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An analytical study on the barotropic energy conversion
in the lower tropospheric monsoonal flow

ABSTRACT.

S. K. MISHRA

Indian Institute of Tropical Meteorology. Pune

The mean zonal flow profile along y, Tor July month at different levels in the lower

troposphere and at different longitudes in the Indian region, confined between two latitudinal walls is considered.
The analytical function for each zonal flow profile is obtained by expressing it as a cosine Fourier series. A
barotropically neutral perturbation of different functional dependency along v, and the wave structure along x is
specified initially. Using non-divergent barotropic model in a B-plane, the barotropic energy conversion
tendency (dc/é1) (Kg, Kz) are evaluated analytically for different observed zonal flow profiles.

The study of the barotropic energy conversion tendency indicates the disturbance at levels §50 ¢nd 700 mb
receives energy from zonal kinetic energy, the most preferred scale is around 6000 km, The barotropically
growing wave moves from east to west with phase speed of about 8 m sec=! and minimum local doubling time

is about 4 days.

1. Introduction

The instability of monsoonal flow can be regard-
ed as one of the possible mechanism for formation
and growth of disturbances in monsoonal flow,
One of the important disturbances of monsoon
flow is a monsoon depression, they originate at
head Bay of Bengal, travel north or northwest
across India at average speed around 4 m sec—!,
remain confined in the troposphere, below 300 mb.
Monsoon depressions are more intense in lower
troposphere and have a horizontal scale of around
2500 km.

It is generally felt that the initial growth of a
depression is due to the dynamic instability in parti-
cular barotropic instability, because the baroclinic
instability is not operative for lack of sufficient
vertical shear in zonal flow: the CISK (conditional
instability of second kind) mechanism is responsi-
ble for the further growth.

The instability analysis is done by using pertur-
bation technique. It is quite difficult to tackle the
instability problem analytically by an eigen value
method for more general flow, a flow having shear
in meridional as well as in vertical direction. The
barotropic instability has been studied by several
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authors, notably Kuo (1949), Eliasen (1954),
Lipps (1962), Jacob and Wiin-Nielsen (1966)
and Yani and Nitla (1968). The baroclinic

instability of a zonal flow is investigated by Charney
(1947), Eady (1949) and various other authors.

Instead of finding solution of a general initial
value problem, insight into the instability charac-
teristics of a flow caa be gain by using a more
restrictive treatment of so called initial tendency
method, where initial tendency of perturbation
flow and various energy exchange between basic
current and disturbance are obtained. Generally,
mitial perturbation taken is barotropically and
baroclinically neutral whose trough and ridge
lines having no tilt in horizontal and vertical. By
studies of the initial tendency of barotropic and
baroclinic energy conversion the stability charac-
teristics of the initial perturbation can be determin-
ed.

The advantages of initial tendency method for
study of instability of a flow over eigen value ap-
proach are the followings: the amplitude of initial
perturbation pot necessarily be infinitesimal, the
basic zonal flow having meridional as well as verti-
cal shear can be tackled easily and analytical solu-
tion can be obtained in this case. This method is
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used by Kuo (1953), Fisher (1968) and others for
barotropic instability problem, the baroclinic
instability of the zonal flow is investigated by
Wiin-Nielsen (1962) and combined instability pro-
blem by Lipps (1966), Fisher and Renner
(1971), Lejenas (1973).

In this study we have used the initial tendency
method to determine analytically the barotropic
instability characteristics of July mean monsoon
zonal flow in lower troposphere with the hope that
it might be helpful in understanding the mechanism
by which monsoon depressions grow.

