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ABSTRACT. Statistical analog models for the prediction of tropical cyclone motion have been developed for

all of the world’s tropical eyclone basins. The popularity and success of these models is related to their ability

to optimize the variance reducing potential of climatology and persistence.

At the same time, they effectively re-

cognize certain repetitious synoptic patterns without having to use fields of sometimes unavailable and often unreliable

synoptic data over the tropics.

The analog method can be simulated by the use of continuous funetions derived through the use of multivariate

regression analysis.

This method simulates all aspects of the analog process including the derivation of probabil ity

ellipses while avoiding certain operational problems inherent to the purely analog approach.
This pnrﬂ' describes the derivation of such a model for the north Indian Ocean tropical cyclone basin. Tt is

patterned al

model for thesonthwest Indian Ocean tropical cyclone basin,

1. Introduction

Operational models for the statistical prediction
of tropical cyclone motion fall into one of two
categories, {.e., analog models or multivariate
regression equation models. The latter, in order
of increasing sophistication, can be further sub-
divided into, () those models which exclude
predictors derived from synoptic data, (b) those
models which include current and 24-hour old
synoptic data and (¢) those models which include
predictors derived from both current and numeri-
cally forecast synoptic data (statistical-dynamical
models). Recent experience in the tropical  cyclone
belt of the North Atlantic Ocean shows that in-
creased sophistication is not always a guarantee
of better operational performance. A priori
reasoning suggests otherwise. Such a situation is
quite discouraging to those engaged in the develop-
ment of these models.

A

The enigma lies in the fact that statistical models
which use synoptic data fields are geared to older
developmental data sets extending back in time
some 30 years. These typically consist of gridded
geopotential heights over vast data-void areas,
In many instances, the data are no better than pure
climatology. Current objective analysis methods
are de-emphasizing height values and are more
concerned with obtaining direct wind analysis as

ter an earlier paper (Neumann and Randrianarison 1976) which describes the development of a similar

augmented with thousands of satellite derived
winds. The statistical models, being tied to a
rather archaic set of development data, will have
to be re-evaluated.

Similar difficulties will likely be encountered in
other tropical regions. Accordingly, it is important
that statistical models being developed in these
regions take maximum advantage of the variance
reducing potential offered by climatology and
persistence. This study outlines the development
of such a model for the north Indian Ocean tro-
pical cyclone basin.

2. Analog and simulated analog models

The HURRAN (Hurricane Analog) model
developed in 1968 by Hope and Neumann (1970)
was initially put into operational use at the
National Hurricane Center for the 1969 season
(Simpson etal. 1970). Gupta and Datta (1971)
adapted the method to the Bay of Bengal. Having
improved on the HURRAN and Gupta and Datta
model, the U. 8. Navy has developed analog
models for virtually all of the world’s tropical cy-
clone basins. Their model for the north Indian area
i8 described by Brand et al. (1974),

Sikka and Suryanarayana (1968) developed a
model based on climatology and persistence for fore-
casting the movement of tropical storm in Indian

*Work performed while detailed as a World Meteorological Organization Fellow at the National Hurricane Center
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Fig. 1. Motion elimatology of all recorded north Indian Ocean storms 1877-1974 by 21° Lat./Long. squares

Arrows —Resultant direction,
-3
geas for 24 hr period. Later work includes a brief
review of earlier works done in India on forecast-
ing storm track. In addition. the Malagasy
Republic, the People’s Republic of China and
possibly others have developed localised analog
programmes for their areas of interest. The
popularity of such method rests in the fact that
they do mot require current synoptic data but
nevertheless, senses a synoptic pattern in  the
analog selection process.

One difficulty with analog models is their ina-
bility to arrive at a forecast under temporal or
spatial anomalies. To offset this difficulty, Neu-
mann (1972) developed a simulated analog model.
Neumann and Randrianarison (1976) extended
the concept to the southwest Indian Ocean. To
complete the analog simulation process, the authors
describe a method of construeting probability
ellipses from residual (error) data.

The analog model and its simulated counterpart
have been in operational use over the Atlantic
for a number of years. Differences in performance
hased on average displacement error statistics are
insignificant. However, the fact that the simulated
model always produces a forecast is a definite

Upper Nos.—Scaler speeds (kt), Lower Nos.—Veector speads (kt).
No entry when storms < 5

operational advantage. Another advantage is its
computational simplicity. The entire forecast
takes but a few seconds of computer clock time,
Analog models, on the other hand, can require as
much as 45 minutes of clock time for older genera-
tion computers to scan and process the historical
storm track file.

3. The data set

A magnetic tape containing the tracks of
tropical cylones over the north Indian Ocean
basin was obtained from the U, 8. Department of
Commerce, NOAA, National Climatic Center,
Asheville, N, (. These data consisted of twice
daily positions of 1282 tropical storms for the
98 year period 1877 through 1974.

