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सार — इस अध््य का उ�ेश् इयपटु �ाचल के रप म� मौसम सबंधंी �ाचल� का उप्ोग करके बाहर� ऊषमी् स�ुवधा का  

पवूारयमुाय करये के िलए कृ��म त�ं�का येट वकर  �वकिसत करया है। सारभौिमक ऊषमी् जलवा्ु सूचकांक (्टू�सीआई) का उप्ोग 

ल�् �ाचल के रप म� �क्ा जाता है। इस उ�ेश् के िलए, भारत के गवािल्र शहर क� चार मखु् शहर� सड़क� से 5088 घटें के के� 

ियगरायी डेटा पर �वचार �क्ा ग्ा। सबसे पहले, मौसम सबंधंी �ाचल� के बीच रै�खक सबंधं ियधार् रत �क्ा ग्ा। औसत �व�करण 

तापमाय का भूमंडली् तापमाय और सतह तापमाय के साथ उचच सहसंबधं होया था। दसूरा, UTCI पर उयके �भाव के �म म� मौसम 

सबंधंी �ाचल� को �णेीब� करये के िलए एडे�पटव न्रूो फ़ज़ी इयफेर�स िससटम (ANFIS) का उप्ोग �क्ा ग्ा। हवा के तापमाय का 
सबसे अिधक �भाव पा्ा ग्ा। तीसरा, एएयएय मॉडल इयपटु परत म� एकमा� मौसम �ाचल के रप म� हवा के तापमाय के साथ 

्टू�सीआई का पवूारयमुाय करये के िलए �वकिसत �कए गए ह�। सभी चार सड़क� के िलए �वकिसत एएयएय मॉडल �ीषम (R2 = 

0.852, 0.986, 0.962, 0.955) और शीत ऋत ु(R2 = 0.976, 0.870, 0.941, 0.950) दोय� के िलए उललेखयी् पवूारयमुाय देये क� कमता 
�दखाते ह�। इसके अित्र�, �वकिसत मॉडल� का सफलता सूचकांक  �ीषम ऋत ुम� 0.73 - 1, 0.88 - 1, 0.86 - 1, 0.87 - 1 और शीत 

ऋत ुम� 0.78 - 0.99, 0.61 - 0.98, 0.55 - 0.98, 0.87 - 0.99 क� सीमा म� पा्ा ग्ा है। ्ह अध््य समाटर िसट� क� अवधारणा के 

अयसुार भ�वष् के शहर� �डजाइय म� ्ोगदाय देता है,जब मशीय से सीखये के द��कोण का उप्ोग करके अन् माइ�ॉकलाइमै�टक 

�ाचल� को ्रकॉडर करया म�ुशकल होता है तब सथा�पत करके हवा के तापमाय के उप्ोग �ारा बाहर� ऊषमी् स�ुवधा का आसायी से 

अयमुाय लगा्ा जा सकता है। 
 
ABSTRACT. The study aims to develop artificial neural networks to predict outdoor thermal comfort using 

meteorological parameters as input parameters. Universal Thermal Climate Index (UTCI) is used as the target parameter. 
For this purpose, 5088 hours of field monitoring data were considered from four representative urban streets of Gwalior 
city, India. First, linear association was determined between meteorological parameters. Mean radiant temperature was to 
be in high correlation with globe temperature and surface temperature. Second, the Adaptive Neuro Fuzzy Inference 
System (ANFIS) was used to rank the meteorological parameters in order of their impact on UTCI. The air temperature 
was found to be having the strongest influence. Third, ANN models are developed to predict UTCI with air temperature 
as the only meteorological parameter in the input layer. The developed ANN models for all four streets show remarkable 
predictive ability for both the summer (R2 = 0.852, 0.986, 0.962, 0.955) and the winter season (R2 = 0.976, 0.870, 0.941, 
0.950). Additionally, the success index of the developed models is found to be in range 0.73 – 1, 0.88 – 1, 0.86 – 1, 0.87 
– 1 for the summer season and 0.78 – 0.99, 0.61 – 0.98, 0.55 – 0.98, 0.87 – 0.99 for the winter season. The study 
contributes to the smart city initiatives for future urban design by establishing that outdoor thermal comfort can be easily 
predicted using air temperature when other microclimatic parameters are difficult to record using a machine learning 
approach.   

 

Key words  – Smart city, ANFIS, ANN, Air Temperature, Outdoor Thermal Comfort. 
  

 
1.  Introduction 

 
The global built environment is under expansion at 

an unmatched scale but has brought global challenges. 

Climate change is one of the direct consequences of the 
high-speed urbanization the world is facing. The 
international panels are estimating that the 230 billion 
square meters of built-up floor area will be added to the 
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TABLE 1 
 

Recent studies on outdoor thermal comfort in India 
 

S.No. Location Thermal Comfort 
Index 

Study Area 
Typology Period of study Research Method Climate 

1.  Bhopal PET Urban Parks, 
Markets 

March 12-15 and April 17-19, 2016 
1230 pm to 400 pm 

Subjective assessment 
Statistics 

Composite 

2.  Chennai PET Mixed-Use 
Neighborhood 

15 February and 15 March, 2018 
for the winter readings and 30 April -            
30 May, 2018 for summer readings         

0000 and 0430  h’ 

ENVI-met 
simulations 

Warm and 
Humid 

3.  Chennai PET Streets 0710 am, 1045 am, 0400 pm and 0615 RayMan Warm and 
Humid 

4.  Chennai PET A Mixed-Use 
Residential 

Neighborhood 

May 15 to June 15, 2018 ENVI-met 
simulations 

Warm and 
Humid 

5.  New Delhi PET Open-Air Markets  9 - 12th (June, 2018) between 1100-1800 
h 

RayMan Composite 

6.  English Bazar 
Municipality 

DI, PET, PMV Neighborhood Year of 2010 and 2016 RayMan Warm and 
Humid 

7.  Kolkata PET Micro Entrepreneur 
Communities 

 RayMan Pro Warm and 
Humid 

8.  Mumbai Air temperature Informal Settlement August 10, 2016 through August 23, 
2016 

DesignBuilder v4.7 
and EnergyPlus v8.3. 