2. The Fundamental equations

The flow is assumed to be barotropic, frictionless
horizontal and non-divergent, the governing equa-
tion for such a flow is non-divergent barotropic
vorticity equation. We have further assumed
B-plane approximation. The flow is confined bet-
ween two lateral rigid walls at y=0 and y=D, D
is the channel width. The barotropic, non-diver-
gent vorticity, equation can be written as

: ol 2d
5 VAV, TV HB gL =0 (D)

where ¢ is stream function. Eqn. (1) is linearised
by usual method by assuming a stationary basic
zonal flow fi(y) which satisfies Eqn. (1) and superim-
posed on it is a infinitesimal perturbation ¢’ (x, 1),
neglecting quadratic terms in perturbation, finally
we get the linear form of vorticity ejuation for
perturbation. After dropping prime symbol from
perturbation stream function, equation can be
written in the form

e 0. d*u \ 8y
V= r —uaV\’e—(ﬁ—d—},g)g; (2)

The boundary conditions

At y =0 and y = D, the normal velocity to the
wall, i.e., the meridional velocity, v must vanish for
all times, the following boundary condition follows
immediately :

g¢=0 at y=0 and y=D (3)
3. The barotropic energy conversion

The Eular equation of motion for barotropic
and non-divergent equation in stream function

i are
SBpoF)eik - o

oy s & _ _ o8¢
Ay s )-rg--5 O
where ¢=gz, is geopotential height. The equations
governing zonal mean basic flow

L(E)--2(EF) ©
and perturbation

(W) -+ (Y )-

(—“') )

A bar denotes the zonal mean and prime per-
turbation, in the further discussion the pertur-
bation quantities will be represented without a

prime. The zonal kinetic energy Kz is defined as
D A ;
o 249\
ke=1[ (7 ) @ e
0

and perturbation or eddy kinetic energy as
D

et [(TYH(F)] o o

The zonal kinetic energy equation is obtained by

multiplying Eqn. (6) by g—j: , then integrating

between y = 0 and D and using boundary condi-
tions (3)

Zi_;(tz = C (K&, Kz) (10)
where,
D s
C (Ke, K2)=[ ot - g_;l; dy  (10a)
0

Similarly perturbation kinetic energy equation is
obtained by multiplying Eqn. (7) by é&{¢/ay,
Eqn. (7a) by @y/éx, then adding the two and
integrating between y = 0 and D.

oKk

OKE_ _C(Ke, K2) a1

ot
C (Ke, Kz) represents the conversion from eddy
kinetic energy into zonal mean kinetic energy;
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this 1s barotropic process. When C(Ke. Kz) >0:
the eddy kinetic energy is transferred to the zonal
mean basic flow, thus the disturbance loses kine-
tic energy and in this case perturbation is stable;
on the other hand when C (Kg, Kz) <0, disturbance
receives kinetic energy from zonal flow and per-
turbation is unstable.

4. Instability criteria, growth rate and phase
speed

The barotropic instability criteria of a flow can
be expressed in term of initial barotropic energy
conversion tendency; time derivative of the eddy
kinetic, i.e., ¢ Keg/ér at time 8f ean be obtained
with the help of Taylor expansion of & Kg/ét.

dKE ) ( oKE ) & ¢Ke )
= = - +\z= = )&
( ot J_st ot J,_og \or é J,_,
-+ higher order terms  (12)

We assumed that initial perturbation chosen is
barotropically neutral one, this implies

C (Ke, Kz) = 0;

using this condition and Eqn. (11) in Egn. (12), it
follows immediately

ot o t=0

(axg ) =_(6_C(K£,Kz)) 8+ -..(13)
ot

In most of the situations first term on Taylor’s
expansion (13) dominate compared to the higher
order terms up to 3t~1 day; this assumption is
justified on the ground that the results of numeri-
cal integration of basic equation by Brown (1969),
and Fisher and Renner (1971) confirm it. We
get the following criteria for instability of zonal
flow from Eqn. (13)
[ %g- (Kz, Kz) ] < 0 barotropically unstable
s
9 C (KE, Kz)

] > 0 Dbarotropically stable
ot =0

We further assume that wave grow exponentially
as in the case in a eigen value formulation of the
instability problem; since under the assumption
the eddy kinetic energy also grow exponentially.
the growth rate of the wave is equal to

1 aKE] __ra Q_C(KE,KZ)]
[‘KE. at =3t Ke ot =0

provided in the series (13) only first term is retained
on the right hand side.

l: CC {AE Kz)
Ke @t =0

represent e-folding time, the time taken by the
wave to grow in amplitude by e times to its initial
value.

