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On stress accumulation near a finite rectangular fault
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ABSTRACT. The problem of stress accumulation near a locked vertical rectangular strike-slip fault is
considered. The fault is taken to be situated in a visco-elastic half-space. It is assumed that tectonic forces
maintain a steady shear stress far away from the fault. Exact solutions are obtained for the displacements
and stresses in the system and it is shown that, in the absence of fault-slip, there would be a steady accumulation
of shear stress near the fault.,, which would lead to a sudden slip on the fault, resulting in an earthquake,
under suitable conditions, which are determined. The exact solutions also show that the accumulation of

shear stress would again take place after the fault-slip.

It is shown that, under suitable conditions, this would lead to another slip on the fault after a sufficient
time. The analytical solutions can be used to compute the influence of different factors, such as, the dimensions
of the fault, the effective viscosity of the lithosphere and the stress system maintained by tectonic forces, on
the time required for the shear stress accumulation to reach the level necessary to cause fault slip. It is
also shown that, if adequate data are available on the ground deformation on the surface near the fault, it
would be possible to obtain estimates of the probable times of fault slip, This may be of considerable use in

earthquake prediction and in the estimation of changes in the seismic risk near the fault with time. Finally,
it is shown that it would also be possible to obtain estimates of the effective viscosity of the lithosphere from
a comparison of theoretically calculated results and suitable observational data, if available.

1. Introduction

In studying the problem of earthquake predic-
tion it is important to note that, a fault-slip gener-
ating an earthquake would normally be preceded
by the accumulation of stress near the fault over a
considerable period of time. The fault slip would be
expected to occur when this stress accumulation
reaches a critical level. For strike-slip faults, such as
the San Andreas fault, some theoretical models
have been considered recently by Turcotte and
Spence (1974), Savage (1975), Spence and
Turcotte (1976) and Budiansky and Amazigo
(1976). In the models proposed by Turcotte and
Spence (1974), Spence and Turcotte (1976) and
Savage (1975), the stress accumulation is taken
to be the result of steady relative motion of the
parts of the lithosphere on opposite sides of the
Jocked fault. In these models the mechanism
of the relative motion is not considered and the
entire system is taken to be elastic. The models
require the existence of large and steadily increas-
ing lithospheric stresses far away from the fault.
Budiansky and Amazigo (1976) considered a
locked fault in a visco-elastic layer and assumed
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that tectonic forces maintain a constant shear stress
in the layer far away from the fault. It is shown
that steady accumulation of shear stress would
occur in such a model. However, Budiansky
and Amazigo considered a two dimensional
problem in which the length of the fault is taken
to be very large compared to its depth, moreover
the effect of fault-slip on the stress system is not
considered in detail. To obtain a more realistic
representation of the g:ocess of stress accumulation
and the interaction between the changes of stress
due to fault slip and the stress accumulation
under the action of tectonic forces, we consider a
three dimensional problem in which a rectangular
fault of finite length is situated in a visco-elastic
half-space. We suppose that tectonic forces
maintain a constant shear stress in the half-space
far away from the fault. We then study the process
of stress-accumulation in the system both before
and after fault slip. We note in this connection
that the problem of relaxation of stress in a visco-
clastic half-space after fault slip has been con-
sidered carlier by Rosenman and Singh (1973 a,
1973 b) and Singh and Rosenman (1974). How-
ever the interaction between faultslip and creep
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under the action of tectotic forces, leading to
stress accumulation, does not seem to have been
considered earlier.

2. Formulation

We consider a vertical strike-slip fault F, situa-
ted in a visco-elastic half-space which is taken to
be elastic for purely dilatational changes and of the
Maxwell type for deviatoric stresses and strains.
We introduce rectangular Cartesian co-ordinates
(x4, Xa, X4) with the free surface as the plane x,=0,
the plane of the fault as the plane x;=0 and the
x;-axis along the trace of the fault on the free
surface,

The stress-strain relations for deviatoric stresses
7;; and deviatoric strains y,;; for the viscocla-
stic half -space.

1.1 3 D (yi))

( e '-55)7"" =9t | (1)
and for dilatations, i}
cii = 3k.A .}

where, k& = Bulk modulus, G=Rigidity, 5—New-
tonian viscocity and /\=Dilatation.

We note in this connection that in the process of

long term deformation of the lithosphere under
the action of tectonic forces we can expect
the occurrence of secondary creep for which the
Nabarro-Herring creep mechanism may be
relevant (Heard 1976). The material would
then be expected to have a Newtonian viscocity
for which the simple constitutive Eqn. (1) would
be reasonable.