Warm and 
Humid 

9.  Mumbai Surface temperature, 
Air temperature 

Recreational Open 
Spaces 

0900 h to 2100 h, i.e., for 12 h for                 
24th March, 2017 

ENVI-met Warm and 
Humid 

10.  Nagpur DI City (Morning 9 am to evening 6 pm), the 
transition period from office, market and 

home (evening 6 pm to 10 pm) and 
nocturnal hours (10 pm to 6 am) 

One-way ANOVA Hot and 
Dry 

11.  New Delhi PET & UTCI Urban Square 5 days (June 10-14, 2017) between                
1100 and 1800 h 

RayMan Composite 

12.  Central-NCR 
(CNCR) 

UHI City 1-15 May 2012 MODIS nocturnal 
LST 

Composite 

13.  Noida UTFVI City 2011 - 2019  Composite 

14.  Sonepat WBGT, UTCI, PET City January 2010 to December 
2019 

Microsoft Excel 2016 
and SPSS 23Pearson 

product moment 
correlation 

Composite 

15.  Sriniketan-
Santiniketan 

Planning Area 
(SSPA) 

LCZ Neighbourhood  ANOVA and 
Krushkal-Walls test 

Warm and 
Humid 

 

*The climate zones are specified in reference to Climate Zone map of India, National Building Code 2016 (Bureau of Indian Standards, 
2016) 

 
 
 
already existing one by the year 2060 (United Nations, 
2017). According to the World Bank, the global urban 
population has increased from 28.3% to 50% since 1950. 
Similarly, India’s urban population has increased from 
17.35% to 31.2% since 1950, showing an annual urban 
population growth rate of 3.35% (Census of India 2011). 

The recent trends on sustainable development and climate 
change have drawn significant attention to compelling 
actions and research for solutions. Sustainable 
Development Goals (SDGs) 7, 11, 12 & 13 of the 2030 
Agenda for Sustainable Development aim to devote to 
affordable & clean energy, sustainable cities 
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&communities, responsible consumption & production, 
and climate action, respectively. One of the key focuses of 
Sustainable Development Goal (SDG) 11 and 13 for SDG 
Agenda 2030 are to take climate action toward creating 
sustainable cities (United Nations, 2017). Following the 
global warming trends, surface temperatures in India have 
increased by approximately 0.055 K per decade during the 
years 1860 to 2005. Greenhouse Gases (GHG) and land 
use planning are the crucial factors contributing to these 
global warming trends during the 20th century (Basha              
et al., 2017). The increase in temperatures will seriously 
impact the health of urban residents. Physical well-being 
is parallel to outdoor thermal comfort, directly associated 
with urban microclimate influenced by urban physics. In 
this regard, Urban Heat Island (UHI), Surface Urban Heat 
Island (SUHI) and Urban Canopy Layer (UCL) are the 
most studied (ASHRAE & American National Standards 
Institute, 2004). 

 
Outdoor thermal comfort in varied urban 

microclimates of cities is an essential parameter in urban 
design (Silva, 2017). A growing interest is observed in 
climate change and global warming trends analysis for 
better urban design in India. Ali et al. performed a study 
in urban parks, market, and lakefront in Bhopal to 
understand thermal perception in the summer season. The 
study focussed on the effects of vegetation on outdoor 
thermal comfort through subjective and ordinal logistic 
regression and Rayman software.The study established 
that urban parks were cooler than markets and lakefronts 
and statedthat globe temperature has a high influence on 
thermal perception, however, the data was collected from 
1230 pm to 0400 pm from March 12-15 and April 17-19, 
2016 (Binte and Patnaik, 2017). Similarly, the urban heat 
island effect for a neighborhood in Chennai using PET for 
assessment and observed that the hot pockets are found in 
areas of low vegetation and low built density and high Sky 
View Factor (SVF). The simulated results were computed 
through ENVI-met software. (Amirtham, 2007; Horrison 
et al., 2021; Horrison and Amirtham, 2016) Manavvi and 
Rajasekar conducted studies on open-air markets of New 
Delhi for four representative summer days (9 - 12th June, 
2018) between 1100-1800 hoursand thermal comfort 
observations based onthe relationship between surface 
temperatures, PET and albedo (Manavvi and Rajasekar, 
2021). The authors performed similar study in religious 
urban square in New Delhi for 5 summer days from 1100 
and 1800 h and found that Sky View Factor (SVF) 
influences mean radiant temperature and PET(Manavvi 
and Rajasekar, 2019).  

 
Ziaul and Pal used satellite data to analyse 

Discomfort Index (DI) and PET for English Bazar 
Municipality, West Bengal. The authors compared 
seasonal thermal discomfortability of 2010 and 2016 and 

deduced that finer spatial resolution produce better results 
(Ziaul and Pal, 2019). Banerjee et al. studied outdoor 
thermal comfort in three micro-entrepreneur communities 
in Kolkata, India, through TSV and PET using field 
measurement and surveys. The study was carried out for 
November 2018 - February 2019 and in June 2019 from 
1100 hours to 1700 hours, which concluded that PET is a 
better indicator of thermal comfort than the air 
temperature. Availability of shade was an important factor 
in influencing the duration of stay in different community 
areas (Banerjee et al., 2020). Nutkiewicz et al. studied the 
impact of early-stage design decisions in redevelopment 
projects through the case study of an urban slum in 
Mumbai. The authors simulated the area by employing an 
energy modeling framework and stated that if the current 
designs are replicated in vertical form, the impact on 
outdoor thermal comfort could be worse; hence simulation 
of design in an early stage is necessary (Nutkiewicz et al., 
2018).  

 
Mehrotra et al. assessed the impact of urban form 

and land surface treatment on the thermal profile of 
recreational open spaces. The analysis was performed 
using the ENVI met model. The authors concluded that 
surface temperature significantly influencesair 
temperature in open urban spaces (Mehrotra et al., 2021). 
Kotharkar et al. studied outdoor thermal comfort in 
Nagpur through LCZ (Local Climate Zone) Classification 
method and one-way ANOVA technique. The authors 
deduced that different areas in the city show variance in 
thermal comfort due to different built form configurations, 
building and street geometry (Kotharkar et al., 2019). 
Mohan et al. attempted to quantify the change in 
urbansprawl evolution from 1972-2014 in CNCR (Central 
National Capital Region) and studied the impact of 
thermal comfort. The study showed an increase in 
extremely thermally uncomfortable hours from an  
average of 10 hours to 13 hours a day based on Robba 
Index results (Mohan et al., 2020). Using the UTFVI 
(Urban Thermal Field Variance Index), Sharma et al. 
evaluated the thermal comfort levels of Noida cityand 
highlighted an increase of 6.42 °C between 2011 to 2019 
(Sharma et al., 2021). Kumar and Sharma assessed the 
monthly heat stress risk to the the well being of residents 
in Sonepat. The authors used three thermal comfort 
indices namely - WBGT (Wet Bulb Globe Temperature), 
UTCI (Universal Thermal Climate Index), PET 
(Physiological Equivalent Temperature). Using PET, Das 
et al., evaluated neighborhood in Sriniketan-Santiniketan 
Planning Area (SSPA) through LCZ approach, concluding 
that low rise compact built forms are warmer for warm 
humid climatic zone. 