As dictated by the requirements of the regres-
sion analysis, a minimum of four consecutive
12-hourly storm positions (from —24 to -- 12 hours)
were required to develop prediction equations for
the 12-hour forecast period. This necessitated
deleting shorter duration storms. The few storms

occurring during the January through April
(see Fig. 3) off-season were also deleted. The

final restructured data set consisted of 5,526

cases on 1,076 storms.
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Fig. 2. Analysis of No. of tropical oyelones (including depressions) passing through 2}° Lat.fLong. squares, 1877.1974

Additional deletions were required when deal-
ing with the longer-range forecasts. Development of
prediction equations for the 72 hr forecast period,
for example, require nine consecutive 12-hourly
(from —24 to -72 hours) storm positions. The ave-
rage durations of storms over the area is but
slightly over 4 days. Consequently, the require-
ment for 9 consecative positions reduced the num-
ber of cases to 1,778 on 553 storms.

This method of processing the data renders
the number of cases a function of the forecast pro-
jection, the 12-hour forecast having over three
times the namber of developmental cases than the
72-hour forecast. While this requires the formula-
tion of separate covariance matrices for each fore-
cast projection rather than a single matrix had a
uniform number of cases been used, it avoids a
forecast bias toward the longer duration storms.

The decision to include all classes of tropical
storms in the dafa set was made after careful
analyses of the motion characteristics of these
storms. Computer plots similar to those shown in
Fizs 1 and 2 were prepared for the storms inclu-
ding and excluding depressions and also for differ-
ent seasons. These figures (to be the subject of a

separate publication) disclose only minor differen-
Ces in metion climatology depending on the storm
stage. Initial latitude and longitude being the
predictors some weightage have been given to the
seasonal changes. Further, more rigid, Mote Carlo
tests as described in section 8 showed that the dis-
criminatory information offered by a storm satge
stratification was only slightly better than that
offered by a random stratification.

On the other hand deletion of depressions from
the data set would decrease the number of cases to
90 per cent which might lead to proportionate
deterioration of the performance of the technique:
Tracking of depressions and deep depressions in
the Bay of Bengal and in Arabian Ses was also
another important consideration to include a]]
classes of tropical storm in the datg set. However
this is to be considered as one of the limitations of"
the technique.

4. Climatological consideratjons

The data set just described inelude aJ] classes of
tropical cyclones. The annual occurrence rate
averages about 13 storms, two to three being
classified as severe cyclonic storms (48 kt), three
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Fig. 3. Percentago of days, 1877.1974 with tropical eyclones (including depressions) over Bay of Bengal or Arabian Sea.
Upper panel shows smoothing the 15-day moving average. Lower panel gives unsmoothed data.

to four as cyclonic storms (=34 to 47 kt) and the
remainder as depressions.

Initial processing of the data led to an overview
of north Indian Ocean tropical cyclone climatology
as deseribed in Figs. 1, 2 and 3. The computer
routine which produced Figs. 1 and 2 required
hourly storm positions. Hourly positions were
estimated from the 12 hourly positions using curve
fitting method described by Akima (1970) tc avoid
computational error by using less precise linear
method. Interpolation of the short period positions
of the storms were essential for finding
accurate distribution of the stormsin 2}-degree
latitude longitude box. If at least one of these
hourly positions fell within the areal bound of the
zone, the storm was considered to have passed
through the zone.

The fifteen day moving average smoothing funct-
jon used in Fig. 3 was determined from trial and
error and represents a trade-off between the desire
to smooth out obvious ‘noise’ and preserve recog-
nized cyclical variations in the annual frequency of
tropical cyclones. Although further discussions of

these data could be made, this mast be considered
as beyond the scope of the present paper. The
main purpose of including Figs. 1, 2and 3 as dis-
cussed in a later section, relates to an optimizat-
ion of the predicticn algorithm.

There are many references dealing with various
aspeets of the tropical cyclone climatology. In
this connection earlier climatological studies of the
storms and depressions in Bay of Bengal by Rai
Sircar (1956) and Rao and Jayaraman (1958) may
be mentioned. A comprehensive work by Crutcher
and Quayle (1974) is significant in that it gives
homogeneous statistics for all tropical cyclone
basins. Other werks include Crutcher and Nico-
demus (1973) and Crutcher and Hoxit (1973).
These latter publications use the bivariate normal
distribution to describe the tropical cyclone
motion climatology and the strike probabilities at
given sites,

5. Derivation of prediction equations

Multivariate regression analysis has been widely
used in the meteorologica) profession for a numbe
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of years, Gradually, the older classical concepts
of such analysis as described by Mills (1955) have
been replaced by the “perfect-prog” and Model
Output Statistics (MOS) approach as described by
Klein and Glahn (1974). These modern concepts,
however, require developmental data fields not
generally available over data-sparse areas of the
oceanic tropical cyclone belts. Accordingly, the
older concepts still have applicability in tropical
regions.

More advanced methods of the classical concept
involve the introduction of non-linear effects and
the stepwise screening regression process. These
are described by Efroymson (1964). Regardless
of the method employed, the computational proce-
dures of multivariate analysis are similar. All
require a considerable amount of matrix mani-
pulation involving products (variance), cross
products (co-variance) and sums of variables. An
important but often overlooked aspect of multi-
variate analysis relates to the question of statisti-
cal significance. This subject is discussed in
section 8.

