MAUSAM, 74, 3 (July, 2023), 741-760

MAUSAM

DOl : https://doi.org/10.54302/mausam.v74i3.2976
Homepage: https://mausamjournal.imd.gov.in/index.php/MAUSAM

UDC No. 551.584.5 : 551.5

Determining the influence of meteorological parameters on outdoor thermal
comfort using ANFIS and ANN

RISHIKA SHAH, R. K. PANDIT* and M. K. GAUR**

PhD Candidate, Madhav Institute of Technology and Science, Gwalior — 474 005, India
*Director, Madhav Institute of Technology and Science, Gwalior — 474 005, India
**Professor, Madhav Institute of Technology and Science, Gwalior — 474 005, India
(Received 27 September 2021, Accepted 27 October 2022)

e mail : shahrishika24@gmail.com

AR — T 3T Pl 527 AYC Urael & &G H A FG grerel o1 SUANT Hieh aredl ST Fiaar &
QeI ot o forT st dfet o aeh faeh i aheell &1 AReTHS Seeliy STefarg Faehieh (FEIHITS) &1 ST
T8 Tl & ¥U H FRaT SATAT &1 38 3227 & T, 7RT & TaTorX el T IR T A F5d! J 5088 € & &1
ARl Se1 X oA fpa oram | werd uew, Atae Fad uradt & dra e daa e fear ) sitea fafewor
ATTHTA &l HFSA ATTATA HR TeTg ATIHTA o T Sod AU AT AT| GE, UTCI I 3eTeh THTa & hel 3 et
FILY vraet dr Aofiag S & forw TSftea =3t Bl Sathid FAeca (ANFIS) T SUANT T a1 | EaT & dTaaTe
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JETEI3TS T GaTgATT X & forw fawmfad fre o &1 |9 ar @gat & fow [Tefad voaea slsa i (R2 =
0.852, 0.986, 0.962, 0.955) 31X 2ffe g (R2 = 0.976, 0.870, 0.941, 0.950) &AT & foIT Secr@={Ia qaTIHT & T 47T
e ¥1 30 A, Refd Atsel o aohorar gamie Mea 7 7 0.73 - 1,0.88 - 1, 0.86 - 1, 0.87 - 1 X oM
g # 0.78 - 0.99, 0.61 - 0.98, 0.55 - 0.98, 0.87 - 0.99 T FHAT I UTAT AT T | TT e FAC HE HiT 3ragROT B
HTER HIAST & Ay BT 3 AoreTa ST &, 57 AMA & Hrgel & TIRBI0T &1 YA b 3T ATShlFelsHICDh
yTrell et el AT HRehel BT & dd T &b TdT & U b SUANT GRT ATl Zorg G 1 3mameh &
SJATE oIaTTT ST Hehell & |

ABSTRACT. The study aims to develop artificial neural networks to predict outdoor thermal comfort using
meteorological parameters as input parameters. Universal Thermal Climate Index (UTCI) is used as the target parameter.
For this purpose, 5088 hours of field monitoring data were considered from four representative urban streets of Gwalior
city, India. First, linear association was determined between meteorological parameters. Mean radiant temperature was to
be in high correlation with globe temperature and surface temperature. Second, the Adaptive Neuro Fuzzy Inference
System (ANFIS) was used to rank the meteorological parameters in order of their impact on UTCI. The air temperature
was found to be having the strongest influence. Third, ANN models are developed to predict UTCI with air temperature
as the only meteorological parameter in the input layer. The developed ANN models for all four streets show remarkable
predictive ability for both the summer (R2 = 0.852, 0.986, 0.962, 0.955) and the winter season (R2 = 0.976, 0.870, 0.941,
0.950). Additionally, the success index of the developed models is found to be in range 0.73 - 1, 0.88 - 1, 0.86 — 1, 0.87
— 1 for the summer season and 0.78 — 0.99, 0.61 — 0.98, 0.55 — 0.98, 0.87 — 0.99 for the winter season. The study
contributes to the smart city initiatives for future urban design by establishing that outdoor thermal comfort can be easily
predicted using air temperature when other microclimatic parameters are difficult to record using a machine learning
approach.

Key words — Smart city, ANFIS, ANN, Air Temperature, Outdoor Thermal Comfort.

1. Introduction Climate change is one of the direct consequences of the
high-speed urbanization the world is facing. The

The global built environment is under expansion at international panels are estimating that the 230 billion

an unmatched scale but has brought global challenges. square meters of built-up floor area will be added to the
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TABLE 1

Recent studies on outdoor thermal comfort in India

Thermal Comfort Study Area

S.No.  Location Period of study Research Method Climate
Index Typology
1. Bhopal PET Urban Parks, March 12-15 and April 17-19, 2016  Subjective assessment Composite
Markets 1230 pm to 400 pm Statistics
2. Chennai PET Mixed-Use 15 February and 15 March, 2018 ENVI-met Warm and
Neighborhood for the winter readings and 30 April - simulations Humid
30 May, 2018 for summer readings
0000 and 0430 h’
3. Chennai PET Streets 0710 am, 1045 am, 0400 pm and 0615 RayMan Warm and
Humid
4. Chennai PET A Mixed-Use May 15 to June 15, 2018 ENVI-met Warm and
Residential simulations Humid
Neighborhood
5. New Delhi PET Open-Air Markets 9 - 12" (June, 2018) between 1100-1800 RayMan Composite
h
6. English Bazar DI, PET, PMV Neighborhood Year of 2010 and 2016 RayMan Warm and
Municipality Humid
7. Kolkata PET Micro Entrepreneur RayMan Pro Warm and
Communities Humid
8. Mumbai Air temperature  Informal Settlement  August 10, 2016 through August 23,  DesignBuilder v4.7 Warm and
2016 and EnergyPlus v8.3.  Humid
9. Mumbai Surface temperature, Recreational Open 0900 h to 2100 h, i.e., for 12 h for ENVI-met Warm and
Air temperature Spaces 24™ March, 2017 Humid
10. Nagpur DI City (Morning 9 am to evening 6 pm), the ~ One-way ANOVA  Hot and
transition period from office, market and Dry
home (evening 6 pm to 10 pm) and
nocturnal hours (10 pm to 6 am)
11. New Delhi PET & UTCI Urban Square 5 days (June 10-14, 2017) between RayMan Composite
1100 and 1800 h
12.  Central-NCR UHI City 1-15 May 2012 MODIS nocturnal ~ Composite
(CNCR) LST
13. Noida UTFVI City 2011 - 2019 Composite
14. Sonepat WBGT, UTCI, PET City January 2010 to December Microsoft Excel 2016 Composite
2019 and SPSS 23Pearson
product moment
correlation
15. Sriniketan- LCZ Neighbourhood ANOVA and Warm and
Santiniketan Krushkal-Walls test ~ Humid