 
Recently, artificial neural networks (ANN) have 

been used for the prediction of outdoor thermal comfort 
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due to their advantage in solving nonlinear problems (Lee 
et al., 2016). In the past, ANN for forecasting outdoor 
thermal comfort has been applied for urban squares, urban 
parks, built forms, and streets. However, these studies 
establish the efficiency of ANN models to predict outdoor 
thermal comfort for urban parks and squares. Essentially 
two centralbuilt environment typologies have been found 
in literature as study areas in this research topic - urban 
built form and street canyons. Dombayci et al., proved 
that ANN could be a dependable tool in predicting 
temperature by predicting daily mean temperature for 
thermal analysis in Turkey (Dombaycı and Golcu, 2009). 
Gobakis et al., compared Elman, feedforward, and 
cascade neural networks urban heat intensity for Athens 
establishing that feed-forward neural network predicted 
with an accuracy of 90% (Gobakis et al., 2011). 
Vouterakos et al. predicted discomfort index and found 
that ANN models can predict Discomfort Index (DI) 
values on days when discomfort has surpassed disastrous 
levels (Vouterakos et al., 2012). Kamoustsis and 
Chronopoulos (Chronopoulos et al., 2012) performed a 
comparative study of thermohygometric index for Greek 
mountainous regions using only relative humidity and air 
temperature. Moustris et al., predicted human thermal 
comfort discomfort levels for the Greek island and one-
day prediction of PET for different periods (Moustris              
et al., 2013). Papantoniou and Kolokotsa predicted 
outdoor air temperature using neural network models, 
taking four European cities as case studies (Papantoniou 
and Kolokotsa, 2015). Ketterer mapped PET for urban 
cities in Stuttgart, Germany, comparing ANN and SMLR 
using backpropagation training (Ketterer and Matzarakis, 
2016). Lee predicted heat island intensity for Seoul using 
green area, water area, building area, road area and 
microclimatic factors (Lee et al., 2016). Different authors 
forecasted PET in Serbian urban parks - Vučković et al., 
applied neuro-fuzzy with accuracy of 92% using global 
radiation, vapour pressure, wind speed as input parameters 
(Vučković et al., 2019) and Protic et al., used 1 minute 
sampling for one month using global radiation, vapour 
pressure and wind speed (Ivana S. Bogdanovic et al., 
2016). Bozorgi et al., used a middle layer feedforward 
neural network to estimate land surface temperatures in 
urbanized landscapes (Bozorgi and Nejadkoorki, 2018). 
Moustris developed ANN models to study PET using 
climatic data from a standard meteorological station in 
Athens for 4 sites: an urban square, urban street, urban 
courtyard, and urban gallery of a neighbourhood with a 
predictive ability of 96% (Moustris et al., 2018). Chan          
et al., developed an artificial neural network for predicting 
outdoor thermal comfort in community parks in urban 
Hong Kong. The authors predicted PMV to study the 
thermal sensation, but the environmental simulation was 
excluded due to complex quantification (Chan and Chau, 
2019).  Weerasuriyaa et al., optimized lift-up buildings  to  

 
 

Fig. 1. Location of Gwalior in India 
 
 
 
maximize pedestrian thermal comfort using wind speed as 
a primary parameter to predict UTCI through a genetic 
algorithm, computational fluid dynamics simulation, and 
artificial neural network (Weerasuriya et al., 2020).  

 
It is evident from the existing literature that the 

studies performed on outdoor thermal comfort analysis in 
India either consider limited amount of time period when 
using software with less computaional time (Ray Man), or 
only analysing few days when software in use has high 
simulation run time (ENVI-met). When studies over a 
period of years are conducted, the real time data collection 
and accessibility of remote sensing maps sometimes 
become difficult.  Hence, in this study an attempt to study 
outdoor thermal comfort using a different methodology - 
artificial neural network is adopted as it is proved to 
handel large number of data in less operational time. In 
studies regarding outdoor thermal comfort and ANN, it is 
seen that studies on urban streets have only shown data 
concerning one particular season in the year or only 
diurnal data is evaluated (Moustris, Nastos and Paliatsos, 
2013; Ketterer and Matzarakis, 2016; Banerjee and 
Chattopadhyay, 2020). After urban parks and squares, 
streets are the open spaces that are used by city dwellers 
on a large scale. Microclimates of urban streets have a 
direct influence on outdoor and indoor thermal comfort of 
the built environment and corresponding energy demand 
(Silva, 2021). Therefore, in this study, artificial neural 
networks models are developed to predict the outdoor 
thermal comfort of four different street canyons that can 
be seen as representative of the historical city of Gwalior, 
India. The focus is to develop and apply a neural network 
where air temperature can be utilized only as a 
meteorological input parameter to predict outdoor thermal 
comfort. Additionally, the correlation of heat with built 
environmental parameters are also discussed to provide 
insights for city development policies. 
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Fig. 2. Generic categories of built forms 
 

 
1.1. Study area 
 
The study site is located in the historic city of 

Gwalior located at 26.2183° N, 78.1828° E (Fig. 1), the 
city is currently listed as a potential Smart City under 
Smart Cities Mission (Ministry of Housing and Urban 
Affairs, 2015). The importance of Gwalior city as a 
historic city can be observed from its inclusion as one of 
the pilot cities for the Historic Urban Landscape 
programme and survey under UNESCO New Delhi, 
directing heritage based urban development (UNESCO 
New Delhi, 2021). 

 
The city has majorly evolved since the 8thcentury 

into four representative zones - Kila Gate zone, Lashkar 
zone, Morar Zone and New City Centre zone. Kila Gate 
zone is the first settlement area at the base of Gwalior fort, 
followed by Lashkar area which was established by the 
Mughals in 1810, Morar area was instituted as a British 
cantonment area, and in the past few decades, the city has 
seen modern construction in the New City Centre area. 
Hence, out of these four zones two are historic in context 
(Kila Gate & Lashkar) and the other two are modern 
(Morar & New City Center). The streets were selected to 
represent different neighbourhoods - historic and modern, 
and of different urban physics parameters. These 
parameters represent street geometry which includes street 
orientation, height width ratio and built form 
configuration. The built forms correspond to uniform or 
random layouts, where “u” represents uniform layout and 
“r” represent random layout (Cheng et al., 2006). Each 
built form can be denoted in context of X axis, Y axis and 
Z axis. Hence, the eight generic categories of built forms 
are: XuYuZu, XuYrZu, XrYuZu, XrYrZu, XuYuZr, 
XuYrZr, XrYuZr and XrYrZr (Fig. 2). The street 
geometries of the study area is tabulated in Table 2. For 
ease of understanding, these streets are named after their 
respective zones, i.e., Kila Gate (KG), Lashkar (LAS), 
Morar (MOR) and New City Centre (NCC). 