Predictands — Tropical cyclone forecasts are
normally made for periods out through 72 hours.
Prediction algorithms require displacement fore-
Casts in both the meridional (AY) and the zona]
(AX) directions. Through vectorial addition, the
AY and AX components are used to position the
latitude and longitude of the storm for any of the
forecast projections. Accordingly, 12 predictands
are defined. These, listed along with their means
and standard deviations are given in Table 1. As
is typical of other tropical cyclone regions, the
standard deviations of zonal motion are seen to be
considerably greater than meridional motion, As
will be shown later, this has significance in the
variance analysis.

The seven primary predictors— Analog models
make use of storm selection criteria based on such
factors as inijia] and past storm motion, initial
storm position and time of year. To simulate
these criteria by functional methods, seven pri-
mary predictors are introduced. These, together
with their weans and standard deviations are
identified in Table 2. The 12 predictands given
in Table 1 are assumed to be functions of these
seven primary or basic predictors,

AYJ— =ﬁ(P1,P2,P3,P¢,P5:Pa:P7) j=16 (1)
A-Xj=gj(PlaPE:PErP-hPS:Pﬂ’PT) J=16 (2)

Polynomial functions — The functions defined in
(1) and (2) are usually taken as simple first-order

TABLE 1

Means and standard deviations of the 12 predictands (nautical
miles). Southward and westward motions are negative

Mean Standard

Symbol deviation

Meridional diplacement

12 hr AY, 43.3 37.3
24 hr AT, 84.7 67.7
36 hr LY, 123.4 91.3
48 hr AY, 160-3 111.6
60 hr AY, 190.0 126.2
72 hr AY, 225.6 141.4

Zonal displacement

12 hr AX, —40.9 87.7
24 hr AX, —83.1 126.3
36 hr AX, —125.8 174.4
48 hr AX, —167-4 218.3
60 hr AX, —204.3 252.4
72 br AX, —239.7 285.7

polynomials. These have the advantage of simplj-
city and minimal degres of freedom loss.
Non-linear effects, if persent, can be hand]ed by
stratifying the data into strategic periods or geogra-
phical zones. An example of this is shown by the
data in Table 3 as partially illustrated in Fig. 4.
These non linear data could be fitted by two linear
equations, one for the period prior to 15 July and
the other thereafter. With the ava'lability of
computers, it is often more coavenient to use higher
order polynomials to handle non-linearities. Such
functions have the ad vantage of being everywhere
continuous, whereas, the pair of linear equations
would most likely give dual solutions near mid-
July.

One restriction in using higher order polynomials
relates to the large number of terms generated
by these functions. As given in Neumann and
Randrianarison (1976), the number of terms (T')
in an nth order polynomial having m primary
(basic) predictors is given by,

T = (m-4-n)lf(mint) (3)
Thus, a polynomial containing 7 primary predic-
tors will expand to 8, 36 and 120 terms, respecti-
vely for order one, two and three, The large num-
ber of terms required by the latter seldom justify
the added complexities and degree of freedom
loss. Accordingly, the second-order polynomial
was selected as not having an excessive number of
terms but still being able to approximate nop-
linear trends. The additional predictors P,
through Py, generated by this expansion are
defined in Table 4. They can be identified by
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TABLE 2
Means and standard deviations of the seven primary predictors.
Westward and southward motions are negative
Means Standard deviations
Predictor e ey ey
Symbaoi Forecast period (hr)
12 24 36 15 60 72 12 24 36 45 60 72
Day number P, 242 242 243 243 244 243 58 57 57 56 a6 55
Initial Intitude (°N) P, 19-8 19-5 10-2 180 15-7 18-6 46 46 45 46 46 46
Initial longitnde (°E) f 83-3 835 S3-7 S4.0 841 843 57 55 54 52 52 52
Average meridional speed, past 12 hr (kt) P, 34 32 0 2.9 297 2.6 30 28 29 26 26 23
Average meridional speed, past 24 hr(kt) ; —37-38 —4:0-3-9-3-0- 18 52 49 47 45 43 42
Average zonal speed, past 12 hr (kt) P, 33 3-1 2.0 2.8 27 25 26 26 24 23 2.3 23
Average zonal speed, past 24 hr (kt) P 37 —3:0 —39 —3-9—39—3-8 47 45 42 40 39 3-8
Number of cases E526 4572 3656 2044 2270 1778 5026 4572 3650 2044 2270 1778
Note : Day number 243 is 30 Aug.
TABLE 3
Average zonal, meridional and veetor tropical cyclone motion by months, April through December.
North and east are positive
Apr May Jun Jul Aug Sep Oct Nov Dee
Zounl - 07 —0-1 — 30 —6-0 —5-3 —45 —2-0 -2+ —-24
Meridional 4-8 49 31 2-3 2.5 33 4-5 4-0 37
Vector 352/5 358/06 315/4 201/6 296/6 300/6 336/5 333/4 327/4
Number of cases 99 309 923 867 922 1194 782 620 261
TABLE 4
Additional predictors #, through P, generated by a_second-
order polynomial with seven predictors. The meaning of
s P, through P, is given in Table 2
f Py =Py P = PP, Py =P Py =P, Py
Py= PP, Py= P&Ps Py = PP, Py = P,P,
é- Ppy= P P, =Pg Py = PP, Py = PP,
E Py = PPy Py = Pyl Py = Popz Pyy = PP,
P, =PDP P,,= PP, P, =PP P,=P,P
Tm m % 4 A% m—&lr-_ﬁ——n 1 &3 16 * = ik # iy
PORTH
X P.=P2 P,,=DP7P Poy= PP P, = P,P
Fig. 4. Average V and U components (kt) of ]l()l't}l 13 3 20 3 2 (L 34 s
Indian Ocean tropical cyclone motion April through 5 . I y PP P — P2 P.. — P2
Deember. ¥V components are towards north. U Py = PPy Py = PPy = "8 ] 7
components are toward west
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TABLE 5

Regression coefficients (7, .7) for use with meridional motion

prediction equation (4). Index I refers to predictor number.

