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PROPAGATION OF WAVES ON THE PLANETARY
SURFACES

Most of the problems arising in meteorology and
related areas get local treatment, i.e., one considers them
on a small patch of the planctary surface. The small patch
can be dealt with as a part of R? and thus one can
write down partial differential equations describing
certain processes in terms of the Euclidean coordinates.

Dealing with global set up of the same problems are
much more difficult, mainly because of the non-zero
curvature of the planetary surfaces,

Propagation of certain types of wave on the surfaces
can be described by the invariant wave equation which is
generalization of the classical wave equation. If we
denote by £1, £2 local coordinates and by
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the metric form on the surface then the invariant wave
operator (Friedlander 1976) is given by the formula :
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where p(£) isthe scalar curvature at point §¢.

The initial value problem for the wave operator cone
sists of finding solutions of
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which at time 1=0 satisfy the initial conditions
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In the first approximation we can think of the planetary
surfaces as spheres with longitude A and co-latitude 8
serving as local coordinates. In this case the metric
form and the invariant wave operator correspondingly
are o -
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where, R is the planetary radius and v is the speed of
propagating waves.
The initial value problem on the sphere consists of
finding the functions u(f, 8, A) such that
Cu (¢, 0,8) =0

u(0, 0, 2) = [ (6, }) 3)
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It is well known that the solution of Eqn. (3) can be
written as a series in terms of spherical harmonics
(John 1978). We show how to obtain the solution of
Eqn. (3) in explicit form.

To simplify our work we temporarily assume that

/=0 and R—=v=1. The general case follows from this

particular case as it is shown in John (1978) and the
general solution will be written up later on in Eqn. (7).

Rather than using heavy mathematical computations,
we use phenomenological approach. Recall that on small
areas planetary surface is flat. That is, if globally u satisfies
Eqn. (3) then locally it should behave likea solution
of the wave equation on the plane. But the solution of
the wave equation on the plane is given by the formula

(John 1978) :
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where, u(P, 1) is the value of v at point P at time ¢, £
are the local coordinates of a point on the sphere,
dp (£) isthe Haar measure (i.c., measure invariant with
réspect to natural motions) and ¢ is the distance between
P and £

We can then look for a solution of Eqn. (3) in the form :
u (P, 1) = , J. ) g(.:"c_),d’_‘(_{)ﬁ
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with &, dp(€), d, D (P, 1) being correspondingly local
coordinates, Haar measure, distance between P and
£, the disc d < t on the sphere and /is an unknown
function that will be determined later on. One can
casily compute that in terms of coordinates 6. A.

dp = sin 9 40 dA
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and thus
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where, ¢, A and ¢, g are correspondingly coordinates
of P and ¢

Substituting Eqn. (6) into Eqn. (3)and using that on
the sphere the distance between points (8, A) and (¢, ¢)
satisfies :
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we obtain
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that gives us B
h(t) = 4/ 2 cos .
This leads us to the conclusion that
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One can verify the validity of the latter by substituting it into Eqn. (3).
For completeness sake we give here a formula for the general solution of Eqn. (3) which s :
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Fig. 1

where D (0, A, ;-;-) is the geodesic disc of radius

—-'g centred at the point (6, A), i.e.. the set of all points
on the sphere whose geodesic distance from the point

(8, A) is less than 7% .

The formula Eqn. (7) holds for 0 < —;{- < =, when
t ot 2
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One can use the above formula to compute u(t, 0, 1)
t, 8, A it . .
and ﬁ%—} for _}e' € [0, 7] and then solve it again
vi

for & € [7s 27] ete.

To understand behaviour of the solutions better we
look at the point # = 0. The formula for u simplifies to
the form :

u(tso ] A) = i J- vt gﬁ[”?" S IJ‘ dsb dtp —
V8 JDO.T)  4/cos § — cost
R S ) f S, @)sin ¢ dp dy
/8y ot J Do, %) \/C0S § —cosT

The value of u at the point # = 0 are affected only by
the values of the initial data on thedisc D( 0,% )- The
initial data near the boundary of the disc provides more
influence than the initial data inside the disc because of

sin
presence of the factor — --—!ﬁ:f . In general the
4/cos y — cos ¢
value of the solution at a point 4 depends on the
initial data on the geodesic disc of radius % (shaded in

Fig. 1). As time goes on the disc increases until it
covers the whole surface. At that momemt ( f = }-13)

the formula Eqn. (7)is no longer valid; we have to com-
pute the data at 7 = %" and then use formula Eqn. (7) with

these data to compute the solution for 3 e [, 27 ] ete.
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