Planning Area
(SSPA)

*The climate zones are specified in reference to Climate Zone map of India, National Building Code 2016 (Bureau of Indian Standards,

2016)

already existing one by the year 2060 (United Nations,
2017). According to the World Bank, the global urban
population has increased from 28.3% to 50% since 1950.
Similarly, India’s urban population has increased from
17.35% to 31.2% since 1950, showing an annual urban
population growth rate of 3.35% (Census of India 2011).
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The recent trends on sustainable development and climate
change have drawn significant attention to compelling
actions and research for solutions. Sustainable
Development Goals (SDGs) 7, 11, 12 & 13 of the 2030
Agenda for Sustainable Development aim to devote to
affordable & clean energy, sustainable cities
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&communities, responsible consumption & production,
and climate action, respectively. One of the key focuses of
Sustainable Development Goal (SDG) 11 and 13 for SDG
Agenda 2030 are to take climate action toward creating
sustainable cities (United Nations, 2017). Following the
global warming trends, surface temperatures in India have
increased by approximately 0.055 K per decade during the
years 1860 to 2005. Greenhouse Gases (GHG) and land
use planning are the crucial factors contributing to these
global warming trends during the 20" century (Basha
et al., 2017). The increase in temperatures will seriously
impact the health of urban residents. Physical well-being
is parallel to outdoor thermal comfort, directly associated
with urban microclimate influenced by urban physics. In
this regard, Urban Heat Island (UHI), Surface Urban Heat
Island (SUHI) and Urban Canopy Layer (UCL) are the
most studied (ASHRAE & American National Standards
Institute, 2004).

Outdoor thermal comfort in varied urban
microclimates of cities is an essential parameter in urban
design (Silva, 2017). A growing interest is observed in
climate change and global warming trends analysis for
better urban design in India. Ali et al. performed a study
in urban parks, market, and lakefront in Bhopal to
understand thermal perception in the summer season. The
study focussed on the effects of vegetation on outdoor
thermal comfort through subjective and ordinal logistic
regression and Rayman software.The study established
that urban parks were cooler than markets and lakefronts
and statedthat globe temperature has a high influence on
thermal perception, however, the data was collected from
1230 pm to 0400 pm from March 12-15 and April 17-19,
2016 (Binte and Patnaik, 2017). Similarly, the urban heat
island effect for a neighborhood in Chennai using PET for
assessment and observed that the hot pockets are found in
areas of low vegetation and low built density and high Sky
View Factor (SVF). The simulated results were computed
through ENVI-met software. (Amirtham, 2007; Horrison
et al., 2021; Horrison and Amirtham, 2016) Manavvi and
Rajasekar conducted studies on open-air markets of New
Delhi for four representative summer days (9 - 12" June,
2018) between 1100-1800 hoursand thermal comfort
observations based onthe relationship between surface
temperatures, PET and albedo (Manavvi and Rajasekar,
2021). The authors performed similar study in religious
urban square in New Delhi for 5 summer days from 1100
and 1800 h and found that Sky View Factor (SVF)
influences mean radiant temperature and PET(Manavvi
and Rajasekar, 2019).

Ziaul and Pal used satellite data to analyse
Discomfort Index (DI) and PET for English Bazar
Municipality, West Bengal. The authors compared
seasonal thermal discomfortability of 2010 and 2016 and
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deduced that finer spatial resolution produce better results
(Ziaul and Pal, 2019). Banerjee et al. studied outdoor
thermal comfort in three micro-entrepreneur communities
in Kolkata, India, through TSV and PET using field
measurement and surveys. The study was carried out for
November 2018 - February 2019 and in June 2019 from
1100 hours to 1700 hours, which concluded that PET is a
better indicator of thermal comfort than the air
temperature. Availability of shade was an important factor
in influencing the duration of stay in different community
areas (Banerjee et al., 2020). Nutkiewicz et al. studied the
impact of early-stage design decisions in redevelopment
projects through the case study of an urban slum in
Mumbai. The authors simulated the area by employing an
energy modeling framework and stated that if the current
designs are replicated in vertical form, the impact on
outdoor thermal comfort could be worse; hence simulation
of design in an early stage is necessary (Nutkiewicz et al.,
2018).