Intercept is given by element (36, /). Index./ refers to forecast projection at 12 hourly intervals, 12 through 72 hr

J=1 J=2 J=38 J=4 J=5 J=6
I=1 026343 0 -86020 1-76512 3 -13866 4 -46446 588013
J='2 984851 30 -19603 47 76279 57-15314 5990614 38 -88515
I=3 375820 9 -65990 15 96362 2276817 30 -56889 35 -37262
Fomi 4 1-12522 24 -51108 43 -53468 11 -20905 4-09838 -17 :20822
I= 5 -3 61793 ~18 65553 -24 -40282 ~99 -59052 =111 -99460 -117 -87840
I= 6 773040 ~7 03645 -19 27299 38 -73376 8576770 157 -23630)
Te= 7 -0 -82257 9 -24858 960812 86 -T9787 106 -77991 120 :53040
I= 8 —0 00042 -0 00098 -0 00240 ~0 00420 ~0 00646 —0 00917
I=9 000610 0-01145 001358 0-01626 001572 0-01252
I=10 —0 00127 -0 32478 ~0-54548 -0 -75188 -0 -85670 —0 96841
I=11 ~(1. 00260 -0.00793 -0.01227 ~0.01901 ~0.02146 -0.02254
I=12 -0-11212 029239 -0 -44988 0 -51582 -0 52865 -0 -49694
I=13 =0 00559 001504 -0 03231 0 03930 -0-19266 -0 13467
I=14 001820 0-02266 0 02466 0-05921 006028 0-08416
I=15 0-07368 -0 25259 -0 69545 -0 16633 0 -08658 -1 16188
1=16 003167 -0 -14435 -0 24725 ~0-11992 ~0-10848 044803
I=17 -0-03414 -0-33868 -0 62900 -1-23145 ~0) 85828 -0 -T0693
I=18 —0-00881 —0 01404 -0 01641 0 03348 0 -06663 0-07851
I=19 -0 01286 =0 -02265 =0+08121 027562 0-28160 002217
I=20 0-05627 0-24933 033646 0-96378 1-04357 1-13563
I=21 —0-19797 —0-33273 -0 41875 -0-22339 023348 0-74009
I=22 —0-13362 -0 20868 -0-17159 -0-:32005 097610 0-00036
I=23 -0-01313 -0 -01752 0-01112 006157 ~0-12289 -0 -16544
I=24 ~0-05192 0-11509 031428 =0-68794 -1 48933 -0-73082
I=25 =) 04674 013802 026803 0-05138 -0 26374 -1-09210
=26 -0 14163 042044 073193 193822 -0-00352 =2 -09380
I1=27 0-61084 1-35296 1-82094 201700 1 -20465 0-25589
J=28 002417 —0 43208 -0 87565 -2:19423 -107125 094595
I1=29 000856 001436 001424 —0-03300 =0 07075 -0 -08751
I1=30 0-00152 —0-03858 007703 -0 48631 -0 -45572 —0-17719
131 —0-00027 —0-12134 011430 -0 75438 -0 94554 ~1-14832
I1=32 0-03470 -0-12756 —0 26753 ~1-17138 -1-82244 -2 74871
J=33 0-18409 032670 030504 034155 0-11906 -0+22017
T—34 -0-33537 -0-89613 -0 04523 -0 -58281 070283 2-29618
I=35 -0 -08368 -0-12093 -0-10074 006027 0-02197 0-17952
I=36 -245-04770  -680-72040 -1113-79810 -1553-41895 —2000 48999 -2280-93311

considering all the combinatorial products and
cross-products of P, through P,. Eqne, (1) and
(2) can thus be defined,

AY; = Cyj + Z(z’i,j P; (4)

DX = Qs ZQ,-,,; 3 (5)

i=1,35
=117

where the arrays €' and ¢ are constants. The
array elements Cy,; and Qugy; arve defined as the

intercept values. Determination of these constants
require the formulation of 36 “normal’” equations
using methods deseribed in Neumann and Hope
(1972). However, the scientific subroutine packages
available through most large computer facilities
normally contain statistical programs for this
purpose. In the present application, the IBM
multivariate analysis program was used. The
list of constants so determined are given in Tables
5 and 6, the former being for meridional and the
latter for zonal motion in n. miles. For computer
application, these constants can conveniently
reside in a disk or tape file, permitting the solution
of Eqns. (4) and (5) in generally less than 1
second of computer time. This offers g distinet
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TABLE 6

Regression coefficients ((I. J) for use with zonal motion prediction equation (5). Index I refers to predictor number.

Intercept is given by element ¢ (36, J).

