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ABSTRACT. The accuracy attainable using the Gauss Seidel iterative method for Poisson’s equation isin-
vestigated for different number of iterations and for different number of mesh pointsin a rectangualr area.

It is shown that in general iterative methods of solution of Poisson’s type of equation are not to be re-

commended for atmospheric problems.
1. Introduction

In numerical computation of atmospheric mo-
tion we often come across equations of form

Vig=o (1)

where for example ¢ could be the vorticity whose
spatial distribution is known and ¢ the unknown
could be the stream function.

There are various methods of soving this
equation. Owing to their simplicity iterative
methods of solution have been popular amongst
meteorologists.

The purpose of this paper is to point out some
short-comings of iterative schemes.

2. Iterative solution of Poisson’s eguation

The five point finite difference form of Eqn. (1)
in rectangular coordinates (X, Y) is:

Yoy =12y +n +¥oy—n + Yeimy+

¢= —~Hy — Uzsy)
where H is the grid size.

There are various iterative schemes possible.
We have the Jacobi scheme which calculates a
set of iterates exclusively in terms of the previous
set. This is hardly used because there are other
schemes which are not only faster but also de-
mand less storage. An example of this is the Gauss
Seidel iteration which involves the use of recent
iterate as they become available. Details of these
two schemes can be obtained in many text-books
c(m ?il)merical methods, example of which is Smith

1971).

The Young (1954) successive over relaxation
80R, the Alternating Direction Implicit Scheme
ADI, proposed by Peaceman and Rachford (1955)
and subsequent modifications of these are the
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fastest iterative schemes presently available.
These fast schemes reduce the time to obtain a
given accuracy by a factor which is critically
dependent on the accelerating factor. For example
with the optimum accelerating factor SOR is
about 40 times faster than Gauss Seidel. When
this accelerating factor is altered by about one
per cent, the scheme is only 20 times faster
(see Smith 1971, p. 150).

Thus it is safe to say that SOR is only a few
times faster than Gauss Seidel. This statement is
especially true in the case of other elliptic equations
for which it is difficult to calculate the accelerat-
ing factor. We shall therefore limit our discussion
to Gauss Seidel.

2. Numerical test solutions of Poisson's equation

In order to test the reliability of iterative solu-
tions, random numbers were generated and assig-
ned to values of ¢ at the grid points of a rectangu-
lar area. The finite difference form of the Lapla-
cign ¢ as given in equation (2) were than calculated
at each of the grid points. Thus the set of ¢,
which henceforth we shall denote by T' represents
the true solution of the given set of o.

Now taking the set of o as the known quantities
from which the ¢ were to be calculated, the Gauss
Seidel technique was applied on Egqn. (2)
a number of times to obtain better and better
values for ¢. At each iteration we calculated
the successive fractional error £ which for the kth
iteration is defined as

E,=Z|T—W|]Z|T|
where summation is over all the grid points
except at the boundaries where values of ¢ were
known and fixed.

Table 1 illustrates the successive accuracy
attained for defferent number of mesh points.
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TABLE 1
No. of No. of grid meshes
itera- r A \
tions  21x21 21 x 41 2171
0 1.00 100 1.00 < 100 1-00x 10°
100 1.01x 10 2.39x 101 2.915 10!
200 8-50 3 103 5-18x 10-* 7.65x10-*
300 7-13x 104 1-11x 102 2.02x10-*
400 600 103 2.38x 102 5.36x10-*
500 5.03x10-¢ 5.09% 104 1.42x10°?
600 4.22% 107 1.09x 104 3.-Tdx 104
700 3-"4x 108 2.31x 103 9.88x10°°
800 2.97x10-* 4.94% 100 2.61x 10-°
900 2.49% 10 1.05x10-¢ 6-86 10-¢
1000 2.10x 1011 2.24% 1077 1.81x 10-¢

3. Results and conelusion

We note that change in ¢ at a particular
grid point will have effect on the ¢ at adjacent
grid points after 1 iteration. Thus we can see that
this change will be noticed at grid point, » grids
away after n iterations. Thus we can conclude as
shown in Table 1 that the larger the number of
grid points in the rectangle, the more the number
of iterations for a modification to propagate
through the whole system of grids; and hence the
less the rapidity of convergence of the iterative
scheme. After a certain number of grid points
the convergence hardly changes with increase in
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number of grid points because the mutual eftecls
between the grid points become insignificant when
the two points are separated by a large number of

grid points.

In atmospheric motion we can contemplate a
network of 21 x71 points as adequate. We can
assume an accuracy of about 1 in 10 in the meteoro-
logical parameter by the process of time extra-
polation and this will serve as an initial guess.

Thus from the table we see that to improve the
accuracy from about 1in 10 to 1 in 10* we shall
have to do over 600 iterations. This is extre-
mely time consuming on the computer. And
even then this accuracy may not be good enough
especially if the calculated  have to be differentia-
ted in some other part of the problem. The process
of differentiating involves subtracting two large
quantities to obtain a smaller one and so the
accuracy reduces considerably.

It is thus clear that one must be cautioned in
placing reliability on problems which involve
Poisson’s equation solved by iterative technique—
otherwise the calculated wave may be merely the
accumulated errors caused by the inexactitude of
the iterative scheme.

We may also note that other iterative schemes
merely reduce the required number of iterations
by a small factor ; and consequently irrespective
of the particular scheme, the number of iterations
required to obtain a tolerable accuracy is still
prohibitive.
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