To arrive at an equation for phase velocity, how-
ever, within the framework of the initial tendency
method, we proceeded as follows : Let C; is the
real part and C; the imaginary part of phase velo-
city along x axis of a wave. C, represents the
velocity of propagation of wave’s phase and C;
the amplification or decaying of the wave depend-
ing upon the sign. The partial differential equation
governing propagation and amplification of a
single wave.

L R
ar + Cr B K =0 (14)
where Cr >0 and C; >0. On differenciating
Eqn. (14) with respect to x and substituting from
Eqn. (14) for é¢s/ax, we get the equation

e (% )=0 a3

ar éx cx2 at

If we assume the following form of a amplifying
wave :

Y= ektsink (x—C: 1)

and substituting in first two terms of Eqn. (15), we

G t}’ = k K&Kt cos k (x—Cr 1)

ror large scale wave and small growth rate, the first
two terms nearly balance each other to a good
degree of approximation.

24y

&t dx

&2
. N %_-r, ~ 0

Thus for larger wavelength and small growth rate
first two terms of Eqn. (13) approximately govern
the propagation of wave, thus the phase velocity
alorg x direction is given by

e

ot ox

Cr=-— g
ox?
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The phase velocity as given by Eqn. (16) depend
upon y, the mean velocity for the channel, is given
by the following equation

D
9%
[ T &
0 16a
Cr —— D . (
o
I Y
0
From Eqn. (11) one get easily
D
0C(Ke,Kz)_ ([ 2% 29 24 &
ot = )|arex 3y © axat oy)*
0
3!,,5' :
X o dy (a7

5. Analytical barotropic tendency for three different
initial perturbation

We have obtained, in this section, the analytical
expression for the barotropic energy tendency for
three different structures of initial wave, in two cases
the wave chosen have symmetric structure and in
third case initial perturbation chosen is asymme-
tric around the centre of channel. The basic zonal
flow @ (y) is expanded in terms of cosine Fourier
series, only first four harmonics are retained.

fi=Cy+ Cycosly+ Cycos2ly 4+ Cycos 31y +
+C,cos 4ly (18)

where | = #/D, D is the width-of channel.

Case I : The perturbation at initial time is a
wave along x direction, its form is so chosen to
satisfy the boundary conditions. Itis symmetric
around the centre of channel. The form of wave
is identical to the neutral Rossby wave and along
y the sign of vorticity remain unchanged

Yo = A sin [y sin kx (19)

where k = 2x/l,is wave number and / represents
wavelength along x, A is the amplitude of the wave.
We will not fix the value of amplitude 4, because
growth rate, phase velocity and the criteria of the
instability do not depend upon amplitude. Subs-

tituting Eqns. (18) and (19) in Eqn. (2), thep solv-
ing the resulting Poisson’s for &:/ar, we get :

(%né )'=O = — Ak cos kx [{( k2 + 13) Co—

g G g2 _ 3] sinly

s—5 (# =3 ke +
o sin 2ly

ri{ci—c e —sn)Tun s

+3 {c2 (k2 —31%)~C, (k=—151=)} 8

sin 3 ly
(k* + 912)

X
C, el z) sin 4 Iy
+ 3 ("‘ 8% )16 t+

+ 3 (k- 1sr)@m] @

k2%

3Gk
)] st

2(kE+ 419

7 C (KE, Kz) ]
K

(k 2_3/2) (k2—8 /%)
oy T Ty
(k*+ 612

(k* +161%)
(k2—412) (k2—91%)
(k*+417) (4917
(k2—1512) (k2413 1%)
ST (3T | @V

+4C;
X

= 3 C1C3 —8C2C‘

+ 16 C,

The phase velocity equation is easily obtained
from Eqns. (16a), (20) and (19).

e = [iaf(s )= (-3

‘6(7?1@“) {Ce (k*=31%)—C, (kf—lw)}

Cy (k2= 151%
I GES D) @)

-

The contribution of Cy-component of basic flow
and B to ¢, as seen from Eqn. (20), has same
latitude dependence on ¢,; therefore, it is implied
that the interaction of 8 and C, with the initial
perturbation ¢, leads to the propagtion of the per-
turbation without change of slopes of troughs and
ridges. The zonal average momentum transfer
tendency across the channel due to B and C,
vanishes; hence these interactions do not lead to
the energy exchange between basic flow and the
perturbation, this is the physical reason for not
appearing of B and Cy terms in growth rate Eqn.