Index ./ refers to forecast projection at 12 hourly itervals, 12 through 72 hr

J=1 J=2
~1-10266
543039
1 -53067
—4 52247
14 -23036
- 427768
~ 1 44658 =27 63277
1) H257 0T
0-01013 103439
-0 05199 -0 :23207
=0 -(M254 ) -00043
=0 05409 —0 26150
) 10821 —0 01616
0-01249 0-01970
~() %830 0 -03907
003594 0-19867
059372 114957
1) 00604 0 -00064
018284 000756
=0 11993 =0 26603
063447 1-43872
- =0-11857 —) 6451
) 01307 -0 044582
042298 (0 -08225
0-11578 015161
-1-12787 -1 67738
005467 0 -340092
041543 031625
(01178 —0 01384
-0-21978 015730
015627 (r-44282
=1-15828 ~2-64025
0 03456 1:21241
025920 054853
-0 -209870 =) -0D088
27 -58488 -86 -58549

-3 M6
25 - 14336
604916
=25 83974
38 33446
170108

I=20
I=30
I=31
1=32
I=33
1=34
1=35
I=36

J=3 J=4

J=5

J=6

-3 -49573
136 02850
111 -69189
2363422
192 35159
8 54507
159 -30000
002475
009935
-1 -31343
- -D1666
—1 24737
—0 -55568
0 -00647
-1 94409
0-14692
-0 -25967
) 05066
-1 69527
-1 -44736
2-34810
) -£4239
-0 -06393
1-23072
~0-01799
-0 -32176
205382
002787
—0) -02490
102003

1 -87500
-6 08076
339079
122430
-2 38217
—4638 21484

-10-22943
167 -35330
142 78340
173 -47250
242 80920
-92 01617
-212-17780
003054
012169
-1 64977
—0) 03020
~1-51671
-0-71614
-0 04444
-3 39371
-1 -02959
0 -64892
) -04777
-2 -41801
-1-81300
4-49679
-0 26581
-0 08429
2-15842
0 -84943
~3 TG540
—0-09522
272731
~0-05247
185300
235547
-9 - 13387
362971
3 92556
-2 39664
-5947 401016

5 026003

45428

27 18588 34 66257
-39 62119 -73 76862
54 -T788% 131 37550
8 =349 5337897
-39 65845 ~104 97130
001275 0-01857
005705 003295
091327
~029665
190094
—0 20697
0 -06202
061917
079579
095541
0002156
-1 123563
-1 00544
322583
) -11740
) 08348
) 26485
25313
20330
41948
L6003
030641
58023
32899

i+ 15051
266552
58943
99002
-2225 71899

—)-50918
-0-01552
4 -51603
-0 12723
008779
—) -33589
031511
1-15357
001200
010647
) -43601
179772
007240
—0 03696
023463
019891
-2 858206
0-75917
1 -56578
~0) 03403
—0 42805
075063
~4:14273
1-49898
1-10935
=1 03990 -
—890 01772

which re-

advantage over the analog .upproac}n _
quires scanning and processing the entire storm
history file each time the program 1s activated.

6. Stepwise screening regression methods

An alternate approach in developing prediction
equations could have been sfepwise screening re-
gression. This method eliminates t‘.ho;u predictors
which, for one reason or another, fail to explain
incremental reductions of variance beyond some
set minimum value. To see if this offered any
advantages, a separate set of prediction equations
was developed in this way. The resultant depen-

dent data variance analysis 1s given in Table 7.

The data given in this table are quite thought

provoking. As would be expected, the principal
veductions of variance for the short period fore-
casts of meridional motion are given by P,
(average meridional speed over past 12 hr). How-
ever the relationships become more complex
with increasing forecast interval. At 72 hours,
P (initial latitude) works in combination with Py,
(square of initial latitude) to provide the main
variance reduction. It is interesting to note that
in the case of zonal motion, Ps, (the product of
average zonal speed over the past 12 hr and initial
longitude) provides, by far, the maximum re-
duction of variance. Further, in depth discussions
of these results could be made but will have to be
considered beyond the scope of the present paper.
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TABLE 7
Predietor selection and reduction of variance (per cent) using a stepwise screening procedure. Missing entries and missing

predictors contributed less than }°/

incremental variance reduction

Predictors Predictands
AYy, AYs AY; AY, AYy AYy AX, AX, MNX, AXy AX; A X
P, — - — 06 1-0 1-3 — 0-8 13 08 32 36
P, - 10 1-4 2.1 21 2-4 - - - 08 L-0 1-1
P, 05 08 09 06 — — —_ 10 3-0 48 - 06
P, 427 300 253 18 4 156 92 29 - - -~ - -
P, - -- -- - - 06 = - - - - -
P, " . - - - < = = S ot -
P, - — - — — 0-5 1-1 14 — 07 06
Py, 07 21 38 62 77 122 ! o — e .
P, " - - o B =2 = 3 vy | PN -
P, - - 06 07 08 09 = g . 07 10
r, = — - - = - . - o= — 69 12-0
Py, = o - o L - - 56 T4 = 84 740
P - = 05 05 07 1 4 " £ - = =
P — Cems = s = - : -~ 08 = =
Py - - 06 1-1 1-4 14 — =5 an L - -
Py — — - - - — 60 -8 452 37-3 265 22-1 14:2
P, S o “ - i = ST T R ]
Py - < = = 2, = = - -~ By - o
P - 06 = - L - = £ 05 - 0-9 =
Pas — £ — b = - = 15 18 13 140 12
Py L - . - - e 06 - — - i i
Total reduction 439 345 331 302 29-3 291 6G4-8 55.2 528 477 4449 4138
No. of cases 5526 4572 3656 2044 2270 1778 5526 4572 3656 2044 2270 1778