Mehrotra et al. assessed the impact of urban form
and land surface treatment on the thermal profile of
recreational open spaces. The analysis was performed
using the ENVI met model. The authors concluded that
surface temperature significantly influencesair
temperature in open urban spaces (Mehrotra et al., 2021).
Kotharkar et al. studied outdoor thermal comfort in
Nagpur through LCZ (Local Climate Zone) Classification
method and one-way ANOVA technique. The authors
deduced that different areas in the city show variance in
thermal comfort due to different built form configurations,
building and street geometry (Kotharkar et al., 2019).
Mohan et al. attempted to quantify the change in
urbansprawl evolution from 1972-2014 in CNCR (Central
National Capital Region) and studied the impact of
thermal comfort. The study showed an increase in
extremely thermally uncomfortable hours from an
average of 10 hours to 13 hours a day based on Robba
Index results (Mohan et al., 2020). Using the UTFVI
(Urban Thermal Field Variance Index), Sharma et al.
evaluated the thermal comfort levels of Noida cityand
highlighted an increase of 6.42 °C between 2011 to 2019
(Sharma et al., 2021). Kumar and Sharma assessed the
monthly heat stress risk to the the well being of residents
in Sonepat. The authors used three thermal comfort
indices namely - WBGT (Wet Bulb Globe Temperature),
UTCI (Universal Thermal Climate Index), PET
(Physiological Equivalent Temperature). Using PET, Das
et al., evaluated neighborhood in Sriniketan-Santiniketan
Planning Area (SSPA) through LCZ approach, concluding
that low rise compact built forms are warmer for warm
humid climatic zone.

Recently, artificial neural networks (ANN) have
been used for the prediction of outdoor thermal comfort
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due to their advantage in solving nonlinear problems (Lee
et al., 2016). In the past, ANN for forecasting outdoor
thermal comfort has been applied for urban squares, urban
parks, built forms, and streets. However, these studies
establish the efficiency of ANN models to predict outdoor
thermal comfort for urban parks and squares. Essentially
two centralbuilt environment typologies have been found
in literature as study areas in this research topic - urban
built form and street canyons. Dombayci et al., proved
that ANN could be a dependable tool in predicting
temperature by predicting daily mean temperature for
thermal analysis in Turkey (Dombayci and Golcu, 2009).
Gobakis et al., compared Elman, feedforward, and
cascade neural networks urban heat intensity for Athens
establishing that feed-forward neural network predicted
with an accuracy of 90% (Gobakis et al., 2011).
Vouterakos et al. predicted discomfort index and found
that ANN models can predict Discomfort Index (DI)
values on days when discomfort has surpassed disastrous
levels (Vouterakos et al., 2012). Kamoustsis and
Chronopoulos (Chronopoulos et al., 2012) performed a
comparative study of thermohygometric index for Greek
mountainous regions using only relative humidity and air
temperature. Moustris et al., predicted human thermal
comfort discomfort levels for the Greek island and one-
day prediction of PET for different periods (Moustris
et al., 2013). Papantoniou and Kolokotsa predicted
outdoor air temperature using neural network models,
taking four European cities as case studies (Papantoniou
and Kolokotsa, 2015). Ketterer mapped PET for urban
cities in Stuttgart, Germany, comparing ANN and SMLR
using backpropagation training (Ketterer and Matzarakis,
2016). Lee predicted heat island intensity for Seoul using
green area, water area, building area, road area and
microclimatic factors (Lee et al., 2016). Different authors
forecasted PET in Serbian urban parks - Vucékovi¢ et al.,
applied neuro-fuzzy with accuracy of 92% using global
radiation, vapour pressure, wind speed as input parameters
(Vuckovi¢ et al., 2019) and Protic et al., used 1 minute
sampling for one month using global radiation, vapour
pressure and wind speed (lvana S. Bogdanovic et al.,
2016). Bozorgi et al., used a middle layer feedforward
neural network to estimate land surface temperatures in
urbanized landscapes (Bozorgi and Nejadkoorki, 2018).
Moustris developed ANN models to study PET using
climatic data from a standard meteorological station in
Athens for 4 sites: an urban square, urban street, urban
courtyard, and urban gallery of a neighbourhood with a
predictive ability of 96% (Moustris et al., 2018). Chan
et al., developed an artificial neural network for predicting
outdoor thermal comfort in community parks in urban
Hong Kong. The authors predicted PMV to study the
thermal sensation, but the environmental simulation was
excluded due to complex quantification (Chan and Chau,
2019). Weerasuriyaa et al., optimized lift-up buildings to

744

Fig. 1. Location of Gwalior in India

maximize pedestrian thermal comfort using wind speed as
a primary parameter to predict UTCI through a genetic
algorithm, computational fluid dynamics simulation, and
artificial neural network (Weerasuriya et al., 2020).

It is evident from the existing literature that the
studies performed on outdoor thermal comfort analysis in
India either consider limited amount of time period when
using software with less computaional time (Ray Man), or
only analysing few days when software in use has high
simulation run time (ENVI-met). When studies over a
period of years are conducted, the real time data collection
and accessibility of remote sensing maps sometimes
become difficult. Hence, in this study an attempt to study
outdoor thermal comfort using a different methodology -
artificial neural network is adopted as it is proved to
handel large number of data in less operational time. In
studies regarding outdoor thermal comfort and ANN, it is
seen that studies on urban streets have only shown data
concerning one particular season in the year or only
diurnal data is evaluated (Moustris, Nastos and Paliatsos,
2013; Ketterer and Matzarakis, 2016; Banerjee and
Chattopadhyay, 2020). After urban parks and squares,
streets are the open spaces that are used by city dwellers
on a large scale. Microclimates of urban streets have a
direct influence on outdoor and indoor thermal comfort of
the built environment and corresponding energy demand
(Silva, 2021). Therefore, in this study, artificial neural
networks models are developed to predict the outdoor
thermal comfort of four different street canyons that can
be seen as representative of the historical city of Gwalior,
India. The focus is to develop and apply a neural network
where air temperature can be utilized only as a
meteorological input parameter to predict outdoor thermal
comfort. Additionally, the correlation of heat with built
environmental parameters are also discussed to provide
insights for city development policies.
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Fig. 2. Generic categories of built forms

1.1. Study area

The study site is located in the historic city of
Gwalior located at 26.2183° N, 78.1828° E (Fig. 1), the
city is currently listed as a potential Smart City under
Smart Cities Mission (Ministry of Housing and Urban
Affairs, 2015). The importance of Gwalior city as a
historic city can be observed from its inclusion as one of
the pilot cities for the Historic Urban Landscape
programme and survey under UNESCO New Delhi,
directing heritage based urban development (UNESCO
New Delhi, 2021).