Q1).
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To understand the role of each terms of Egn.
(21) in the growth of the initial wave, we have to
know the distribution of the momentum transfer
across the channel associated with each compo-
nents of the basic flow. The tendency of momentum
transfer @ (#v)/ét and its divergence &° (uv)/8y ot
can easily be found with the help of Eqns. (19)
and (20). Since the initial momentum transfer
vanishes, therefore 8* (@z)/@y ét is representative of
the distribution of & (%#)/@y atleast for a short time.
The interaction of a component of the basic
flow with the initial wave leads to the transfer
of momentum (#7) with certain distribution of
@ (uv))dy. If @ (uv)/éy for a given component of the
basic flow, has a component whose latitudinal
variation is same and also in phase with the compo-
nent of the basic flow, in this situation the momen-
tum is always transported horizontally away from
the jet axis, and kinetic energy is transferred from
the basic flow to the wave. When the component
of @ (#7)/dy has the same latitudinal variation but
phase is opposite to that of basic flow component,
in this situation reverse process takes place, momen-
tum is transferred toward jet axis and basic flow
component gain energy from the initial wave.

The distribution of & (@w)/éy for C, has a compo-
nent which is in all situations opposite in phase
with C, for all k; hence the C; interaction with
the initial wave results in damping it. The interac-
tion of other components C,, C;, C; with i, leads
to the damping of short wave and amplification
of long wave. Eqn. (21) for growth-rate of
the wave also contains terms which depend upon
the products C,Cy and C,C,. If products C,C,
and C,C, are negative in that case the contribution
of these terms are qualitatively same as that of
other square terms in Eqn. (21). The terms of
this type arise, because the distribution of & (77)/2y
due to the interaction of i, with a component of
the basic flow also contains a component whose
latitudinal variation is same as that of another
component.

Case IT : Here we consider an initial wave which
is symmetric in y around the centre of channel; the
vorticity field associated with the wave is also
symmetric, it has one sign except near the boun-
daries where sign is opposite. The form of the
initial wave is different from that of neutral Ross-
by wave. In Case II the initial 3 chosen is of the
form :

T (k4

g = A (1 — cos 21y) sin kx (23)

The ?’b for this case is given by
=0

+ Fzcos3/y + Fycosd4ly + Fycos 51y -+

_ . I — e*P E |
4 Fycos 6 !y)-,— {((J———,‘D_rm ) o ((—_',m ol )

N | I +€’kD —k
X ¢hy Fo+ F,4-Fy+ Fg |+ e—kD _ kD i

—kD
~( 7 m) ™ JE+RER]

oAk cos kx[(F., F, cos Iy+F, cos 2ly+

where,

8 G \.
Fo= 13 (Co ,f),

(k2=512) (C; — C)

B IR DN
P (412 —k?)
B=C @ T e ©

LG (kR—121Y
T2 TRk Tan
(G2 (kR +31%) —Cy(k* =912
o (KE¥X 979
%kﬁ—q(kﬂ*-—w:z)
= ®+16
G (k2 =517 .
E=Srsm
2 —12)/%
Fo— Calk® =1219)

2 (k*F 3619

Substituting in Eqn. (17) with the help of Eqns.
(23) and (24), we can write the expression for the
growth rate in the form

1 éC (Kk, Kz)] k*l* %
Ke ot TGk A+ 412)
{5F,C;,+8FC,+ 18 F:,C3 +32F,C,—5C\Fy —

— 12 C,Fy — 21 C3F5 — 32 C Fg + 8 C,Fy} +
4akdl 1 — D
( kD g—kD )><
x{ C. (¢ %0 L 1) (23 =2 — D2k?)
(2K 4 @®) (LK% + Y7

o 2G (e — 1) (D'%* —24 PD%2 — 64nt)
D (D + 4% (D%h*+ 16%Y)