We consider steady deformations of the system
leaving out of consideration the comparatively
short period immediately after a sudden fault slip
when the seismic waves generated by fault slip
exist in the neighbourhood of the fault. For such
deformations, both before fault slip and after the
seismic waves generated by faulting have propaga-
ted far away from the fault the inertial forces
would be very small and can be neglected. This
approach was adopted by Budiansky and Amazigo
(1976) and also by Braslau and Lieber (1968),
Rosenman and Singh (1973 a, 1973b) ; Singh and
Rosenman (1974), Nur and Mavko (1974),
Barker (1976) and Rundle and Jackson (1977)
who considered stress relaxation in visco-elastic
system following fault slip. On neglecting the
inertial forces the stresses satisfy the relations;

Tijsi — 0 (2)
where, o;; are the stresses, so that
Tij = 0i5-19ij- Ok

In Eqns. (1) and (2) the usual conventions are
followed and i, j, k correspond to 1, 2, 3.

We assume that shear stress 7,5 at a large dis-
tance from the fault has a constant value 7

maintained by tectonic forces. Then the stresses
satisfy the following boundarv conditions ;

041, g, O3 =0 0N = 0 l
Toy => T, , @8 Tp - o0 ( (3)
Op1s Tiae T1p=> (), 887 > ]

3. D2formation of the system in the abienece of fauit-siip

In the absence of any fault ¢lip, the displace-
ments and stresses would be continuous throughout.
We assume that there is an initial displacement
and stress field (u;), and (oy;), satisfying the
relations (1) , (2), (3), where (u;),, (o;;), are
functions of (x,, x,, x3).

To obtain the displacements and stresses, we
take Laplace transforms of (1), (2) and (3)
with respect to ¢ . The resulting boundary value
problem is solved easily as shown in the Appen-
dix. On determining the inverse Laplace trans-
forms of these solutions, we obtain exact solutions
for displacements and stresses. It is found that the
displacement u, parallel to the x,; axis and the
stress 7,5 which controls the strike-slip faulting are
given by :

T (;\1)

Uy — (w L)u +

and
b o7 (l—e —%/n) (A2)

The other deviatoric stresses ;5 are of the form :

Ty = (Tager € /1

i = (risloe %

Hence, all the shear stresses except 7,y relax
completely as t 00, If (745) <7eg in the neighbour-
hood of the fault, gradual accumulation of the
shear stress gy would occur near the fault and
ultimately 744 5705 Il the critical value of the
shear stress 749 required for fault slip is less than
ros @ sudden fault slip would occur, generating an
carthquake, when 7,5 reaches the critical value.

The solution (Al) also shows that in addition to
the initial displacement there would be a creep-
ing displacement under the action of the stress 7
maintained by tectonic forces.

4. Deformation of the system after fault-slip

We suppose that, the critical value of 7, for
fault-slip is less than 7, , so that the fault slips after
a sufficient time. We consider a dislocation model
of the fault slip following Chinnery (1961, 1963,
1964), Maruyama (1966) and others, and assume
that across the fau't F, which is in the region
xo=0,d < x;, <D +d;—L< x3 < L, we have
a discontinuity in the displacement u,; given by

[ug] = U. H(1) (4)
where,
W] = Lt (u) — Lt (4)
Xy >0+ Xy +0—
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The other stresses and displacements are con-
tinuous throughout.

We assume that, just before fault slip, there exists
a displacement field (u;), and a stress field
(0i5)p satisfying the relations (1), (2) and (3)
where (u4;),, (oi)p are functions of (x;, x,, X3).

To obtain the displacements and stresses, we
take Laplace transforms of (1) to (4) with respect
to t. The resulting boundary value problem can
be solved as explained in the Appendix, on using
the results given by Chinnery (1961).

The inverse Laplace transforms of these solu-
tions can be determined, and finally we obtain
solutions for the displacements and stresses valid
for all x,, x,, x5 and ¢,

_The shear stress 753 which controls the fault
slip is found to be of the form :

Gt :
1‘2_‘ (;Ul, ws, wa, t) :(1-23)B OX[D( - ;'; )'i‘ Tw (1—(3('”11)

+ A (zy, %5, 2;) U exp (—Gt/y)

s : G (31 + 26)
+ B ('E]J Ty, md') U L-XP [_W_i_ .2(‘!) _t]

JLES

-+ C (21, 23, 75) U exp [_ i

‘}‘ < D (ﬂ?l, Ty, z:j) + E (2’1, Ty, Eﬂ) t >><

G (32 4 26) -
Ue <R e B 5
| Sare'] ©
2G
where A = K — aF and 4, B, C, D, E are func-

tions of x,, x,, xgand A, G, .