TABLE 2 
 

Street Geometry of the selected case studies 
 

Location Street orientation H/W Built Form 

Kila Gate (KG) NW-SE 3.3 XrYrZr 

Lashkar (LAS) N-S 4.08 XrYrZu 

Morar (MOR) EW 1.6 XuYuZr 

New City Center (NCC) SW-NE 0.9 XuYuZu 

 
 
 

Also, ease of instrument set up and monitoring of 
data from these streets worked as contributing faction in 
choice of these streets. The selected four street canyons 
are graphically shown in Fig. 3. 

 
1.2. Climate profile 
 
The study area observes extreme summers and 

extreme winters featuring composite climatic conditions 
according to the National Building Code of India 2016 
(Bureau of Indian Standards, 2016). The high 
temperatures are noticed beginning from mid to late 
March, rising in May and June between 33°C-35°C. The 
low temperatures are observed from late October and 
found lowest in January with an average temperature of 
around 5°C-6°C. As per the universal Köppen Climate 
Classification, the study site is classified under group C in 
the subgroup Cwa (dry winter humid subtropical climate) 
bordering with the classification BSh (dry semi-arid 
climate with low latitude).  

 
1.3. UTCI 
 
To assess the heat stress in the streets, the Universal 

Thermal Climate Index (UTCI) was chosen for this study. 
UTCI was selected due to its validation as a heat stress 
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Fig. 3. Description of study area 
 

 
 

TABLE 3 
 

Thermal stress range for UTCI 
 

Thermal Stress Class UTCI Index Range (°C) 

Extreme heat stress above +46 

Very strong heat stress +38 to +46 

Strong heat stress +32 to +38 

Moderate heat stress 
+26 to +32 

Slight heat stress 

No thermal stress +9 to +26 

Slight cold stress 0 to +9 

Moderate cold stress -13 to 0 

Strong cold stress -27 to -13 

Very strong cold stress -40 to -27 

Extreme cold stress below -40 

 
 
 
index according to the existing literature and its 
uncomplicated interpretation by urban designers and 
architects due to its unit of measurement in degree Celsius 
(°C). UTCI is expressed as the ambient air temperature of 
the thermal environment which is referred to. This thermal 
index generates the same stress index value in comparison 
with the reference human being’s response to the existing 
environs. Derived from the advanced multi-node 

thermoregulatory model, UTCI is universal due to its 
established efficacy in evaluating thermal environments of 
all climatic zones (UTCI, 2021). The thermal stress range 
for UTCI is shown in Table 3. BioKlima 2.6 was used to 
determine the hourly values of UTCI (Krzysztof 
Błażejczyk, 2021). 

 
2. Methodology 

 
2.1. Methods 
 
The study is based on recording and analysing 

meteorological variables for analysis of the Universal 
Thermal Climate Index, therefore, first the correlation 
between the recorded parameters was analysed. Pearson 
correlation coefficient was used to determine the linear 
association between the input parameters in order to avoid 
redundancies and over-fitting in the ANFIS and ANN 
models. This correlation was determined by using: 

 
( )( )

( ) ( )22 yyxx

yyxx
r

ii

ii

−−

−−
=

∑∑
∑                            (1) 

 
Following this, ranking of meteorological parameters 

is conducted using the Adaptive Neuro Fuzzy Inference 
(ANFIS) system. The implementation of ANFIS models is 
based on input/output data pairs. The analysis is 
performed using the Neuro Fuzzy Designer application. 
The model was run in MATLAB 2019 (a) for
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TABLE 4 
 

Details of instruments used in this study 
 

Name of the instrument Parameter measured Accuracy Range Standard uncertainty 

Elitech RC-4HC Air temperature ±0.6 °C -30° - 60°C 0.346 °C 

Elitech RC-4HC Relative humidity ±3 % 0- 99 % 1.732 % 

Lutron AM-4237 SD Anemometer Wind speed ±0.05 m/s 0.1 – 25 m/s 0.028 m/s 

 
 
 
regression of data pairs. As part of this process, training 
error output and testing error output are derived. The 
variable ranking is noted on the basis of training error. 
50% of testing data is used to control the fitting of training 
data. Normalization of data is performed using a fuzzify 
function during the training process, thus, making the 
neuro fuzzy system an appropriate choice for ranking of 
meteorological parameters (Vouterakos et al., 2012). 

 
Based on the ranking of meteorological parameters, 

artificial neural network models are developed to predict 
selected outdoor thermal comfort index, i.e., UTCI. 
Multiple Layer Perceptron Models are observed to have 
high efficacy rates in the available literature, hence 
multiple layer perceptron model is used in this 
work(Milojevic-Dupont and Creutzig, 2021). These 
models are developed using back propagation training 
algorithms to predict UTCI. The structure of the basic 
artificial neural network model consists of neurons that 
are organized in layers, which start with an input layer 
followed by a hidden layer and final output layer. The 
input layer distributes the input signals to the first hidden 
layer, which transmits the signal to each neuron of the 
next hidden layer, corresponding to a weight factor. In this 
way, each neuron gets processed through the input and 
hidden layers in addition to the activation function and 
finally, the outcome reaches the output layer. The input 
layer contains input variables, the target variable is 
represented by the output layer and the number of hidden 
layers is determined using Eqn. 2 (Chan and Chau, 2019). 
The actual outcome is then compared for its closeness 
with the desired outcome, which determines the accuracy 
of the ANN model.  

 
122 0 +×≤≤+× ihi NNNN                              (2) 

 
Once the ANN models are developed their validation 

is performed by evaluating TPR, FAR and SI of the 
developed models and through the coefficient of 
correlation between calculated and predicted values of 
UTCI using Eqns. 3 - 5 (Vouterakos et al., 2012). 