It is customary and often desirable to exclude
those predictors which fail to explain minimum
incremental reduction of variance. Thus, the
prediction equation for 12 hr meridional motion
would contain but three predictors, Py, P, and
Pyg, while the prediction equation for 72 hr meri-
dional motion would contain 8 predictors. How-
ever, in the case of tropical cyclone forecasts, the
use of equations with differing numbers of pre-
dictors has the very undesirable side-effect of
producing discontinuous forecast tracks. Such a
meandering, unrealistic track is immediately
dismissed by the operational forecaster as being
fotally unrealistic.

There are other reasons that argue against using
the stepwise screening approach. One such reason
relates to convenience. It is much easier to pro-
gram (4) nad (5) for a digital computer if the
arrays C and @ are of fixed dimension.

A third reason, discussed at some length in
Neumann and Randrianarison (1976), relates to
uncertainties in the operational specification of
P, and P;. A final and perhaps most important
reason is simply that Eqns. (4) and (5) were tes-
{ed alongside the stepwise regression equations on

a homogeneous independent data set and found to
be superior. It was concluded, therefore, that
prediction Eqns. (4) and (5) were preferrerd over
similar equations developed from the stepwise
screening process.

7. System performance

Dependent data — Data relating to the perfor-
mance of (1) and (5) on dependent (development)
data are given in Table 8. Since system perfor-
mance on either dependent or independent data
is generally based on displacement error (item
13),  subsequent comparisons will principally
concern this item. The displacement error is
defined as the great circle distance between a
forecast (X7, Yy) and an observed Xy Yy
storm position. The expression for the great circle
distance error (&) is derivable from the law of
Eusines for oblique spherical triangles and is given

Y.

E = cos™! [sinYsin¥y + cosYcos Y cos(X -Xy)]
(6)
The variance analysis given in Table 8 reveals

what appears to be (compare, for example, item
3 and item 8) better performance of the model for
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TABLE 8
System performance on development data. Errors are given in nautical miles
Forceast periods ()
——— —— . e e e gl A= —d—d—a—
12 24 36 I8 60
1. Number of cases 5526 4572 : 2044 2270
2. Number of storms 1071 1053 315 793 576
3. Meridional motion, reduction of variance (%) 16 37 35 33 32
4. Meridional motion, multiple corvelation coeflicient. 0468 061 06 057 057
5. Meridional motion, standard error a7 5 7 92 194
6. Mean absolute meridional motion crvor 1Y 10 ot T0 S0
7. Mean meridional motion ervor (y-bias) 0 0 0 ] ]
8. Zov ol motion, reduction of varaneo (*'5) i) a7 2 a4 ]
0. Zonal motion, muitiple correlation coetlicient 082 074 074 07l 070
1. Zonal motion, standard ervor 49 93 s 155 1s1
11. Mean absolute zonal motion crrot 27 Gl 0 120 143
12. Mean zonal motion error (x-bias) 0 0 10" 0 0
13. Mean displaccmt ng ervor a7 S0 116 151 177
TABLE 9
System performance on independent data. Errors are given in nautical miles. Numbered items correspond
to similarly numbered items given in Table 8
Forecast period (hr)
r - — - --‘-1.—-‘\' - ——— .- ——
12 24 36 18 6
1. Number of cases 141 130 0% 87 -
2. Number of storms 141 130 0% 87 =5
5. Meridiopal motion, standard error 30 37 1 9 e
6. Mean absolute meridional motion error 22 14 55 74 =
7. Mean meridional motion error (y-bias) 3 1 8 1) a4
10. Zonal motion, standard error 39 S4 123 162 212
11. Mean absolute zonal motion error 27 8 01 125 164
12. Mean zonal motion error (z-bias) 0 0 8 i 14
13. Mean displacement error 33 51 117 153 195
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zonal motion than for meridional motion. Before
interpreting these results, it is well to consider the
relationship between the reduction of variance
(Ry), the multiple correlation coefficient (R,,)
the standard error (Sp) and the standard devia-
tion of the motion (Sy). These relationships are

Sy = Sp (1R, (7)
Ry = R, 8)

Thus, even though Table 8 shows substantially
greafer variance reduction for zonal motion
the greater standard deviations of zonal motion
(see Table 1) provide, according to (7), greater
zonal standard errors. Similar results are noted in
other tropical eyclone basins.

Independent data — Consider now  the perfor-
mance of the model on independent data. For this
purpose, every 40th case, or the equivalent of
approximately 2} years of data had been with-
held from the master data set. This sample provide
an independent test of Equs. (4) and(5), the results
of which are given in Table9. The differences in
performance between dependent and independent
data can be obtained by comparison with Table 8.
For convenience, a common numbering system has
been used in both tables. Ttems 4, 5, 8 and 9
were intentionally omifted from Table 9 since
these are generally associated only with dependent
(developmeat) data.

