximations for middle latitudes and polar
regions, the situation is quite different for equa-
torial and tropical regions. Here, there are
hardly any scale analysis arguments available and
doubts have been expressed about the validity
of these approximations in low latitudes (Phillips

1963).

Simple estimates throw light on the possible
applicability of well known approximations to low
latitudes. Rossby number (C/fL) based on a
velocity scale C of, say, 15 m sec™!, a length scale
L of 103 km, and coriolis parameter f changes
from 0-15 at a latitude of 45° to 0-59 at a latitude
of 10°, and of course, it becomes infinite at the
equator. Thus we have the possibility that, in the
low latitudes, the non-linear inertia terms may not
be as small as required by the geostrophic or
related approximations. Such a behaviour is
expected essentially in a rather limited range of
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latitudes around the equator. There are many
instances in fluid mechanics (e.g., van Dyke 1975)
where an approximation applicable over a wide
domain breaks down in a small region. Boundary
layers and shocks are classic examples of such
regions. These regions are often thin and the
length scale in one direction is of an order of
magnitude smaller than the scale in another.
Very rapid variation in coriolis parameter with
latitude near the equator permits the length scale
for the meridional direction of being much smaller
than that in the zonal direction. This type of very
rapid variation of physical quantities in one direc-
tion compared to that in another makes certain
terms in the basic equations, and of course corres-
ponding forces, important in the thin regions,
although they may be quite unimportant outside
the thin region. We examine in the present paper
whether the region around eguator, having a
rather limited range of latitude, can be analysed
by techniques which have worked satisfactorily
elsewhere (van Dyke 1975).

The role and potential utility of approximations
for low latitudes can probably be better judged
subsequently, but general experience with a
approximations in fluid mechanics provides a few
pointers. The approximations provide a measure
of understanding of these special regions by
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stressing the role of certain force terms which
are critically important in the regions. The result-
ing simplifications of equations are often so great
that they open up possibilities of analytical and
numerical studies of a host of phenomena. In
addition, such understanding could also be
utilised in devising numerical schemes for larger
domains, in case the requirements of computer
memory and time for straightforward numerical
integration of complete equations are beyond the
available computer capacity. A more specific
and direct indicator is that low-latitude inviscid
approximation would provide an appropriate
starting point for a study of equatorial planetary
boundary layer.

This paper explores approximations designed
for low latitudes. The emphasis here is on the
examination of the main issues with relatively
simple mathematics. It is felt that if a detailed
scale analysis is attempted in the same style
and spirit as for the well-developed case of middle
latitudes (Phillips 1963), the algebra would
unduly complicate matters. Hence such a more
comprehensive examination involving the effects
of spherical geometry, orography, unsteadiness,
frictional forces, and even the horizontal diver-
gence associated with heating is postponed to a
subsequent stage. Also, the analysis relies impli-
citly on the ideas of scale analysis as applied to
meteorology, those of matched asymptotic expan-
sions (van Dyke 1975), and of boundary-layer
theory (Schlichting 1968), although the treatment
is kept as informal and simple as possible.

2. Basic scale analysis

There are two basic ways of developing approxi-
mations of the present type. One is to start with
estimates of orders of magnitude of various
guantities and then to draw conclusions about the
consequences on the equations. Another is to
introduce a limited number of non-dimensional
quantities which govern the behaviour of orders
of magnitude of various terms. Then we examine
possible approximations depending on assumptions
of non-dimensional quantities. While the former
method has the advantage of directness, the latter
exploits the nature of the equations and reduces
the required assumptions. We follow here the

latter method.

We start with the equations for steady inviscid
motion free of horizontal divergence based on
p-plane approximation.

A
Uy + vity — fv = — ¢a

A
uve + vy + fu = — du

Uz + vy =0 (1

where u and v are velocity components in the

zonal and meridional directions x and y, Q, is the
geopotential and f is the coriolis factor. The
suffixes x and y indicate partial differentiation
keeping pressure p fixed.

Let L and / denote length scales in the zonal
and meridional directions and U and V' denote
corresponding velocity scales. Fig. 1 shows the
streamlines and isotach lines for mean monthly
airflow at 1 km for July in the Indian Ocean. It is
noticed that, barring certain locations, zonal
velocity component by and large dominates the
meridional velocity component. The streamlines
in Fig. 1 however suggest that right at the equator
the motion is largely meridional. We have two
available options. One is to examine the case in
which meridional velocity component is, by hypo-
thesis, of an order smaller than the zonal com-
ponent. Such a case would deal with low latitudes.
The close vicinity of equator (a sublayer) has to be
treated separately by a supplementary approxima-
tion in which the meridional motion dominates.
The other option is to allow both components
to be of the same order. We follow here the first
option.