The city has majorly evolved since the 8"century
into four representative zones - Kila Gate zone, Lashkar
zone, Morar Zone and New City Centre zone. Kila Gate
zone is the first settlement area at the base of Gwalior fort,
followed by Lashkar area which was established by the
Mughals in 1810, Morar area was instituted as a British
cantonment area, and in the past few decades, the city has
seen modern construction in the New City Centre area.
Hence, out of these four zones two are historic in context
(Kila Gate & Lashkar) and the other two are modern
(Morar & New City Center). The streets were selected to
represent different neighbourhoods - historic and modern,
and of different urban physics parameters. These
parameters represent street geometry which includes street
orientation, height width ratio and built form
configuration. The built forms correspond to uniform or
random layouts, where “u” represents uniform layout and
“r” represent random layout (Cheng et al., 2006). Each
built form can be denoted in context of X axis, Y axis and
Z axis. Hence, the eight generic categories of built forms
are: XuYuZu, XuYrZu, XrYuZu, XrYrZu, XuYuZr,
XuYrzr, XrYuZr and XrYrZr (Fig. 2). The street
geometries of the study area is tabulated in Table 2. For
ease of understanding, these streets are named after their
respective zones, i.e., Kila Gate (KG), Lashkar (LAS),
Morar (MOR) and New City Centre (NCC).
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TABLE 2

Street Geometry of the selected case studies

Location Street orientation ~ H/W  Built Form
Kila Gate (KG) NW-SE 3.3 XYz
Lashkar (LAS) N-S 4.08 XY Zy
Morar (MOR) EW 16 XoYuZ:
New City Center (NCC) SW-NE 0.9 XoYuZy

Also, ease of instrument set up and monitoring of
data from these streets worked as contributing faction in
choice of these streets. The selected four street canyons
are graphically shown in Fig. 3.

1.2. Climate profile

The study area observes extreme summers and
extreme winters featuring composite climatic conditions
according to the National Building Code of India 2016
(Bureau of Indian Standards, 2016). The high
temperatures are noticed beginning from mid to late
March, rising in May and June between 33°C-35°C. The
low temperatures are observed from late October and
found lowest in January with an average temperature of
around 5°C-6°C. As per the universal Kdppen Climate
Classification, the study site is classified under group C in
the subgroup Cwa (dry winter humid subtropical climate)
bordering with the classification BSh (dry semi-arid
climate with low latitude).

1.3. UTCI
To assess the heat stress in the streets, the Universal

Thermal Climate Index (UTCI) was chosen for this study.
UTCI was selected due to its validation as a heat stress



MAUSAM, 74, 3 (July, 2023)
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Fig. 3. Description of study area

TABLE 3

Thermal stress range for UTCI

Thermal Stress Class UTCI Index Range (°C)

Extreme heat stress above +46
Very strong heat stress +38 to +46
Strong heat stress +32 to +38
Moderate heat stress
+26 to +32
Slight heat stress
No thermal stress +9 to +26
Slight cold stress 0to+9
Moderate cold stress -13to 0
Strong cold stress -27t0-13
Very strong cold stress -40 to -27
Extreme cold stress below -40

index according to the existing literature and its
uncomplicated interpretation by urban designers and
architects due to its unit of measurement in degree Celsius
(°C). UTCI is expressed as the ambient air temperature of
the thermal environment which is referred to. This thermal
index generates the same stress index value in comparison
with the reference human being’s response to the existing
environs. Derived from the advanced multi-node
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thermoregulatory model, UTCI is universal due to its
established efficacy in evaluating thermal environments of
all climatic zones (UTCI, 2021). The thermal stress range
for UTCI is shown in Table 3. BioKlima 2.6 was used to
determine the hourly values of UTCI (Krzysztof
Btazejczyk, 2021).

2. Methodology

2.1. Methods

The study is based on recording and analysing
meteorological variables for analysis of the Universal
Thermal Climate Index, therefore, first the correlation
between the recorded parameters was analysed. Pearson
correlation coefficient was used to determine the linear
association between the input parameters in order to avoid
redundancies and over-fitting in the ANFIS and ANN
models. This correlation was determined by using:

Z (Xi _l)(yi _X)
\/ﬁxi _5)22 (yi _X)Z

Following this, ranking of meteorological parameters
is conducted using the Adaptive Neuro Fuzzy Inference
(ANFIS) system. The implementation of ANFIS models is
based on input/output data pairs. The analysis is
performed using the Neuro Fuzzy Designer application.
The model was run in MATLAB 2019 (a) for

M)

r=
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TABLE 4

Details of instruments used in this study

Name of the instrument Parameter measured Accuracy Range Standard uncertainty
Elitech RC-4HC Air temperature +0.6 °C -30° - 60°C 0.346 °C
Elitech RC-4HC Relative humidity +3 % 0-99 % 1.732 %
Lutron AM-4237 SD Anemometer Wind speed +0.05m/s  0.1-25m/s 0.028 m/s
regression of data pairs. As part of this process, training X
; ; TRP = 3)
error output and testing error output are derived. The X 1Y
variable ranking is noted on the basis of training error.
50% of testing data is used to control the fitting of training 7
data. Normalization of data is performed using a fuzzify FAR = 4)
function during the training process, thus, making the Z+X
neuro fuzzy system an appropriate choice for ranking of
meteorological parameters (Vouterakos et al., 2012). _ X+W )
X+Y+Z+W