3Gy (¢ + 1) (= D'* + 22 52D%? + 151x%)
(D*k* + =) (D*k® 4~ 9 n°) (D** + 25 =%)
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4 4 Cy(e*2— 1) (Dt — 167 D%k — 272 =)
(D*k® + 4n®) (DPAE + 16 =%) (D*k® + 36 72)}
1 —e™* \ fC, (¢*?+ 1) (— D2 + 23 7°)
+ ¢kD — ¢—*D) ) (D2k® + =) (D%k* + 9 %)
4 2 C, (e* —1) (D*k* — 24 n*D*k® — 64 ')
D?k*® (D%k® + 4 =®) (D%k® + 16 #*)
0 3C;(e* + 1) (—D%* + 22 w2D%k? 4 151 #*)
(D*K* + ) (D2 + 9 =%) (D%k* + 25 =)
Lo 4 C, (*?— 1) (D%k* —16 m>D?k* —272 =*)
(D%*%® + 4 =?) (D*k® + 16%%) (D*k*+ 361-:2)}
] 4 ekD
x( Fot Bt For B )+ (ogio ) %
X{ Cy (e + 1) (— D% + 2347
(D*k* + =) (D% + 9 =°)
4 2G (D) (Dt —24 72D%? — 64 =%)
Dk (D?k2 + 4n*) (D*k* + 16 %?)
4 3G EP D (— DY%* + 22 w2 D%k2 + 151 #%)
(D*R* + =) (D°k® + 97°) (D*k* + 25 =%)
-kD __ Ty - 2242 4
i 4C, (e 1) (D*%k* — 16 i2D%2 — 272 %)
(D*Kk* + 4 n°) (DR? + 16 %) (D*k® + 36 =%) }
L 1 4+ e~*2 \[C, (¢*® + 1) (—D?*? 4 23 =?)
e-bD_ elD (D2k2 -+ .,72) (D2k2 +, 9 TCE)J
2 C, (22 —1) (D*k* — 24 n2D%2 — 64 )
"D%® (D%*:* + 4 7*) (D*k® + 16 =?)
- 3 Gy (e*2 + 1) (— D*%! + 22 #2D2k2 4 151 =*)
(D2k2 + n2) (D2k2 4 9 72) (D2k2 + 25 72)
4 C, (e*® — 1) (D*)* — 16 72D2%k2 —272 =*)
+ =5 ;
(D22 F 4 n2) (D2k2 + 16 72) (D2k2 - 36 72)

mﬂ+ﬂ+ﬂﬂ (25)

The phase velocity in this case is given by,

2 (08— ¢MD}2)

1 kD (¢DF T e-*072) (Fot+Fy+Fy+Fy)

(26)

Cr:

Case IIT : In the third case we have chosen
initial perturbation of the form

o = A sin 2 Iy sin kx 27

which is asymmetric around the centre of the
channel, the vorticity field is also asymmetric
around the centre of channel, this case is not
interesting for July mean flow because the pertur-
bation is always stable. For the sake of comple-
teness we have given here the expression for
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24 1 8C(Ke, K2)
( v E ) and X ] they are
t=0

1=
respectively

ﬂ = — Ak cos kx (F, sinly +
dt =0

+Fysin 21y + Fy' sin 3ly + F; sin 4ly +
+Fy'sin 5 ly +Fy sin6 [y)

GO RS, Kzl o kNS
= 2(k2+ 412

1
[KE ot —0

[ 8C2(k2+4 312) (k24412
(k2 + 12) (k2 4 91/2)

FE 18 Cu2 (k2 —512) (k2 —3[2)
(k2 + I12) (k2 4 251/2)

k4 32C2 (k2 —1212)
(k2 + 36 12)

12 C,2 k2
(kT4 1612)
24 C,Gyl2
(k2 +12)

where,
=% 2(kz].|_—;?){ C, (24 313)+
+Ca(k2—5!2)};
O MR RS e Y
: (k2 +412) 2 “(k2+ 409 °’
R = o F = e