Comparison between the two tables reveals the
usual deterioration in performance between depen-
dent and independent data. These differences
are quite small, however. The - and y-biases
always zero in the dependent data, are also seen
to be quite small. These biases are typical and
result from dependent and independent data hav-
ing somewhat different statistical properties.

In Tig. 5, a comparison is made with the dis-
placement errors obtained from the similar set of
prediction equations developed by Neumann and
Randrianarison (1976) for the south Indian Ocean
and by Neumann (1972) for the North Atlantic.
The figure implies what appears to be better per-
formance of the model beyond 36 hr over the north
Indian basin. However, this is merely a reflection
of different standard deviations of tropical cyclone
motion in these three basins. The 72 hr meridional
and zonal standard deviations, for example, are
372 and 669 n. miles respectively for the north
Atlantic and 141 and 286 n. miles for the' north
Indian area. If one accounts for these differences;
the performance characteristics of the model is
similar for all three basins. Fig. 5 well illustrates
the pitfalls of unqualified comparison between
different tropical cyclone basins.

Operational data — Some further deterioration in
performance is expected when running the pro-
gram in an operational mode. The reason relates
to uncertainties in specifying the current position
of a storm. Later information or a post-analysis
sometimes indicates that the original estimate was
somewhat in error. The problem is discussed in
detail by Neumann (1975 a and 1975 b). Some
estimate of the additional deterioration can be
obtained by considering the operational degrada-
tion of a similar set of prediction equations for the
Atlantic. Here, the degradation over independent
data was found to be 15, 13, 10, 9 and 5 per cent
respectively, for the 12, 24, 36, 48 and 72 hr fore-
cast periods. Applying hese same percentages to
the north Indian independent data gives the resul-
ts shown in Fig. 6. However, the limited aircraft
reconnaissance and satellite coverage over the
north Indian area may cause additional deterio-
ration.

8. The question of statistical significance

Establishing the statistical significance of a
regression  equation is tantamount to stating a
hypothesis that the difference in the two variances,
one about the mean of the development data and
the other about the fitted regression hyperplane,
are greater than one would reasonably expect from
pure chance. The independent data test, described
in the preceding section, establishes, at least
qualitatively, in that this hypothesis is true.

More rigid tests can be used. One such test
described in Neumann et al. (1976) uses a Monte
Carlo approach. The method concerns itself with
replacing the ordered tropical cyclone displace-
ments (predictands) with another randomly
ordered set. Prediction equations are then deve-
loped from this latter data set. Repeated appli-
cation of this test gave reductions of variance of
only about 1 per cent. Since the actual variance
reductions were much greater, significance at well
above the 99 per cent level is indicated.

Serial correlations between individual predictor/
predictand sets preclude direct use of the classical
F-test named after R. A. Fisher by Snedecor
(1946). The presence of these correlations effec-
tively reduces the degrees of freedom in the deno-
minator of the F-variance ratio. Thus, the valuo of
F one obtains by not allowing for this reduction is
seriously inflated. To counter this effect, a smaller
“effective degrees of freedom™ can be introduced.
Crutcher (1976) suggests reducing the original
degree of freedom by a factor of three. Applying
the F-test in this manner still leads to acceptance
of the regression equations (rejection of a null-
hypothesis).
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9. Probability ellipses

The computer output packages produced by
analog models typically contain supplemental data
for the construction of probability ellipses. If an
x, y plotter is available. the complete forecast
package might appear as in Fig. 7. The forecast
track shown in the figure was derived from Eqns.
(4) and (5) according to the input data as specified
in the legend. A fictitious example was intentionally
chosen since the purpose of the figure is merely to
illustrate the method and not to depict a single,
perthaps not representative. verification. Ample
documentation on this latter subject 15 given
elsewhere in the study.

The complete forecast package. as siven in
Fig. 7. afford the forecaster cffective decision
making ecapabilities (Simpson 1971).  He wmay,
for example, use the intersection of sav. the
48 hr 50 per cent probability ellipse with the co-
ast-line as objective guidance in fixing the extent
of coastal warnings. Or, he may want to confine
his forecast track to fall within some elliptical
bounds.

In addition to the Mercator map hackground,
computer plotting of Fig. 7 requires. («) the
forecast positions of the storm, (h) a curve-fitting
routine as, for example. given by Akima (1970)
for plotting the track and (¢) the rotation anule
and lengths of the major and minor ellipse axes.
These latter quantities are determined by fitting
selected meridional and zonal dependent data
residuals to a bivariate normal distribution. Cru-
teher (1971) provides statistical justification for
the use of this particular density function,
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The bivariate normal density function in ferms
of the five population parameters, z, y, S, Sy
and v, is expressed as

f@y) = 20828 (I—rg) 1 exp(—62)  (9)
where,
G = (11! [(@—a)fSs 2 —

2ty (2—) (Y —y) (SaSy) 1 y—y)2Sy 2.
(10)

In the above expressions, =, ¥y, #, ¥, S, and S, are
respectively, the zonal and meridional forecast
displacements, the mean of the zonal and meridi-
onal forecasts, the standard deviation of the zonal
and meridional forecasts and the linear corre-
lation coefficient between the individual compone-
nts. For further mathematical treatment. the
readar is referred to the above Crutcher reference
or to Hope and Neumann (1970},

In analog models, the five population parameters
are determined from the clusters of analog storm
positions. In the present simulated case, the
“clusters” arve obtained from the residuals (errors)
one obtains in applying Equs. (4) and (5) to the
dependent data set. The two methods are entirely
analogous.