Based on the ranking of meteorological parameters,
artificial neural network models are developed to predict
selected outdoor thermal comfort index, i.e., UTCI.
Multiple Layer Perceptron Models are observed to have
high efficacy rates in the available literature, hence
multiple layer perceptron model is used in this
work(Milojevic-Dupont and Creutzig, 2021). These
models are developed using back propagation training
algorithms to predict UTCI. The structure of the basic
artificial neural network model consists of neurons that
are organized in layers, which start with an input layer
followed by a hidden layer and final output layer. The
input layer distributes the input signals to the first hidden
layer, which transmits the signal to each neuron of the
next hidden layer, corresponding to a weight factor. In this
way, each neuron gets processed through the input and
hidden layers in addition to the activation function and
finally, the outcome reaches the output layer. The input
layer contains input variables, the target variable is
represented by the output layer and the number of hidden
layers is determined using Eqn. 2 (Chan and Chau, 2019).
The actual outcome is then compared for its closeness
with the desired outcome, which determines the accuracy
of the ANN model.

2x4N; +Ng < N <2xN; +1 )

Once the ANN models are developed their validation
is performed by evaluating TPR, FAR and SI of the
developed models and through the coefficient of
correlation between calculated and predicted values of
UTCI using Egns. 3 - 5 (Vouterakos et al., 2012).
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where, X denotes the number of occurrences where
the thermal comfort values were calculated and predicted
in the same thermal stress class, Y denotes the number of
occurrences where the calculated thermal comfort values
fit in a specific class but the predicted value fit in some
other class, Z denotes the number of occurrences where
the predicted thermal comfort values fit in a specific class,
but calculated value fit in some other class and W denotes
the rest of the cases.

2.2. Data collection

The functional process of ANN depends upon the
huge historical database for training, the choice of input
parameters and training algorithms. Field measurements
were carried out for seven months. This period was
divided into the winter and the summer season. The winter
season is represented by months - December 2020,
January and February 2021 and the summer season by -
March, April, May and June 2021. Continuous hourly data
of air temperature, wind speed and relative humidity for
all four streets were recorded simultaneously. The
recording of microclimatic data was carried out using
Lutron AM 4237 SD Data Logger Anemometer for wind
speed and Elitech RC - 4HC Data Logger with an inbuilt
sensor for relative humidity and a probe for air
temperature. Details of the instruments are shown in
Table 4. A total number of 5088 hours of field monitoring
data was collected. For ANFIS model 50% of the recorded
data was used as training data set and for ANN models
70% of the recorded data as training data set.
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TABLES

Correlation between input variables for summer and winter from the Kila Gate data set

Summer Winter
Ta RH WS Ts Tmrt Tg Ta RH WS Ts Tmrt Tg
Ta 1 1
RH 0.34 1 -0.705 1
WS 0.004 0.002 1 0.023 -0.161 1
Ts 0.42 0.09 0.02 1 0.967 -0.716  0.336 1
Tmrt 0.32 0.06 0.02 0.95 1 0.652 -0.534 0.312 0.785 1
Tg 0.20 0.03 0.02 0.94 0.93 1 0.570 -0.510 0.142 0.723 0.939 1
TABLE 6
Correlation between input variables for summer and winter from the Lashkar data set
Summer Winter
Ta RH WS Ts Tmrt Tg Ta RH WS Ts Tmrt Tg
Ta 1 1
RH 0.379 1 -0.599 1
WS 0.047 -0.042 1 0.065 -0.091 1
Ts 0.636 -0.247 0.079 1 0.702 -0.453  0.079 1
Tmrt  0.567 -0.199 0.081  0.977 1 0.400 -0.275 0137 0.821 1
Tg 0.442 -0.195 0.079 0972 0.965 1 0.286 -0.237 0129 0.733  0.930 1
TABLE 7
Correlation between input variables for summer and winter from the Morar data set
Summer Winter
Ta RH WS Ts Tmrt  Tg Ta RH WS Ts Tmrt Tg
Ta 1 1
RH  -0.511 1 -0.736 1
WS 0.040 -0.003 1 0.302 -0.268 1
Ts 0.670 -0.361 0.106 1 0.813 -0.683 0.311 1
Tmrt  0.607 -0.322 0.106  0.978 1 0.694 -0.617 0.315 0.978 1
Tg 0.465 -0.277 0.113 0.968 0.961 1 0.488 -0.507 0.296 0.900 0.959 1
TABLE 8
Correlation between input variables for summer and winter from the New City Centre data set
Summer Winter
Ta RH WS Ts Tmrt  Tg Ta RH WS Ts Tmrt Tg
Ta 1 1
RH -0.560 1 -0.804 1
WS 0.083 -0.173 1 0.077 -0.120 1
Ts 0.757 -0.455 0.090 1 0.837 -0.756  0.087 1
Tmrt  0.693 -0.420 0.121  0.979 1 0.721 -0.684 0.110 0.978 1
Tg 0.521 -0.356 0.147 0949 0.952 1 0.471 -0.530 0.109 0.874 0.943 1
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TABLE9

Training error values for summer and winter for all four study locations

Summer Winter
Location Phase
Ta RH WS Tmrt Ta RH WS Tmrt
Training phase 167 385 472 214 199 397 432 232
KG Testing phase 1.08 379 456 218 179 388 421 206
Training phase 164 346 4.05 3.54 174 312 4.09 2.25
LAS Testing phase 17 343 497 3.8 171 365 488 241
Training phase 172 393 473 29 146 303 476 219
MOR Testing phase 1.9 389 462 265 139 315 472 208
Training phase 15 307 489 394 183 366 458 263
Nee Testing phase 181 299 4091 3.18 181 359 439 2.56
TABLE 10
Description of developed ANN Models
Category 1 Category 2

Input parameter

Target parameter UTCI

Ta, RH, WS, Tmrt, Month of the year, Day
of the month, Hour of the day

Ta, Month of the year, Day of the
month, Hour of the day

UTCI

3. Results and discussion

3.1. Pearson correlation

Tables 5-8 represent the correlation between input
variables for summer and winter for all four streets. Very
low correlation coefficients are observed from these tables
between the recorded input variables. However, a high
collinearity was observed between globe temperature
(Tg), mean radiant temperature (Tmrt) and surface
temperature (Ts). The wvalue of high correlation
coefficients are highlighted in bold in the tables. This high
correlation between Tmrt, Tg and Ts may lead to
overfitting and unnecessary repetitions in the developed
neural network models (Vuckovi¢c et al., 2019).
Accordingly, Tmrt is used for further analysis against Ts
and Tg in ANFIS and ANN models as it is easy to
calculate.