po_ GUE—5I8) L, Ci(k2—121%)
s = TRIT 5B 0 T T2(k 3619

6. Results

The data set consist of the monthly mean zonal
wind in the latitudinal belt between 0° and 30°N,
grid interval of 5°, for longitudes from 80°E to
120°E at the interval of 5° and at levels 850 mb, 700
mb and 500 mb for the month of July 1963. Fig. 1
(a,b,c) shows the meridional distribution of
zonal wind at longitude 90°E, 95°E and 100°E
for 850 mb, 700 mb and 500 mb respectively. At
850 mb the flow is mostly westerly in the latitudinal
belt, and wind maxima of strength around 11 m
sec-1 is situated just south of the centre of the belt,
these features of the flow is exhibited at all longi-
tudes under consideration. The zonal wind at 700
mb exhibits qualitatively same features except that
the value of wind maxima is around 9 m sec~! just
lies south of the centre of the belt. The zonal wind
at 500 mb is westerly upto 20°N and easterly
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beyond it, westerly maxima of around 4-5 m/sec
just lies south of the centre of the belt.

The data set at each pressure levels and longitud-
es is subjected to the cosine Fourier series analysis
along meridional direction, the coefficients Cy, Cy,

C,, C; and C; of the series are evaluated. These
coefficients for the various levels and longitudee
are given in Table 1.

Here for various computation we have taken
D=3.30x10° m and B=2.151x10-11 m/sec at
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TABLE 1

First five coefficients of the cosine Fourier series

Coefficient of cosine Fourier series

Along
Level (mb) Long. Ist 2nd 3rd 4th 5th
850 mb 90°E 677 4:06 —3:47 —0-88 0:03
850 mb 95°E 618 3-65 —368 —145 008
850 mb 100°E 4-87 343 —4-08 —199 026
700 mb 90°E 545 317 —276 —1:21 0-54
700 mb 95°E 4-82 2-24 —321 —1-65 0-51
700 mb 100°E 380 1'16 —326 —1-60 066
500 mb 90°E 1:96 2-41 —1-31 , —1-48 091
500 mb 95°E 1-85 1-14 —1:28 —092 041
500 mb 100°E 068 —025 —1-63 —0'78 057

15°N, centre of the channel. The growth rate and
phase speed of the initial wave for all the three
cases is computed by using the respective expression
given in the last section. Fig. 2 (a, b, ¢) gives
doubling time for unstable wave of different
wave length for the flow at 850 mb; 100°E, 700 mb;
95°E and 500 mb; 90°E respectively. From
computations it turns out that asymmetric initial
wave of case III is stable at all pressure levels and
longitudes under consideration, and for initial wave
of case II, either it is stable or it’s growth rate is
quite small compared to the initial wave of case I,
as can be seen from Fig. 2(c) for one situation.
Therefore, here we will discuss only the results of
the case 1.

It can be seen that locally, the flow at 850 mb is
most unstable compared to flow at 700 mb and 500
mb, this occurs at 100°E where doubling time for the
initial growing wave is about 4.2 days, doubling
time for the wave increase rather rapidly for the
flows to the east and west of 100°E. The unstable
wave attains maximum growth rate at longitudes
100°E and 90°E for the flow at level 700 mb and
500 mb respectively. On average (90°E, 120°E)
the 700 mb zonal flow is slightly more unstable
compared to 850 mb. The preferred scale of most
unstable wave is little more than 6000 km at 850
mb and little less than 6000 km at 700 mb, and
phase speeds on average is —8+5 m sec~! at 850 mb
and —7-5m sec-! at 700 mb. From Table 1
it can be seen that the sign of the product terms

C,C, and C,C, is negative in all cases; this
situation is favourable for growth of the initial wave,
around of 40 per cent of the total growth rate is
contributed by these two terms in all cases.

The curves for the doubling time are quite flat
around its minima in all cases, this indicates that
there is no sharp selection of most preferred scale
of the disturbance; this may be due to our approxi-
mation in retaining only one term in the Taylor’s
expansion (13) for the barotropic energy conversion;
improvement in this regard can be brought about
by considering more terms in the series (13).

7. Conclusion

The flow at 850 mb and 750 mb and between
longitudes 80°E and 120°E is unstable, the wave-
length of the most unstable wave is around 6000
km; doubling time about 8 days and wave propa-
gate from east to west with average phase speed
of 8 m sec~l. Locally, at few longitudes the flow
is more unstable with doubling time between 4 to
5 days. Thus the basic flow can support the
disturbance by barotropic process in lower tropos-
phere.
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