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A numerical study of the locally unstable barotropic easterly jet
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ABSTRACT. The structure and behavicur of barotropicelly unstable disturbances in the vicinity of the
upper tropospheric easterly jet during the summer monsoon is studied numerically with a linearized baro-
tropic vorticity equation on an cquatorial B-plane, The easterly jet is approximated by a Bickley jet with a
slow zonal variation, and the numerical results are comparcd with those of a simple theoretical model

using the local phase speed and growth rate concepts,

In the unstable region the resultant structure of the

waves causes a spatial growth greater than that predicted by the local growth rates deduced from a

parallel flow model. In the stable region the structure lezds to strong dynamic damping.

of the removal of planetary scale kinetic energy by the

1. Introduction

In the northern hemisphere summer a strong
easterly jet exists south of the Tibetan high at the
200 mb level (Krishnamurti and Rogers 1970).
Synoptic-scale moving disturbances occur at the
level of the jet, and it appears that these dis-
turbances arise from barotropic instability of the
basic flow. The jet contains regions of large vorti-
city gradient where the necessary condition for
barotropic instability is sometimes satisfied locally.
If the observed disturbances were the result of baro-
tropic instability, they would extract energy from
the mean flow and the long waves, since these
waves combine with the mezn flow to give the
large vorticity gradient south of the Tibetan high.
Kanamitsu et al. (1972) have in fact showed
that wave numbers 6-8 in the wind spectrum in the
region between 15°S and 15°N receive energy
through barotropic interaction with the zonal
mean flow and zonal wave number 1.

In order to obtain a better understanding of these
upper tropospheric waves we study the behaviour
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The implications
unstzble shert waves are also dizcussed.

of barotropic waves in a region of variable mean
wind. We are especially interested in the situation
where waves move into or out of barotropically
unstable regions. Colton (1973) used a semi-spec-
tral numerical model to study the barotropic
interaction between disturbances and the mean flow.
His long waves were forced with a specified diver-
gence field following the diagnostic model of Holton
and Colton (1972). He observed disturbances
forming in the easterly jet over the Indian Ocean,
and as the disturbances moved out of this region
they tended to dissipate.

In this study we employ the linearized barotropic
vorticity equation in a rectangular domain. The
mean zonal wind is an easterly hyperbolic-squared
jet and the mean meridional wind is derived in such
a way that the mean flow is non-divergent. Periodic
forcing is introduced on the eastern boundary
and a radiation condition is applied at the western
boundary. As the waves move through the region
they grow or decay in relation to the local stability
properties of the mean flow, whereas at each point
the fields vary periodically.
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2. Basic equations

The streamfunction for the non-divergent vorti-
city equation is broken up as follows :

$(x, 9,0 =g (x P+ (x, 0,0 (1)

The mean streamfunction ¢ (x,y) satisfies the
mean vorticity equation when a non-barotropic
source term is added. The perturbation vorticity
equation may be written as

ey’ d\ [ ov o i g
— w2 (B +m)-0 @
where i = — @}/8y, v = & ¢/éx. The linear fric-

tion term is included for computational conve-
nience.

The flow is contained in a channel with rigid
boundaries at y = 4+ D; and the longitudinal do-
main is given by xz < x< xg. The mean u field
is given by

i (x,y) = — U(x)sech? [y/d (x)] — U, (3)

”

The mean streamfunction, which is constant

along the walls, takes the form

;,tr_(x,y) = U(x)d(x) [tanh {y/d(x}} + tanh {D/d
X+ +D)Usg— ¢ (x,—D) 4)

The quantity U (x) can be written

_ [ $(x,D)—2 UyD— (x,—D)
= [ 24 %) X

% coth [D/d (x)] (5)

The x-variation of the jet is controlled by d (x)
which has the form

d(x) = 850 km — 350 km cos ( 2_:): )x>x1 (6)
L

= 1200 km x<<Xy.

Fig. 1 contains the ¢ field and Fig. 2 contains the
i field. The boundary conditions may be written

' =0,aty=+D (7)
¥’ = A(y)sin wt + B(y)coswratx=xz  (8)
a;;-=-—cg—ii atx = xr (¢))

3. Stability properties of the parallel Jet

In this section we will discuss the local stability of
the mean flow, which is obtained by assuming that
the flow is parallel. The stability properties of the
Bickley jet or hyperbolic-secant-squared jet have
been reported extensively in the literature. The
most complete discussion is given by Kuo (1973).
In order to facilitate the interpretation of the
numerical solutions, we determine the local growth
rate and the wave structure at various points along
the jet. Equation (2) is solved by the initial value
technique with gjjox=0 and with sinusoidal
x-variation for y'.