YX
X
+

=TRP                                                          (3) 

 

XZ
Z
+

=FAR                                                         (4) 

 

WZYX
WX
+++

+
=SI                                                (5) 

 
 
where, X denotes the number of occurrences where 

the thermal comfort values were calculated and predicted 
in the same thermal stress class, Y denotes the number of 
occurrences where the calculated thermal comfort values 
fit in a specific class but the predicted value fit in some 
other class, Z denotes the number of occurrences where 
the predicted thermal comfort values fit in a specific class, 
but calculated value fit in some other class and W denotes 
the rest of the cases. 

 
2.2. Data collection 
 
The functional process of ANN depends upon the 

huge historical database for training, the choice of input 
parameters and training algorithms. Field measurements 
were carried out for seven months. This period was 
divided into the winter and the summer season. The winter 
season is represented by months - December 2020, 
January and February 2021 and the summer season by - 
March, April, May and June 2021. Continuous hourly data 
of air temperature, wind speed and relative humidity for 
all four streets were recorded simultaneously. The 
recording of microclimatic data was carried out using 
Lutron AM 4237 SD Data Logger Anemometer for wind 
speed and Elitech RC - 4HC  Data Logger with an inbuilt 
sensor for relative humidity and a probe for air 
temperature. Details of the instruments are shown in  
Table 4. A total number of 5088 hours of field monitoring 
data was collected. For ANFIS model 50% of the recorded 
data was used as training data set and for ANN models 
70% of the recorded data as training data set. 
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TABLE 5 
 

Correlation between input variables for summer and winter from the Kila Gate data set 
 

 Summer  Winter 

 Ta RH WS Ts Tmrt Tg  Ta RH WS Ts Tmrt Tg 
Ta 1       1      

RH 0.34 1     -0.705 1     
WS 0.004 0.002 1    0.023 -0.161 1    
Ts 0.42 0.09 0.02 1   0.967 -0.716 0.336 1   

Tmrt 0.32 0.06 0.02 0.95 1  0.652 - 0.534 0.312 0.785 1  
Tg 0.20 0.03 0.02 0.94 0.93 1 0.570 -0.510 0.142 0.723 0.939 1 

 
 

TABLE 6 
 

Correlation between input variables for summer and winter from the Lashkar data set 
 

 Summer  Winter 

 Ta RH WS Ts Tmrt Tg  Ta RH WS Ts Tmrt Tg 
Ta 1       1      

RH 0.379 1     -0.599 1     
WS 0.047 -0.042 1    0.065 -0.091 1    
Ts 0.636 -0.247 0.079 1   0.702 -0.453 0.079 1   

Tmrt 0.567 -0.199 0.081 0.977 1  0.400 -0.275 0.137 0.821 1  
Tg 0.442 -0.195 0.079 0.972 0.965 1 0.286 -0.237 0.129 0.733 0.930 1 

 
 

TABLE 7 
 

Correlation between input variables for summer and winter from the Morar data set 
 

 Summer  Winter 

 Ta RH WS Ts Tmrt Tg  Ta RH WS Ts Tmrt Tg 
Ta 1       1      

RH -0.511 1     -0.736 1     
WS 0.040 -0.003 1    0.302 -0.268 1    
Ts 0.670 -0.361 0.106 1   0.813 -0.683 0.311 1   

Tmrt 0.607 -0.322 0.106 0.978 1  0.694 -0.617 0.315 0.978 1  
Tg 0.465 -0.277 0.113 0.968 0.961 1 0.488 -0.507 0.296 0.900 0.959 1 

 

 
TABLE 8 

 
Correlation between input variables for summer and winter from the New City Centre data set 

 
 Summer  Winter 

 Ta RH WS Ts Tmrt Tg  Ta RH WS Ts Tmrt Tg 
Ta 1       1      

RH -0.560 1     -0.804 1     
WS 0.083 -0.173 1    0.077 -0.120 1    
Ts 0.757 -0.455 0.090 1   0.837 -0.756 0.087 1   

Tmrt 0.693 -0.420 0.121 0.979 1  0.721 -0.684 0.110 0.978 1  
Tg 0.521 -0.356 0.147 0.949 0.952 1 0.471 -0.530 0.109 0.874 0.943 1 
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TABLE 9 
 

Training error values for summer and winter for all four study locations  
 

Location Phase 
Summer  Winter 

Ta RH WS Tmrt  Ta RH WS Tmrt 

KG 
Training phase 1.67 3.85 4.72 2.14  1.99 3.97 4.32 2.32 

Testing phase 1.08 3.79 4.56 2.18 1.79 3.88 4.21 2.06 

LAS 
Training phase 1.64 3.46 4.05 3.54 1.74 3.12 4.09 2.25 

Testing phase 1.7 3.43 4.97 3.8 1.71 3.65 4.88 2.41 

MOR 
Training phase 1.72 3.93 4.73 2.95 1.46 3.03 4.76 2.19 

Testing phase 1.9 3.89 4.62 2.65 1.39 3.15 4.72 2.08 

NCC 
Training phase 1.5 3.07 4.89 3.94 1.83 3.66 4.58 2.63 

Testing phase 1.81 2.99 4.91 3.18 1.81 3.59 4.39 2.56 
 
 
 

TABLE 10 
 

Description of developed ANN Models   
 

 Category 1 Category 2 
Input parameter Ta, RH, WS, Tmrt, Month of the year, Day 

of the month, Hour of the day 
Ta, Month of the year, Day of the 

month, Hour of the day 
Target parameter UTCI UTCI 

 
 

 
 
3. Results and discussion 

 
3.1. Pearson correlation 
 
Tables 5-8 represent the correlation between input 

variables for summer and winter for all four streets. Very 
low correlation coefficients are observed from these tables 
between the recorded input variables. However, a high 
collinearity was observed between globe temperature 
(Tg), mean radiant temperature (Tmrt) and surface 
temperature (Ts). The value of high correlation 
coefficients are highlighted in bold in the tables. This high 
correlation between Tmrt, Tg and Ts may lead to 
overfitting and unnecessary repetitions in the developed 
neural network models (Vučković et al., 2019). 
Accordingly, Tmrt is used for further analysis against Ts 
and Tg in ANFIS and ANN models as it is easy to 
calculate. 

 
3.2. Meteorological parameter ranking  
 
The recorded meteorological parameters are ranked 

based on training error values computed in the neuro 
fuzzy system. Root Mean Square Error (RMSE) is derived 
from the simulation. UTCI values are highly influenced by 

the parameters which show the lowest training RMSE 
value. The values are obtained by using 70% of recorded 
data as training data and 30% of recorded data as testing 
data. Theleast error is observed in air temperature on all 
four streets in both summer and winter. Air temperature is 
followed by mean radiant temperature, relative humidity 
and wind speed (Table 9). This establishes that air 
temperature has the highest impact on UTCI values in 
comparison to other meteorological parameters.  