3.2. Meteorological parameter ranking

The recorded meteorological parameters are ranked
based on training error values computed in the neuro
fuzzy system. Root Mean Square Error (RMSE) is derived
from the simulation. UTCI values are highly influenced by
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the parameters which show the lowest training RMSE
value. The values are obtained by using 70% of recorded
data as training data and 30% of recorded data as testing
data. Theleast error is observed in air temperature on all
four streets in both summer and winter. Air temperature is
followed by mean radiant temperature, relative humidity
and wind speed (Table 9). This establishes that air
temperature has the highest impact on UTCI values in
comparison to other meteorological parameters.

3.3. UTCI prediction through ANN models

Based on the results above, it can be inferred that air
temperature is most influential in predicting the UTCI
values for both the summer and the winter months.
Therefore, two categories of ANN models are developed
(Table 10).

As per Egn. 1, the hidden parameters were
determined. A total of 36 models were developed under
Category 1 for all four sites and a total number of 45
models were developed under Category 2. The optimum
predictive results are found at 12 hidden neurons for
Category 1 and 6 hidden neurons for Category 2. The
coefficient of correlation between calculated values of
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Figs. 6(a&b). Scatter plots for calculated vs predicted UTCI at Morar (MOR) - (a) Summer and (b) Winter

TABLE 11

Location R?values for Summer R? values for Winter
KG 0.852 0.976
LAS 0.986 0.870
MOR 0.962 0.941
NCC 0.955 0.950
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UTCI from Bio Klima 2.6 and predicted values of UTCI
from categoryl and category 2 ANN model are analysed.
It is found that the Category 1 ANN model shows high
predictive ability (R> = 0.9 for all cases). Results for
category 2 ANN models are shown in Table 11 and
associated plots are shown in Fig. 4, Fig. 5, Fig. 6 and
Fig. 7. Hence, it can be fairly deduced that UTCI can be
predicted using the ANN model when air temperature is
used as the only meteorological parameter. This also helps
in reducing the usage of large numbers of instruments and
complex data recording exercises.
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TABLE 12

Evaluation indices of developed Category 2 ANN model for UTCI in Kila Gate for summer and winter

Thermal stress class Index Range (°C) X Y z w TPR  FAR Sl
Summer
Extreme heat stress above +46 1 189 0 2244 0005 00 0.9
Very strong heat stress +38 to +46 213 463 189 1569 031 047 0.73
Strong heat stress +32 to +38 154 265 375 1640 0.36 0.70 0.73

Moderate heat stress
+26 to +32 403 302 270 1459 0.57 040 0.76
Slight heat stress

No thermal stress +9 to +26 444 0 385 1605 1 0.46 0.84
Slight cold stress O0to +9 0 0 0 2434 - - 1
Moderate cold stress -13t0 0 0 0 0 2434 - - 1
Strong cold stress -27t0-13 0 0 0 2434 - - 1
Very strong cold stress -40 to -27 0 0 0 2434 - - 1
Extreme cold stress below -40 0 0 0 2434 - - 1

Winter

Extreme heat stress above +46 5 0 3 1995 1 0 0.99

Very strong heat stress +38 to +46 11 3 4 1985 0.78 026 0.99

Strong heat stress +32 to +38 35 12 8 1948 0.74 0.18 0.99

Moderate heat stress
+26 to +32 94 24 68 1817 0.79 041 0.95
Slight heat stress

No thermal stress +9 to +26 892 146 219 746 085 019 081

Slight cold stress Oto +9 407 203 233 1160 066 036 0.78

Moderate cold stress -13t0 0 24 147 0 1832 0.14 0 0.92
Strong cold stress -27t0-13 - - - - - - -
Very strong cold stress -40 to -27 - - - - - - -
Extreme cold stress below -40 - - - - - - -
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TABLE 13

Evaluation indices of developed Category 2 ANN model for UTCI in Lashkar for summer and winter

Thermal stress class Index Range (°C) X Y z W TPR FAR Sl
Summer
Extreme heat stress above +46 152 0 259 2517 1 0.63 091
Very strong heat stress +38 to +46 515 264 68 2081 066 0.11 0.88
Strong heat stress +32 to +38 446 76 12 2394 085 0.02 0.96

Moderate heat stress
+26 to +32 740 9 37 2142 098 0.04 0.98
Slight heat stress

No thermal stress +9 to +26 697 29 2 2200 0.96 0.0 099
Slight cold stress Oto +9 0 0 0 2928 - - 1
Moderate cold stress -13t0 0 0 0 0 2928 - - 1
Strong cold stress -27 to -13 0 0 0 2928 - - 1
Very strong cold stress -40 to -27 0 0 0 2928 - - 1
Extreme cold stress below -40 0 0 0 2928 - - 1

Winter

Extreme heat stress above +46 - - - - - - -
Very strong heat stress +38 to +46 - - - - - - -
Strong heat stress +32 to +38 - - - - - - -