Fig. 3 shows the local growth rate n for the most
unstable wave as a function of x. As expected the
largest growth rate occurs at the jet maximum.
The negative growth rates in the outer areas are
caused by the friction. The wavelength of the
most unstable wave is also shown and it follows
the bahaviour of d(x) [Eq. (6)].

4. Finite differences and a numerical procedure

The advection terms in equation (2) are approxi-
mated with the Jacobian which was developed
by Arakawa (1966) to conserve mean square vorti-
city and kinetic energy. Euler-backward time
differencing is used. The Poisson equation for the
stream-function tendency is solved with the direct
method developed by Sweet (1971).

The forecast equation is integrated from an initial
state of ¢y’ =0. The periodic forcing on the eastern
boundary causes the interior streamfunction to
grow and the integration is continued until the time
variation is periodic everywhere with the forcing
frequency. This frequency is varied until the value
which gives the maximum perturbation amplitude
is found.

5. Numerical Solutions

The following values are used in this experiment

2D =4000 km, xg— xr= 29,960 km,
#i (0,0) = —30msec?, U,=0,

~
L = 32,000 km, Ax = 280 km, Ay = 125 km.
For these parameters, the maximum response
occurs for a forcing period of 3.25 days. The solu-
tion becomes fully periodic after 60 days. The y
field at =60 days is shown in Fig. 4. It can be
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seen that most of the waves tilt opposite to the
mean wind shear, which is necessary for baro-
tropic instability. However, near the outflow boun-
dary the tilt is reversed; this indicates a flow of
energy from the disturbance back into the mean
flow. The wavelengths of the disturbances vary
from 5040 km near the jet maximum to 3900 km in
the outer regions.

Fig. 5 contains the wave packet envelope which
is obtained when the solution is fully periodic; this
envelope is evaluated at y=—750 km where the
disturbance amplitude is large. Note that the
maximum envelope amplitude occurs in the area
where the local pgrowth rate drops to zero
(see Fig. 3). The smoothness of the fields in Figs. 4
and 5 indicate that the radiation outflow boundary
condition is working properly. More results will
be presented in the next Section.

6. Simple analytic model

In this section we develop a simple analytic model

which uses the locally determined parallel flow
solutions. The following equation allows for pro-
pagation and growth or decay :
'
o
where ¢r (x) is the local phase speed ana n (x) is
the local growth rate. The quantities ¢, and n
are obtained from the parallel flow model. Clearly
if ¢; and n are independent of x Eq. (10) is exact,
and in general it should give a reasonable approxi-
mation to the downstream variation of §'. Now
we introduce the periodic time behaviour

E ’
to () = n@) W (10)

¢ = F(x) ot (11)
Substitute (11) into (10) and solve for F :

X

F(x) = F(xg) exp ('—i]- c,o;x) dx)

Xp

X
n(x)
exp (j o) dx) (12)

*o0

Here the amplitude of ¢ must be specified at x,,
which could bte the inflow point. This formula
should be applied at the latitude of maximum dis-
turbance amplitude. In (12) the local wavelength
is w/cr and the spatial growth rate is n/cy. These
are the real and imaginary parts of the wave-

number, respectively, if we were to write
' = A exp (ikx — iwt).

Fig. 6 compares the envelope for ¥’ from the
complete numerical solution (Fig. 5) with the F(x)
given by (12) for 2 values of x,. In Fig. 6 the
amplitude is plotted against upstream distance.
The analytic model uses the wavelengths which are
measured from the complete numerical solutions.
The curve for F(x) can be shifted up or down by
changing x;, but its shape does not change. In Fig.
6 all of the curves have a maximum amplitude at
x=—09800 km, but the simple model has a lower
maximum growth rate and slower damping rates.

The lower portion of Fig. 7 contains the wave-
lengths which are measured from the numerical
solution. The wavelength is a maximum at x=
1400 km which is just upwind from the place where
the jet is maximum. In the upper portion of the
diagram are the phase velocities, ¢r from the
parallel flow model and ¢.* from the complete
numerical model. Here ¢, is computed with the use
of the wavelengths shown and ¢-* is obtained from

cr* = Losf 2% (13)

The two phase speeds have similar behaviour
although ¢, * is shifted slightly upstream and has
larger variations. In general we would expect that
both the wavelength and the phase velocity would
be a maximum where the mean flow is strongest,
and this is generally the case although there is a
slight upwind shift in the fields.