 
3.3. UTCI prediction through ANN models 
 
Based on the results above, it can be inferred that air 

temperature is most influential in predicting the UTCI 
values for both the summer and the winter months. 
Therefore, two categories of ANN models are developed 
(Table 10). 

 
As per Eqn. 1, the hidden parameters were 

determined. A total of 36 models were developed under 
Category 1 for all four sites and a total number of 45 
models were developed under Category 2. The optimum 
predictive results are found at 12 hidden neurons for 
Category 1 and 6 hidden neurons for Category 2. The 
coefficient of correlation between calculated values of 
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Figs. 4(a&b). Scatter plots for calculated vs predicted UTCI at Kila Gate (KG) - (a) Summer and (b) Winter 
 

 
 

Figs. 5(a&b). Scatter plots for calculated vs predicted UTCI at Lashkar (LAS) - (a) Summer and (b) Winter 
 

 
 

Figs. 6(a&b). Scatter plots for calculated vs predicted UTCI at Morar (MOR) - (a) Summer and (b) Winter 
 
 
 

TABLE 11 
 

Coefficient of correlation values for developed ANN models 
 

Location R2 values for Summer R2 values for Winter 

KG 0.852 0.976 

LAS 0.986 0.870 

MOR 0.962 0.941 

NCC 0.955 0.950 

UTCI from Bio Klima 2.6 and predicted values of UTCI 
from category1 and category 2 ANN model are analysed. 
It is found that the Category 1 ANN model shows high 
predictive ability (R2 = 0.9 for all cases). Results for 
category 2 ANN models are shown in Table 11 and 
associated plots are shown in Fig. 4, Fig. 5, Fig. 6 and  
Fig. 7. Hence, it can be fairly deduced that UTCI can be 
predicted using the ANN model when air temperature is 
used as the only meteorological parameter. This also helps 
in reducing the usage of large numbers of instruments and 
complex data recording exercises.  
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Figs. 7(a&b). Scatter plots for calculated vs predicted UTCI at New City Center (NCC) - (a) Summer and (b) Winter 
 
 
 

TABLE 12 
 

Evaluation indices of developed Category 2 ANN model for UTCI in Kila Gate for summer and winter 
 

Thermal stress class Index Range (°C) X Y Z W TPR FAR SI 

Summer 

Extreme heat stress above +46 1 189 0 2244 0.005 0.0 0.9 

Very strong heat stress +38 to +46 213 463 189 1569 0.31 0.47 0.73 

Strong heat stress +32 to +38 154 265 375 1640 0.36 0.70 0.73 

Moderate heat stress 
+26 to +32 403 302 270 1459 0.57 0.40 0.76 

Slight heat stress 

No thermal stress +9 to +26 444 0 385 1605 1 0.46 0.84 

Slight cold stress 0 to  +9 0 0 0 2434 - - 1 

Moderate cold stress -13 to 0 0 0 0 2434 - - 1 

Strong cold stress -27 to -13 0 0 0 2434 - - 1 

Very strong cold stress -40 to -27 0 0 0 2434 - - 1 

Extreme cold stress below -40 0 0 0 2434 - - 1 

Winter 

Extreme heat stress above +46 5 0 3 1995 1 0 0.99 

Very strong heat stress +38 to +46 11 3 4 1985 0.78 0.26 0.99 

Strong heat stress +32 to +38 35 12 8 1948 0.74 0.18 0.99 

Moderate heat stress 
+26 to +32 94 24 68 1817 0.79 0.41 0.95 

Slight heat stress 

No thermal stress +9 to +26 892 146 219 746 0.85 0.19 0.81 

Slight cold stress 0 to  +9 407 203 233 1160 0.66 0.36 0.78 

Moderate cold stress -13 to 0 24 147 0 1832 0.14 0 0.92 

Strong cold stress -27 to -13 - - - - - - - 

Very strong cold stress -40 to -27 - - - - - - - 

Extreme cold stress below -40 - - - - - - - 
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TABLE 13 
 

Evaluation indices of developed Category 2 ANN model for UTCI in Lashkar for summer and winter 
 

Thermal stress class Index Range (°C) X Y Z W TPR FAR SI 

Summer 

Extreme heat stress above +46 152 0 259 2517 1 0.63 0.91 

Very strong heat stress +38 to +46 515 264 68 2081 0.66 0.11 0.88 

Strong heat stress +32 to +38 446 76 12 2394 0.85 0.02 0.96 

Moderate heat stress 
+26 to +32 740 9 37 2142 0.98 0.04 0.98 

Slight heat stress 

No thermal stress +9 to +26 697 29 2 2200 0.96 0.0 0.99 

Slight cold stress 0 to  +9 0 0 0 2928 - - 1 

Moderate cold stress -13 to 0 0 0 0 2928 - - 1 

Strong cold stress -27 to -13 0 0 0 2928 - - 1 

Very strong cold stress -40 to -27 0 0 0 2928 - - 1 

Extreme cold stress below -40 0 0 0 2928 - - 1 

Winter 

Extreme heat stress above +46 - - - - - - - 

Very strong heat stress +38 to +46 - - - - - - - 

Strong heat stress +32 to +38 - - - - - - - 

Moderate heat stress 
+26 to +32 28 90 20 1843 0.23 0.41 0.94 

Slight heat stress 

No thermal stress +9 to +26 1121 671 90 99 0.62 0.07 0.61 

Slight cold stress 0 to  +9 42 29 647 1263 0.59 0.93 0.65 

Moderate cold stress -13 to 0 0 0 33 1948 - 1 0.98 

Strong cold stress -27 to -13 - - - - - - - 

Very strong cold stress -40 to -27 - - - - - - - 

Extreme cold stress below -40 - - - - - - - 

 
 

 
Further to determine the efficiency of the Category 2 

ANN model, True Predicted Rate (TPR), False Alarm 
Rate (FAR) and Success Index (SI) are computed using 

Python Script (Appendix 1). The statistical performance 
values for summer and winter are noted in Table 12 for 
Kila Gate (KG), Table 13 for Lashkar (LAS), Table 14 for  
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TABLE 14 
 

Evaluation indices of developed Category 2 ANN model for UTCI in Morarfor summer and winter 
 