Moderate heat stress

+26 to +32 28 90 20 1843 023 041 094
Slight heat stress
No thermal stress +9 to +26 1121 671 90 99 0.62 007 061
Slight cold stress 0to +9 42 29 647 1263 059 093 0.65
Moderate cold stress -13t0 0 0 0 33 1948 - 1 0.98
Strong cold stress -27t0-13 - - - - - - -
Very strong cold stress -40 to -27 - - - - - - -
Extreme cold stress below -40 - - - - - - -

Further to determine the efficiency of the Category 2 Python Script (Appendix 1). The statistical performance
ANN model, True Predicted Rate (TPR), False Alarm values for summer and winter are noted in Table 12 for
Rate (FAR) and Success Index (SI) are computed using Kila Gate (KG), Table 13 for Lashkar (LAS), Table 14 for
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TABLE 14

Evaluation indices of developed Category 2 ANN model for UTCI in Morarfor summer and winter

Thermal stress class Index Range (°C) X Y 4 W TPR FAR Sl
Summer
Extreme heat stress above +46 144 4 213 2443 097 059 0.922
Very strong heat stress +38 to +46 526 215 186 1877 0.71 0.26 0.86
Strong heat stress +32t0 +38 269 184 94 2257 059 025 0.90

Moderate heat stress
+26 to +32 582 94 167 1961 0.86 0.22 0.91
Slight heat stress

No thermal stress +9 to +26 619 167 2 2016 078 000 094

Slight cold stress Oto +9 0 0 2 2802 - 1 0.99
Moderate cold stress -13t0 0 0 0 0 2804 - - 1
Strong cold stress -27t0-13 0 0 0 2804 - - 1
Very strong cold stress -40 to -27 0 0 0 2804 - - 1
Extreme cold stress below -40 0 0 0 2804 - - 1

Winter

Extreme heat stress above +46 - - - - - - -
Very strong heat stress +38 to +46 - - - - - - -

Strong heat stress +32 to +38 0 26 0 1980 0 - 0.98

Moderate heat stress
+26 to +32 53 239 26 1688 0.18 0.32 0.86
Slight heat stress

No thermal stress +9 to +26 736 760 239 271 049 024 050

Slight cold stress 0to +9 48 144 753 1061 0.25 0.94 0.55

Moderate cold stress -13t0 0 0 0 151 1855 - 1 0.92
Strong cold stress -27t0-13 - - - - - - -
Very strong cold stress -40 to -27 - - - = = - -
Extreme cold stress below -40 - - - - - - -

Morar (MOR) and Table 15 for New City Centre (NCC). category 2 ANN model. The values show high predictive
These values are derived from analysis of obtained UTCI ability of the Category 2 model for all four streets and
values from Bio Klima 2.6 and predicted values from both seasons.
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TABLE 15

Evaluation indices of developed Category 2 ANN model for UTCI in New City Centerfor summer and winter

Thermal stress class Index Range (°C) X Y z W TPR FAR Sl

Summer
Extreme heat stress above +46 387 26 139 209 094 026 0.98
Very strong heat stress +38 to +46 393 146 203 1906 0.72 0.34 0.87
Strong heat stress +32 to +38 254 144 164 2806 0.63 039 0.88

Moderate heat stress
+26 to +32 434 196 109 1909 0.68 0.20 0.88
Slight heat stress

No thermal stress +9 to +26 565 103 0 1980 085 00 096
Slight cold stress Oto +9 0 0 0 2648 - - 1
Moderate cold stress -13t0 0 0 0 0 2648 - - 1
Strong cold stress -27to -13 0 0 0 2648 - - 1
Very strong cold stress -40 to -27 0 0 0 2648 - - 1
Extreme cold stress below -40 0 0 0 2648 - - 1

Winter

Extreme heat stress above +46 - - - - = > -
Very strong heat stress +38 to +46 - - - - - - -

Strong heat stress +32 to +38 42 60 3 3356 041 0.06 098

Moderate heat stress
+26 to +32 170 107 59 3125 061 025 0.95
Slight heat stress

No thermal stress +9 to +26 1053 264 155 1989 0.80 0.12 0.87
Slight cold stress 0to +9 264 67 260 2870 0.79 049 0.90
Moderate cold stress -13t0 0 0 0 22 3439 - 1 0.99
Strong cold stress -27t0-13 - - - - - - -
Very strong cold stress -40 to -27 - - - - - - -
Extreme cold stress below -40 - - - - - - -
3.4. Correlation of heat with built environment temperature and mean radiant temperature in all four

streets showing different height to width ratio, orientation,
Figs. 8 (a-d) and 9 (a-d) shows the variations of and built form, using the predicted thermal comfort values
outdoor thermal comfort, air temperature, surface and recorded meteorological parameters for winter and
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summer respectively. It was observed that with decreasing
H/W ratio, air temperature increases. The difference in air
temperature values is low during early morning hours
(0500 hours - 1000 hours) in winter and (0500 hours -
0800 hours) in summers and during evening hours from
(1800 hours - 0400 hours) in winters and (2000 hours and
0400 hours) in summers for all the cases. The temperature
reaches its peak during noon hours in both seasons. The
highest average air temperature value occurs at 1500
hours for a height to width ratio of 0.9 (40.29 °C in
summers and 26.2°C in winters).