Fig. 8 contains the spatial growth rates, m and
m*, from the parallel flow model and from the
complete numerical model, respectively. For the
parallel flow model we have

m= — nje, (14)

This sign is chosen to represent the growth down-
stream. The m* is computed directly from the
envelope. As noted in Fig. 6, m* has a larger
maximum than m and the maximum is shifted
slightly downstream from the jet maximum. Both
curves pass through 0 at x=—9800 km which is the
maximum for both envelopes. However m* shows
a much larger damping in the outflow region which
can also be seen in Fig. 6. 1In fact the parallel flow
solution damps at the rate given by the frictional
coefficient divided by the phase speed.

The solutions observed in the numerical model
(see Fig. 4) in the outflow region tilt in the same
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Fig. 7. The observed wavzlength, L, and the phase
velocities, ¢, and ¢, *. computed from the paral-
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Fig. 8. Spatial growth rates, m and m*. computed
from the parallel flow model and from the
complete numerical model
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Fig. 9. Phase tilt of the waves for two longitudes :
(a) x=0, where @ (x, 0) = — 30 msec?, and
(b) x = 2800 km, where # (x, 0) = —27-3
msec-1, computed from the parallel flow model
for the most ustable wave length and from
the complete numerical model

sense as the mean wind shear which gives dynamic
damping. This dynamic damping appears to be
due to continuous spectrum solutions [Case (1960),
Yanai and Nitta (1968)] which are not included in
the normal molde solutions that are employed in the
simple integral. In Fig. 8 the m* curve is skewed
slightly to the left with respect to m and the jet
maximum. This could be the result of the tilt
structure on the wave lagging behind the value
expected from the local stability conditions. This
would give a smaller growth rate on the upwind
side of the jet maximum and a larger growth rate
on the downwind side.

The most striking feature of Fig. 8, however, is
the fact that the maximum value of m* is signi-
ficantly larger than the maximum value of m.
Energy computations with the numerical solutions
show that the most important disturbance energy
production term is proportional to

IH— 2

This term is the only source term for the parallel
flow model, and it depends on the phase tilt in the
disturbance field. Fig. 9 shows the phase tilt for
two values of x from the numerical model and for
the parallel flow model. At the jet maximum
the tilt from the numerical model is significantly
larger than for the tilt from parallel flow model.
This is consistent with the larger growth rates for
the variable jet flow. Apparently the down-

stream variation of the # augments the phase tilt
which gives a larger growth rate.

7. Summary and conclusions

In this paper we have studied the behaviour of
waves superimposed upon a barotropically un-
stable mean wind field, which varies in x and y.
This mean wind field roughly simulates the 200 mb
easterly jet south of the Tibetan high during the
northern hemisphere summer. A rectangular
domain is employed with a time periodic boundary
condition on the east and a radiation condition
on the west, which simulates the propagation of
small amplitude waves through the easterly jet
region, The vorticity equation is solved with the
use of finite differences, and when the boundary
conditions are properly adjusted the waves move
smoothly across the region and out the western
boundary. After a certain time interval of numeri-
cal integration, the solution becomes periodic
everywhere, with the frequency that is specified
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on the eastern boundary. As the waves move
through the domain they grow or decay spatially in
reaction to the local basic flow, even though at each
point the variation is purely harmonic. We have
developed a simple analytical model which describes
the gross features of the spatial variation. The
simple model uses growth rates and phase velocities
which are computed from a parallel flow model
with the wavelengths taken from the full numerical
model. These wavelengths increase in to a maxi-
mum near the point where the jet is most unstable,
and then decrease; the phase velocity has a similar
behaviour. The maximum amplitude in the
numerical solution occurs downstream from the
most unstable part of the jet, at the point where
the growth rate in the parallel flow model becomes
ZETO.

The maximum growth rate in the numerical model
is significantly larger than the growth rate for the
parallel flow model. Apparently the downstream
variation of the mean wind augments the phase tilis
in the waves and this causes an increased growth
rate as compared with waves in a parallel flow.

The waves simulated in this study resemble
the waves observed by Krishnamurti (1971), and
the waves that were simulated by Colton (1973)
and Chang and Pentimonti (1977). Although this
study employs linear equations, it is possible to
estimate the effect of the waves on the mean flow.
The waves remove kinetic energy from the mean
flow and most of this energy is removed on the
down wind side of the jet. Clearly these synoptic
scale waves will effect the amplitude and phase of
the planetary waves which combine to form the
easterly jet over South Asia.
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