Thermal stress class Index Range (°C) X Y Z W TPR FAR SI 

Summer 

Extreme heat stress above +46 144 4 213 2443 0.97 0.59 0.922 

Very strong heat stress +38 to +46 526 215 186 1877 0.71 0.26 0.86 

Strong heat stress +32 to +38 269 184 94 2257 0.59 0.25 0.90 

Moderate heat stress 
+26 to +32 582 94 167 1961 0.86 0.22 0.91 

Slight heat stress 

No thermal stress +9 to +26 619 167 2 2016 0.78 0.00 0.94 

Slight cold stress 0 to  +9 0 0 2 2802 - 1 0.99 

Moderate cold stress -13 to 0 0 0 0 2804 - - 1 

Strong cold stress -27 to -13 0 0 0 2804 - - 1 

Very strong cold stress -40 to -27 0 0 0 2804 - - 1 

Extreme cold stress below -40 0 0 0 2804 - - 1 

Winter 

Extreme heat stress above +46 - - - - - - - 

Very strong heat stress +38 to +46 - - - - - - - 

Strong heat stress +32 to +38 0 26 0 1980 0 - 0.98 

Moderate heat stress 
+26 to +32 53 239 26 1688 0.18 0.32 0.86 

Slight heat stress 

No thermal stress +9 to +26 736 760 239 271 0.49 0.24 0.50 

Slight cold stress 0 to  +9 48 144 753 1061 0.25 0.94 0.55 

Moderate cold stress -13 to 0 0 0 151 1855 - 1 0.92 

Strong cold stress -27 to -13 - - - - - - - 

Very strong cold stress -40 to -27 - - - - - - - 

Extreme cold stress below -40 - - - - - - - 

 
 
 
Morar (MOR) and Table 15 for New City Centre (NCC). 
These values are derived from analysis of obtained UTCI 
values from Bio Klima 2.6 and predicted values from 

category 2 ANN model. The values show high predictive 
ability of the Category 2 model for all four streets and 
both seasons.  
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TABLE 15 
 

Evaluation indices of developed Category 2 ANN model for UTCI in New City Centerfor summer and winter 
 

Thermal stress class Index Range (°C) X Y Z W TPR FAR SI 

Summer 

Extreme heat stress above +46 387 26 139 2096 0.94 0.26 0.98 

Very strong heat stress +38 to +46 393 146 203 1906 0.72 0.34 0.87 

Strong heat stress +32 to +38 254 144 164 2806 0.63 0.39 0.88 

Moderate heat stress 
+26 to +32 434 196 109 1909 0.68 0.20 0.88 

Slight heat stress 

No thermal stress +9 to +26 565 103 0 1980 0.85 0.0 0.96 

Slight cold stress 0 to  +9 0 0 0 2648 - - 1 

Moderate cold stress -13 to 0 0 0 0 2648 - - 1 

Strong cold stress -27 to -13 0 0 0 2648 - - 1 

Very strong cold stress -40 to -27 0 0 0 2648 - - 1 

Extreme cold stress below -40 0 0 0 2648 - - 1 

Winter 

Extreme heat stress above +46 - - - - - - - 

Very strong heat stress +38 to +46 - - - - - - - 

Strong heat stress +32 to +38 42 60 3 3356 0.41 0.06 0.98 

Moderate heat stress 
+26 to +32 170 107 59 3125 0.61 0.25 0.95 

Slight heat stress 

No thermal stress +9 to +26 1053 264 155 1989 0.80 0.12 0.87 

Slight cold stress 0 to  +9 264 67 260 2870 0.79 0.49 0.90 

Moderate cold stress -13 to 0 0 0 22 3439 - 1 0.99 

Strong cold stress -27 to -13 - - - - - - - 

Very strong cold stress -40 to -27 - - - - - - - 

Extreme cold stress below -40 - - - - - - - 

 
 
3.4. Correlation of heat with built environment 
 
Figs. 8 (a-d) and 9 (a-d) shows the variations of 

outdoor thermal comfort, air temperature, surface 

temperature and mean radiant temperature in all four 
streets showing different height to width ratio, orientation, 
and built form, using the predicted thermal comfort values 
and recorded meteorological parameters for winter and
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Figs. 8(a-d). Variations of (a) Average UTCI, (b) Average air temperature Ta, (c) Average surface temperature Ts and (d) Average mean 
radiant temperature (Tmrt) during winters 

 
 

 
 

Figs. 9(a-d). Variations of (a) Average air temperature Ta, (b) Average surface temperature Ts,  (c) Average mean radiant temperature 
(Tmrt)  and (d) Average UTCI during summers 
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Fig. 10. Mapping of heat distribution for streets with different height width ratio in correlation with average values of Universal Thermal 
Climate Index, Air Temperature, Surface Temperature and Mean Radiant Temperature during winters 

 
 

 
 

Fig. 11.  Mapping of heat distribution for streets with different height width ratio in correlation with average values of Universal Thermal 
Climate Index, Air Temperature, Surface Temperature, and Mean Radiant Temperature during summers 

 
 
 
summer respectively. It was observed that with decreasing 
H/W ratio, air temperature increases. The difference in air 
temperature values is low during early morning hours 
(0500 hours - 1000 hours) in winter and (0500 hours -
0800 hours) in summers and during evening hours from 
(1800 hours - 0400 hours) in winters and (2000 hours and 
0400 hours) in summers for all the cases. The temperature 
reaches its peak during noon hours in both seasons. The 
highest average air temperature value occurs at 1500 
hours for a height to width ratio of 0.9 (40.29 °C in 
summers and 26.2°C in winters).  

 
 
In winters, the temperatures begin to decline from 

1700 hours in winters and 1900 hours in summers. It is 
noticed that the cooling rate in the wide street canyon 

isfaster than the narrow streets with a high height to width 
ratio. A difference of an average of 4 °C is also observed 
in surface temperature between streets where concrete is 
used as a major building material and streets where 
traditional building material (stone) and traditional 
construction techniques are applied. A similar trend is 
observed for mean radiant temperature in wide streets 
compared to narrow streets. The mean radiant temperature 
in a narrow street with an H/W ratio is recorded due to the 
thermal mass of the construction material and a less open 
area to release the heat. A comparative analysis of heat 
distribution for streets of different height-width ratios 
through average values of Air Temperature, Surface 
Temperature, Mean Radiant Temperature and Universal 
Thermal Climate Index for both winter and summer is 
shown in Fig. 10 and Fig. 11. 
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Figs. 11(a-c). (a) Diffused Solar Radiation, (b) Global Solara 
Radiation and (c) Direct Solar Radiation for four 
streets during winters 

 
 

The short wave radiation fluxes are shown in Figs. 
12 and 13 for winter and summer. The streets are warmer 
in summer as the aspect ratio decreases, but this trend is 
more prominent in E-W orientation streets (H/W = 1.6) 
due to high direct solar radiation. Global solar radiation is 
highly influenced by Direct solar radiation; hence 
similarities between the two solar components for streets 
can be observed in graphs [Figs. 11(b&c) and                    
Figs. 12(b&c)]. In contrast, the Diffused solar radiation 
escalates with an increase in aspect ratio. This is due to 
the high amount of reflected radiation as the vertical 
surface area is more in such streets (H/W= 3.3 & 4.8). But 
the diffused radiation fluxes do not exceed 231 W/m2 for 
all the streets and is noted to be maximum at 181 W/m2 for 
the lowest height to width ratio street inthe SW-NE 
direction.  