The algorithm for performing the necessary
calculations is computer dependent and is thus
beyond the scope of the paper. Briefly, however, a
magnetic tape or disk file is structured to contain
ordered sets of predictors P; through P, along
with the associated meridional and zonal residuals.
Cases are then systematically eliminated using
selection criteria based on day number (P

)
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latitude (P,) and longitude (Py). The remaining
cases are ordered depending on the magnitude of
the vector distance (%) hetween current storm
motion (V,, U/,) and the “analog” storm motion
(V,, U,), the latter being given by P, and P;.
This distance is given by

Z = [( ]";'C_II“)Z + (Ifr,'_"fﬂ)e:li (1 1)

The upper port on of the sorted Z-array (25 cases
were found to be optimal in the Atlantic)
ate then paired with the associated residuals
and it is from these data that the five population
parameters needed to define the distribution are
computed. The ellipse centroid (mean of the
meridional and zonal residuals) may not neces-
sarily equal zero. That is to say, it may not
correspond exactly to the forecast storm position
given by Eqns. (4) and (5). However, these differ-
ences are normally so small that they can be ig-
nored.

In a manner similar to that employed by ana-
log models, the analog seleclion eriteria can be opti-
mized depending on season and storm location.
As shown by Hope and Neumann (1972), the
magnitude of displacement errors is primarily a
function of initial storm motion and secondarily
of geographical location and time of year. Accord-
ingly, the day number, latitude and longitude
filtering described above should eliminate only
about 25 per cent of the cases. The remaining
75 per cent are filtered by application of (11).
Figs. 1, 2 and 3, as well as other pertinent climato-
logy. to be published separately, are quite useful
in this respect. With optimized programming
techniques including the use of logical variables,
the entire procedure outlined above can be ac-
complished very rapidly, even on older generation
computer systems.

Further application — Further use can be made
of the elliptical data. By integrating the density
function (9) over a circular area (A4),

f I floy) dz dy (12)
A

one can obtain the probability of a storm being
within the given area at a given time. The Fortran
compuier program to perform this numerical
integration is givenin the Appendix of Crutcher
(1971).

As an example of the use of (12), consider the
forecast track given in Fig. 7. It can be noted that
the storm is forecast to pass about 20 n. miles
ENE of the city of Nellore (NLR), located 14-3°N,
79-6°E. The probability of the city being within
50, 100 and 150 n. miles of the storm cenire a‘

any time throughout the 72 hr forecast period is
shown in Fig. 8. Although not accomplished here,
further time integration could be employed to
determine the probability of the city being within
a specified distance from the storn at any time
durmg the 72-hr period. These cumulative pro-
babilities are obviously much higher and in the
case cited here, would approach 100 per cent.

The procedures, although still experimental,
may well be applicable in determining the coas-
tal extent and timing of a hurricane warning or
watch zone. With suitable z, y plotting equip-
ment, the graphical depiction, shown i Figs.
7 and 8 can be made available to the operational
forecaster in but a few minutes time.

10. Discussion and Summary

In this paper, the derivation of a simulated
analog model for the forecast displacement of
tropical cyclones over the north Indian Ocean
basin has been described. The technique is
similar to that employed by Neumann and Ran-
drianarison (1976) for the south Indian Ocean
tropical cyclone basin, and by Neumann (1972)
for the North Atlantic. One of the principal ad-
vantages of the simulated analog method is com-
putational simplicity in both the developmental
and operational modes.

Another advantage relates to anomalous weather
situations. Analog models attempt to identify
certain synoptic patterns. Occasionally, under
anomalous situations, a pattern cannot be identi-
fied and a forecast is not produced. This leaves
an operational void. The simulated model, on
the other hand, effectively bridges these disconti-
nuous synoptic subsets and always produces a
forecast. Both the analog model and its simulated
counterpart have been run simultaneously over
the Atlantic for a number of years and have dis-
played similar error profiles.

The model makes optimum and explicit use of
climatology and persistence. In this respect, it
can be considered a benchmark from which to
judge the performance of more sophisticated
models, whether they be statistical or numerical.
The output of the medel may well be used as input
into a model which employs synoptic data such
as that described by Jagannathan and Crutchex
(1968). Such an approach is used in the NHC72
(Neumann ef al. 1972) model and the NH(C73
(Neumann and Lawrence 1975) statistical-dyna-

mical model. in use over the North Atlantic tropi-
cal cyclone basin.

' Any statistical model, whether it be analog
or otherwise is very sensitive to uncertainties in
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the operational specification of the initial motion
veetor. The model discussed herein is no ex-
ception. Accordingly, every effort should be
made to initialize the model with present and
past storm positions (from which the motion is
desired which reflect the more conservative
motion cf the larger scale storm circulation rathe.:
than the short period, often transient, oscilla-
tions of the inner stoim vortex. Only in this
way can the full variance reducing potential of
the system be realized.
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