The expressions for A, B, C, D, E are very
complicated and are not given here.

From Eqn. (5) we find that, the initial
shear stress (7 59 ), relaxes completely. Just after
fault-slip there is a drop in the stress 7,, given
by rp = —(4+B+C+D) x U which is found
to be positive near the fault. However this co-
seismic stress-drop relaxes completely as ¢+ o, The
term 7o (1 —e—0Gln)represents the accumulation
of shear stress under the action of the stress
7o maintained by tectonic forces. For large
values of 4 this term becomes predominant, so
that the accumulation of stress under the action of
tectonic forces determines that ultimate level of
sphear stress near the fault. Ultimately the stress Tag

in the neighbourhood of the fault again approa-
ches 7. Since the critical value of 7, for
fault slip is taken to be less than 7 o, the fault
would slip again after a sufficient time. Apart
from 7,4 the other shear stresses are found to relax
completely as t=co. If T be the time from the
first fault slip to the next, 7 can be calculated
if we compute the change in (r,,)p on the fault
with time. To do this it is necessary to have esti-
mates of 7 o, and 5. To obtain some idea about
the magnitude of these quantities, we consider the
stresses and displacements near the middle of a
fault whose length is fairly large compared to its
depth and which extends upto the surface so
that d=0 and [, =>>D. In this case we find that
close to the middle of the fault, and close to the
surface x,=0

u; & (%)p + Te '::2 & + U.:gr(t) .
[ (22) e (2:2)]
and
T3 R (), e O 47 (L—e @) —
GU[ D+ D g —Gtfy
T o7 a? + (Dta)? T agf + (D—ay)? ] )

Hence, on the surface x,=0 and close to the
middle of the fault, the rate of accumulation of
shear strain would be 74 /7. In this connection,
Savage and Burford (1973) have reported that,
in the neighbourhood of a locked section of the San
Andreas fault close to Ross mountain, the rate of
accumulation of shear strain has been estimated to
be (0.55 40.05) p strain per year, from the results of
geodetic surveys. We therefore take 7 [7=0.55u
strain per year for this part of the fault. This 1s
arough estimate, and a more reliable estimate may
be obtained on comparing the theoretically
calculated ground displacement with data on the
observed ground displacement at different dista-
nces from the fault over a sufficiently long time,
provided such data are available. To obtain an
estimate for 5, we note that Cathles, ITI (1975)
has estimated the effective viscosity of the lower
lithosphere for slow deformations to be of the
order of 102! poise, from a comparison of theore-
tical models and observational data on the post-
glacial uplife in Fennoscandia and Canada.
Budiansky and Amazigo (1976) also obtain an
estimate for % of the same order from a com-
parison of theoretical and observational data. We
use the estimate 5=10"" poise. This gives us an esti-
mate for 7o . With these estimates of r, and 5 we
compute the variations of 7,3 with time at points
on the fault. This enables us to determine the time
taken by 7,5 to reach the critical level for fault
slip. To illustrate this process, we compuic the
changes in 7/t with time, near the centre of
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Fig. 1. Finite rectangular fault and the co-ordinate axes,

the fault [x,= (d-+D)/2; x, = x, = 0]. Keeping
the San Andreas fault in view, we take d=0:
D=10 km, L=200 km, U=4 metres; A\=G=
3.7X10" dynes/cm?® (using estimates given by
Knopoff 1958 and Aki 1967). For the points
under consideration, we take (r,, ), to be equal to
the co-seismic stress drop 7, on the fault. We study
the variations of the ratio 7,7, which starts
from zero at t=0 and tends to | as I »., under the
assumptions we have made. The variations of
this ratio with the time ¢, which isin years, are
shown in Fig. 2. If the value of 7,, at the point
in the critical configuration is known, we can use
this curve to estimate the time of the next slip
on the fault. We find, from Fig. 2, that 7,
reaches a value very close to r, (about 0-96 7, )
after 300 years. The time 7 from one fault slip to
the next, is found to depend significantly on the
critical value 7, which 7,, reaches at the time of
fault slip near the centre of the fault. 1f 7,=0"57_. ,
it is found that the return time 7 is about 72
years. Butif 7, =087, the return time is about
160 years, and if 7.=0'9 74, the return time is
about 225 years. The difficulty regarding the un-
known value of 7, can be removed to some extent,
if we assume that the fault slips when the post-
seismic stress accumulation 7, =7,5 — (Tay)p 7D