Let V/U be ¢ and //L be §. Further let

A o
¢ (x,y,z,) be a z-dependent average ¢ (z) plus a
variable & (x,y,z), which we take to be of order U*.
Orders of the terms of Eqn. (1) are then
U%IL, (¢/§) U*/L, ([Ry) U?/L, U*/L;
e(U?/L), (}/§) UL, (1/Ry) U*/L, (I/§) UPIL;
U/L, (e/§) U/L,
where the Rossby number R, is U/fL. We takee

to be of the order § so that the continuity equation
retains its form. We sete to be equalto §, that
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Fig. 1.

is, the ratio of velocity scales V/U is equal to
the ratio of length scales //L. Now we consider
approximations in which coriolis and some non-
linear inertia terms are retained. This require-
ment implies R, is of the order ofe. For low
latitudes f is of the order of B/, so that R, is of
order (1/§) (U/BL?). The condition is then ( U/BI%)
be of order unity. With U equal to 15 m sec™, B
equal to 2.3x10-1m-'sec™* at the equator and/
equal tosay, 5x 102 km, (U/B/?) becomes 2.6 which
is certainly of order unity. If we allow = to be,
say, 0.15, which is taken as an acceptably small
value of Rossby number taken for midlatitudes for
purposes of scale analysis (Phillips 1963), the
zonal length scale would be about 3.3x 10° km,
which is perhaps a bit large but not entirely un-
reasonable. Also, the meridional velocity scale I
would then be 2.25 m sec™?, which is also plausible.

When e, § and R, are of the same order, the
equation reduces to

Uiz + vy — [y = —¢a.
Ju =— ¢y,
Ue + vy =0 (2)

Mean monthly air flow at 1 km — July (From Findlater 1971)
—» Streamlines, — — isotachs and —O-> observation stations

Hence this approximation retains non-linear
terms in the zonal balance but not in the meridional
balance. So the meridional balance is still geo-
strophic. It is interesting to note these equations
resemble boundary-layer equations despite the
absence of diffusive terms.

The preceding equations can also be obtained
by asymptotic expansions. There are a few
approaches with small differences. One type is
given below. It is applicable to a range of latitude
where f can be approximated well be By.

b (x.y.zie) = UL [¢o (X. Y) + &), (X,Y) +
ey (Y, X)....]

¢ (x3.258) = $Z) + U [$o(X,Y) + sy (X,1) .. ]

f(yie)=peL[Y— %: (L/apY® + .. .] ()

where a is the radius of the earth, and where we
have not shown the dependence of terms in the
square brackets on the vertical or pressure coordi-
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nate. Here X and Y are given by
X=x[L, Y=yfeL
and the u and v components are given by

u=U (o + ey + ey + ....)

vemelU (vo+evy + vy + ....) (4b)

where u; and v are sy and —iiy. The lowest

order equations are then

Ugllpy +‘ VollgY — Yl'o = — Q!lox
Yuu = — (#QY

Uoyx + Voy = 0 (5)
The above equations are essentially the same as
(3) since the f term after expansion (4a) has the

lowest order term proportional to ¥, (U/BL?) being
equal to =2

The next order equations are

Uollyx + Ugllgy + Vollyy + Vitlgy = Yvy = —d, 5

Yu; = — ¢y

thy + iy =10 (6)
Thus we see that the non-linear inertial terms do

not contribute to the meridional balance even in
the first order.

3. Similarity solutions

We restrict our attention to the range of latitu-
des where.f can be approximated by 8y. The form
of Egqn. (3) suggest similarity solutions of the
following form

g = Ag® (x) F(1), ¢ = Bg*(x) G (1), f= By:
7= y/g(x) (7a)

where 4 and B are constants.
ponents are then in the form

The velocity com-

u=Ag?(x) F' (1), v = Ag?(x) g’ (x) (7 F'—3F) (7b)

The resulting ordinary differential equations for
F and G are

(3FF"—2F"*) + % mTMF' —3F

B

I (n G'—4%5)

E B £ r
4 2 F' = I G
On elimination of G, we get
3F .ru__F)FH + _13 (qFl__3F)=0 (93)

The above Eqns. (8) and (9a) take the simplest form
when A4 is taken equal to g and B is equal to g

We are essentially left with the third order ordi-
nary differential equation

3FF” —F'F* + (9F' — 3F) =0 (9b)

which requires three boundary conditions to solve.

By analogy with usual boundary-layer formula-
tion, we take the conditions at the edge close to the
equator to be

>0 :u=>u(x), v->v(x) (10)

One possible condition for large 7 is such that
the non-linear terms become less significant. The
examination of (9) immediately suggests that in the
case (7F'—3F) must approach zero at large ».
But this would require that F ~»® for y = oo and
consequently u ~%2, which is a rather restrictive
condition on the similarity solution.