In winters, the temperatures begin to decline from
1700 hours in winters and 1900 hours in summers. It is
noticed that the cooling rate in the wide street canyon

756

isfaster than the narrow streets with a high height to width
ratio. A difference of an average of 4 °C is also observed
in surface temperature between streets where concrete is
used as a major building material and streets where
traditional building material (stone) and traditional
construction techniques are applied. A similar trend is
observed for mean radiant temperature in wide streets
compared to narrow streets. The mean radiant temperature
in a narrow street with an H/W ratio is recorded due to the
thermal mass of the construction material and a less open
area to release the heat. A comparative analysis of heat
distribution for streets of different height-width ratios
through average values of Air Temperature, Surface
Temperature, Mean Radiant Temperature and Universal
Thermal Climate Index for both winter and summer is
shown in Fig. 10 and Fig. 11.
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streets during winters

The short wave radiation fluxes are shown in Figs.
12 and 13 for winter and summer. The streets are warmer
in summer as the aspect ratio decreases, but this trend is
more prominent in E-W orientation streets (H/W = 1.6)
due to high direct solar radiation. Global solar radiation is
highly influenced by Direct solar radiation; hence
similarities between the two solar components for streets
can be observed in graphs [Figs. 11(b&c) and
Figs. 12(b&c)]. In contrast, the Diffused solar radiation
escalates with an increase in aspect ratio. This is due to
the high amount of reflected radiation as the vertical
surface area is more in such streets (H/W= 3.3 & 4.8). But
the diffused radiation fluxes do not exceed 231 W/m? for
all the streets and is noted to be maximum at 181 W/m? for
the lowest height to width ratio street inthe SW-NE
direction.
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In other cases, the streets with a height to width ratio
of 0.9 and 1.6 are highly exposed from 0900 hours to 1500
hours, with global radiation reaching a maximum of
903 W/m? in summers and 419 W/m? in winters. Despite
the high H/W ratio, the east-west oriented street
experiences a high heat gradient as the sun rays fall on the
street laterally from both sides during the day. The NW -
SE and N - S oriented streets with high H/W ratios (3.3
and 4.8, respectively) observe no direct solar exposure
during peak heating hours (1200 hours to 1500 hours) in
the streets in summers. As the height to width ratio
increases, the time span of heat gain decreases in
summers. Inversely high H/W ratio of streets does not
support heat gain in winters; however, these streets (Kila
Gate and Lashkar) have been shown to be thermally
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comfortable due to the building materials and compact
built form (XrYrzZr and XrYrZu, respectively).

4. Conclusion

Outdoor thermal comfort was analysed in this study,
using artificial neural network models. The Universal
Thermal Climate Index was considered for evaluation as a
measure of outdoor thermal comfort in four different
streets. These streets represent four major zones of
Gwalior city featuring composite climatic conditions. In
order to develop ANN models, a funnel research approach
was applied. First, using Pearson’s correlation coefficient
a linear relationship between input variables was
determined. It was found that the mean radiant
temperature is in high correlation with globe temperature
and surface temperature. Based on the acquired results,
meanradiant temperature was considered to be used in
further analysis to avoid future redundancies and over-
fitting concerns. Second, the ANFIS models were
developed and processed to evaluate the impact of
meteorological parameters on UTCI. Air temperature
followed by mean radiant temperature, relative humidity
and wind speed was found to have maximum impact on
UTCI values for both summer and winters. This resonates
with the previous findings found in literature. Therefore,
two types of ANN Models were developed. One model
used all the influencing meteorological parameters - air
temperature, relative humidity, wind speed and the other
used only air temperature. This study established that only
air temperature can be used to predict outdoor thermal
comfort using artificial neural networks. The validity of
these models is evaluated through various statistical
indices like coefficient of correlation, true predicted rate,
false alarm rate and success index. R? in the summer
season is found to be 0.852, 0.986, 0.962, 0.955 and in
the winter season 0.976, 0.870, 0.941, 0.950 for Kila Gate
(KG), Lashkar (LAS), Morar (MOR) and New City
Centre (NCC) respectively. This highlights the efficiency
of developed artificial neural network models. Similarly,
the success index computed is in range 0.73 - 1 (Kila
Gate), 0.88 - 1 (Lashkar), 0.86 - 1 (Morar), 0.87 - 1 (New
City Centre) for the summer season and 0.78 - 0.99 (Kila
Gate), 0.61 - 0.98 (Lashkar), 0.55 - 0.98 (Morar), 0.87 -
0.99 (New City Centre) for the winter season. These
results conclude the high predictive ability of the
developed artificial neural network model for both
summer and winter seasons in composite climate.
Nonetheless, the study also has its limitations in regard to
data collection. The data set for the winter season is
smaller than that for the summer season, owing to long
summers in Gwalior city due to its location in a sub-
tropical zone.The study contributes to smart city
initiatives for future urban design and city planning for
different urban microclimates to attain outdoor thermal
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comfort for reduced urban heat island and physical well-
being to create sustainable cities and societies.
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Appendix 1
import pandas as pd

df = pd.read_csv('TPR, FAR , SI_summers.csv')
# O_PET = df.iloc[:, 0]

#P_PET =df.iloc[:, 1]

O_UTCI =df.iloc[:, 1]

P_UTCI = df.iloc[:, 2]

0_UTCI = list(0_UTCI)
P_UTCI = list(P_UTCI)

lim = [[-2000, -40], [-40, -27], [-27, -13], [-13, 0], [O, 9], [9, 26], [26, 32], [32, 38], [38, 46], [46, 2000]]
n =len(O_UTCI)

forl, uin lim:
X=0
Y=0
Z=0
for i in range(n):
if | <O_UTCI[i] <=uand | <P_UTCI[i] <= u:
X+=1
for i in range(n):
if [ <O_UTCI[i] <= u:
if P_UTCI[i] >uor P_UTCI[i] <= I
Y+=1
for i in range(n):
if | <P_UTCI[i] <= u:
if O_UTCI[i] >uor O_UTCI[i] <=
Z+=1

W=n-(X+Y+2)

print('X - ', X)
print("Y -','Y)
print(Z -, 2)
print(W - ', W)
try:

TPR=X/(X+Y)
except Exception as e:

print(e, '1')

TPR ="

try:
FAR=2Z/(Z+X)
except Exception as e:
print(e, 2")
FAR ="'

try:
SI=(X+W)/(X+Y+Z+W)
except Exception as e:

print(e, '3")

Si="
print(TPR -, TPR)
print(FAR -, FAR)
print('SI - ', SI)

print(l, u)
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