becomes equal to the coscismic stress drop rp near
the centre of the fault. With the values of the

parameters, which we have taken for the model,
we find, on using Fig. 2, that the return time would
be about 205 years. Such estimates ol the return
time are expected te be useful in long-term earth-
quake prediction, and also in estimating the time-
dependence of seismic risk, which increases with
increase in time, measured from a fault slip.
Moreover, the estimate which we can obtain for
the magnitude of the post-seismic stress accumu-
lation may give us some idea about the magnitude
of the stress release in an carthquake. This may
again be helpful in estimating the magnitude of
seismic risk.

The estimates we have obtained are subject
to considerable uncertainty, since the value of »
has been chosen here on the basis of results
obtained from other theoretical models and
from significantly different considerations. The
estimates would be more reliable if the value of 5
can be obtained by comparing theoretically
calculated results for the model we are considering
with relevant observational data. In this connec-
tion, we note that, we have obtained exact solu-
tions for the ground displacement on the free
surface, as a function of x,, x, and ¢ and depend-
ing on 7, 74 and the fault parameters. Hence, if
detailed observational data are available for
the ground deformations at different distance
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Fig. 2. Variation of shear-stress r,, with time; the time t is in years.

from the fault over a sufficient length of time,
it would be possible to obtain more reliable
estimates of the parameters 9 and 7, so that
we can have an estimate of the effective
viscosity of the lower lithosphere. This would
lead to more reliable estimates of the return time
T and the time-dependence of seismie risk. Relia-
bility of the estimates may also be improved
if we consider changes in the average stress
accumulation over the fault as a whole instead
of the stress accumulation at a particular point.
Such an exercise would involve very large compu-
tations and would be worthwhile if more reliable
estimates of the model parameters can be calcula-
ted from more detailed observational data.
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Appendix

Taking Laplace transforms of (1), (2), (3) we get

= Ky - 1
(7is) =(;5. vr) ) T g
aty G

1 .
x4z (e — (ridor  (12)

oi = 3k, A (2a)
aij i =0 (3a)
;fj = TJ|3 :15 8,‘} :r‘“_. (li])

_‘?u ) _;xz ’ E;a y=A; onwgy = (]1 (54)
O11 5 0135 015y () 5 B8 &) —>c0 f
and

T-ga - 7,/8, a8 2y —>¢p (6a)

It is easily seen that (la)—(6a) are satisfied
by the solutions :

(it) = _b T ﬁz’
(al) — (:Tl)
(5q) = 2

o (bl )
B S-+G/y ‘e \ 8§ S+Gn

and, ;,‘j = (74j)o [ ( 8§ + G/n) for all deviatoric

stresses 7;j €xcepl 74y

. 3k
(”ui) = Tg‘ . (ﬁ\ )o

The inverse Laplace transforms are obtained
casily giving the displacements and stresses.

After fault slip we have to satisfy the additional
condition [y,] = U/S on F (7a)
In (la), (#;;), and (7¢7)y would be replaced
by (r;;), and (vii)p, the values just before fault slip.

We find that, the conditions (1a)
be satisfied if,

(7a) would
(7;) = (:?,-], 4 (e'i,-)..,
(7id) = (7 + (75)a

(i) = (o + (ciids

where, (4;),, (T..'i)l and (&,»‘-), satisly equations
(la) to (6a) and (i), (7i;)y and (o), satisfy
cquations (2a), (3a), (4a), (5a), (7a) and the follo-
wing equations which replace (la) and (6a) :

o . -
J __b— _fﬁ i_ (}’ J (“))
G o
and
(Tag) — 0, as £y =2 (6h)

The boundary value problem for (i), (7i4)
. = 1
and (o;;); has been solved already. The boundary
value problem for (u;), (7:j)s. (o), reduces
to the problem of determining the elasto-static
displacements and stresses due to a dislocation
U on F where Fis situated in an elastic half-space,
This elasto-static problem has been solved by
Chinnery (1961). Hence the solutions for ()2,
(7ij)as (0ii)s arc obtained. Finally on invert-
ing he Laplace transforms we obtain the displacc-
ments and stresses,