Now let us examine the behaviour near the equa-
tor by assaming that the solution can be represented
by the convergent power series

F)= Z

n=0

an " 0N (1n
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The equatorward boundary condition then becomes,

1> 0:u=Ag® [a, + 22,7 + 3a1* +
—Aa,g* ;

v =Agtg' [Ba—2am—am+ ....]
->—3 Aaog®g’ (12)

An interesting possibility is that as we approach
the equator, #—0. Typical mean monthly flow
pattern at 1 km for July (Findlater 1971) for the
western part of Indian Ocean near the equator
(Fig. 1) suggests that this possibility is of consider-
able interest very close to the equator. It might
be expected that the approximation (3) in such an
event might not hold all the way to the equator.
Indeed, this case requires to be a, is zero so that fu
behaves like =2, while the term vy,, which is
neglected in the meridional balance, behaves like 7.
This particular case can be handled by a sublayer
located at the equator, where a supplementary
approximation is required*.

4. Equatorial sublayer

We now construct a supplementary approxima-
tion of a sub-region near equator whose meridional
length scale is smaller than the previous region.
Further, we focus our attention on the case when
the interhemispheric transport is significant. In
view of the flow patterns near the equator in July
(Findlater 1971), we take U/V to be 0 in (1) in the
subregion or sublayer. Let U/V be e. L is still
comparable to the earlier case, and the meridional
scale 7 is smaller than the scale in the previous
case. Let 7/L be §. The orders of the terms
in (1) are found by taking ¢ to be of the order ¥2 as

&% (V2/L), (=/§) (V2/L), (§/Ro) (VE/L), (V2/L) ;

e (V2/L), (1/§) (V*/L). (z§/Ro) (V¥/L), (1/§) V3/L ;
e(V/L), (1/§) (V/L) ,

where R, is the Rossby number V/8L%. Clearly,
the continuity equation cannot retain both the

terms. The approximation which allows both non-
linear inertial terms as well as coriolis force terms
require that R, to be of order §, and ¢ also to be of
order §. If we take L to be of order 3.3x 10®* km
for consistency with earlier estimates, and / as, say,
100 km, € would be 0.03. On the other hand with
V equal to 15 m sec™?, and B =23 X 10-1!m-?
sec—, Ro turns out to be 0.059. So the requirement
of R, and ¢ of being of the same order is plausible
very close to the equator under these conditions.
The resulting equations are

vy — Byv = —¢b,
vy = —dy,
Vy = 0. (14)

The degenerate form of continuity equation leads
to the conclusion that v and ¢ depend only on x.
To put it differently, the variation of meridional
velocity and geopotential in the meridional direction
is not significant in this sublayer. The first equa-
tion can then be integrated to give

u=}py? — (¢a/v) y + u(x,0) . (15)

5. Matching of the equatorial sublayer

We examine the possibility of matching the sub-
layer with the region dealt with earlier. At large
y, the u component behaves like

u~3% By ‘ (16)
On the other hand, the similarity solution given by
u~ Ag? [a, + 2a,0 + 3a"* +
Then matching requires that a, and a, are zero- Also,
un~ Ag? 3a; (y/g)* = 34 azy*

Since 4 was chosen to be B, matching requires that
a, be 1/6. Also, it is clear that the boundary

*If both uyand v, (10a) are zero, the above expansion may hold upto the equator. In this case, a, and a, are zero,
Suppose a, is not, then uvs, vvy behave like 78, while fu bzhaves like 72,
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condition v, on the normal velocity in (10) is simply
the velocity component v(x) given by (10).

6. Concluding remarks

Preceding arguments indicate the possibilities of
constructing approximations in the equatorial
region which give special weightage to the rapid
variation of coriolis factor f. As the length scale
in meridional direction is smaller than that in the
zonal direction, some special features appear. In
particular, both coriolis and non-linear inertia
terms are present in zonal momentum balance.
Also, the arguments indicate that we may visualise
two regions. In the low latitudes somewhat away
from the equator, the zomal flow dominates.
However, if there is considerable interhemi-
spheric transport the vicinity of the equator behaves
differently and we need to consider a subregion
very close to the equator where the meridional
flow dominates.

The main approximation given in section 2
retains the non-linear inertial terms only in the
zonal balance, while the meridional balance is geo-
strophic. Also, arguments are given to show that
the case of special interest for studies of monsoon
circulation requires a supplementary approximation
for an equatorial sublayer. Arguments are given
to show that the approximation in the sublayer can
be matched with that in the main region.

The above preliminary results indicate possi-
bilities of approximations which retain non-
linearity in the lowest order and which are
designed for equatorial and which could be extend-
ed to tropical regions.
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DISCUSSION

JouN A. YOUNG : 1 wish to compliment the author for his contribution towards establishing a
framework for studying mean cross-equatorial problem and I believe that the results will
be most significant if longitudinal variations can be included. Does your theory allow for
such variations on a relatively small scale ?

AutsHOR : Thank you for your comments. The present approximation deals with the case in
which the zonal length scale is larger than the meridional scale. There are possibilities of
constructing approximations for features like Somali jet where the zonal length scale
might be smaller than the meridional scale,