 
 

Figs. 12(a-c). (a) Diffused Solar Radiation, (b) Global Solara 
Radiation and (c) Direct Solar Radiation for four 
streets during summers 

 
 

In other cases, the streets with a height to width ratio 
of 0.9 and 1.6 are highly exposed from 0900 hours to 1500 
hours, with global radiation reaching a maximum of          
903 W/m2 in summers and 419 W/m2 in winters. Despite 
the high H/W ratio, the east-west oriented street 
experiences a high heat gradient as the sun rays fall on the 
street laterally from both sides during the day. The NW - 
SE  and N - S  oriented streets with high H/W ratios (3.3 
and 4.8, respectively) observe no direct solar exposure 
during peak heating hours (1200 hours to 1500 hours) in 
the streets in summers. As the height to width ratio 
increases, the time span of heat gain decreases in 
summers. Inversely high H/W ratio of streets does not 
support heat gain in winters; however, these streets (Kila 
Gate and Lashkar) have been shown to be thermally 

a 

b 

c 

a 

b 

c 
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comfortable due to the building materials and compact 
built form (XrYrZr and XrYrZu, respectively).  

 
4. Conclusion  

 
Outdoor thermal comfort was analysed in this study, 

using artificial neural network models. The Universal 
Thermal Climate Index was considered for evaluation as a 
measure of outdoor thermal comfort in four different 
streets. These streets represent four major zones of 
Gwalior city featuring composite climatic conditions. In 
order to develop ANN models, a funnel research approach 
was applied. First, using Pearson’s correlation coefficient 
a linear relationship between input variables was 
determined. It was found that the mean radiant 
temperature is in high correlation with globe temperature 
and surface temperature. Based on the acquired results, 
meanradiant temperature was considered to be used in 
further analysis to avoid future redundancies and over-
fitting concerns. Second, the ANFIS models were 
developed and processed to evaluate the impact of 
meteorological parameters on UTCI. Air temperature 
followed by mean radiant temperature, relative humidity 
and wind speed was found to have maximum impact on 
UTCI values for both summer and winters. This resonates 
with the previous findings found in literature. Therefore, 
two types of ANN Models were developed. One model 
used all the influencing meteorological parameters - air 
temperature, relative humidity, wind speed and the other 
used only air temperature. This study established that only 
air temperature can be used to predict outdoor thermal 
comfort using artificial neural networks. The validity of 
these models is evaluated through various statistical 
indices like coefficient of correlation, true predicted rate, 
false alarm rate and success index. R2 in the summer 
season is found to be 0.852,  0.986, 0.962, 0.955 and in 
the winter season 0.976, 0.870, 0.941, 0.950 for Kila Gate 
(KG), Lashkar (LAS), Morar (MOR) and New City 
Centre (NCC) respectively. This highlights the efficiency 
of developed artificial neural network models. Similarly, 
the success index computed is in range 0.73 - 1 (Kila 
Gate), 0.88 - 1 (Lashkar), 0.86 - 1 (Morar), 0.87 - 1 (New 
City Centre) for the summer season and 0.78 - 0.99 (Kila 
Gate), 0.61 - 0.98 (Lashkar), 0.55 - 0.98 (Morar), 0.87 - 
0.99 (New City Centre) for the winter season. These 
results conclude the high predictive ability of the 
developed artificial neural network model for both 
summer and winter seasons in composite climate. 
Nonetheless, the study also has its limitations in regard to 
data collection. The data set for the winter season is 
smaller than that for the summer season, owing to long 
summers in Gwalior city due to its location in a sub-
tropical zone.The study contributes to smart city 
initiatives for future urban design and city planning for 
different urban microclimates to attain outdoor thermal 

comfort for reduced urban heat island and physical well-
being to create sustainable cities and societies. 
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Appendix 1 
 
import pandas as pd 
 
df = pd.read_csv('TPR, FAR , SI_summers.csv') 
# O_PET = df.iloc[:, 0] 
# P_PET = df.iloc[:, 1] 
O_UTCI = df.iloc[:, 1]   
P_UTCI = df.iloc[:, 2]   
 
O_UTCI = list(O_UTCI) 
P_UTCI = list(P_UTCI) 
 
lim = [[-2000, -40], [-40, -27], [-27, -13], [-13, 0], [0, 9], [9, 26], [26, 32], [32, 38], [38, 46], [46, 2000]] 
 
n = len(O_UTCI) 
 
for l, u in lim: 
    X = 0 
    Y = 0 
    Z = 0 
    for i in range(n): 
        if l < O_UTCI[i] <= u and l < P_UTCI[i] <= u: 
            X += 1 
    for i in range(n): 
        if l < O_UTCI[i] <= u: 
            if P_UTCI[i] > u or P_UTCI[i] <= l: 
                Y += 1 
    for i in range(n): 
        if l < P_UTCI[i] <= u: 
            if O_UTCI[i] > u or O_UTCI[i] <= l: 
                Z += 1 
 
    W = n - (X + Y + Z) 
 
    print('X - ', X) 
    print('Y - ', Y) 
    print('Z - ', Z) 
    print('W - ', W) 
 
    try: 
        TPR = X / (X + Y) 
    except Exception as e: 
        print(e, '1') 
        TPR = '-' 
 
    try: 
        FAR = Z / (Z + X) 
    except Exception as e: 
        print(e, '2') 
        FAR = '-' 
 
    try: 
        SI = (X + W) / (X + Y + Z + W) 
    except Exception as e: 
        print(e, '3') 
        SI = '-' 
 
    print('TPR - ', TPR) 
    print('FAR - ', FAR) 
    print('SI - ', SI) 
 
    print(l, u) 


