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On stress accumulation and fault slip in the lithospbere
ARABINDA MUKHOPADHYAY and (Mgs.) PURABI MUKHER JI*

University of Calcutta, Calcutta

ABSTRACT. A mechanism ol accumulation of shear stress in the neighbourhood of a locked vertical
strike-slip fault in the lithosphere is considered. The fault is taken to be situated in an elastic layer resting
on and in welded contact with, a visco-zlastic half space, in which shear stresses are maintained far away from
the fault by tectonic forces. Exact solutions are obtained for the displacements and stresses in the system in the
absence of faull slip, taking into account the displacements and stresses present initially. It is shown that stress
accumulation would occur continuously in the upper layer near the fault till the fault slips suddenly, generating an
earthquake. Exact solutions are next obtained for the displacements and stresses following the fault slip, taking
into account the displacements and stresses present before fault slip, and it is shown that stress accumulation would
again occur in the upper layer, till the fault slips again. The mathematical results are applied to some relevant
observations on the accumulation of shear strain in the neighbourhood of the San Adreas fault. Itis shown thata
comparison of the mathematical results obtained and the observations on the ground deformations on the
surface near the fault can be used to arrive at reasonable estimates for the timss between consecutive slips on
active strike slip faults. The results are also expected to lead to greater insight into the problem of
earthquake prediction. [t is shown that, if sufficient data on surface deformation are available, the resultscan be

used to estimate the effective viscosity of the lower lithosphere.

1. Introduction
The problem of earthquake prediction has at-
tracted the attention of many seismologists in
recent years, due to the practical importance of
carthquake prediction, and due to the fact that
steady accumulation of relevant seismological
data and the improvements in the techniques of
analysis have made it possible to hope that eff-
ective programmes of earthquakes prediction might
become possible in  the near future. In this
connection, a better understanding of the process
of stress accumulation in the neighbourhood of
faults, which eventually leads to a sudden fault
slip, generating an carthquake, would be very use-
ful. Effective quantitative analysis of the process
of stress accumulation would be facilitated if it is
ossible to devise suitable theoretical models which
incorporate the essential features of the mechanism
of stress accumulation, and enable us to estimate
the stress accumulation on the fault below the
surface from the observed ground deformation on
the surface. For strike-slip faults, some such theo-
retical models have been developed. In the theo-
retical models considered by Turcotte and Spence
(1974), Savage (1975) and Spence and Turcotte
(1976), the stress accumulation near locked faults
is taken to be due to relative motion of the parts
of the lithosphere on the two sides of the fault.
The mechanism of this relative motion is not
considered in such models, and the lithosphere
is taken to be elastic. Budiansky and Amazigo
(1976) considered a locked strike-slip fault situated
in a visco-elastic layer, representing the litho-
sphery, which is free to slide on the asthenosphere
below it. It is assumed that tectonic forces main-
tain a constant shear stress in the layer far away
from the fault. It is shown that accumulation of

shear stress would occur in the layer due to creep
of the material. We note, however, that the efl-
ective viscosity of the lithosphere would be ex-
pected to depend on the depth, and the lower
lithosphere, being at a much =~ higher temperature
and pressure, would be expected to undergo
much greater creep than the upper lithosphere,
We also note that the observed faulting on shallow
strike-slip faults, such as the San Andreas fault,
is often found to extend to depths of about 10 km
or 15 km only. This appears to indicate that
the accumulation of stress at greater depths does
not reach sufficiently high values to cause further
downward extension of the fracture, This pheno-
menon can be explained easily if we assume that
the material of the lower lithosphere below the
fault creeps under applied tectonic stresses without
undergoing fracture. We again note that, accord-
ing to the results of laboratory experiments on the
deformation of rocks at high temperatures and
pressures, as rcported by Griggs and Handin
(1960), Heard (1976) and others, at the pressures
exceeding 3 kilobars and temperatures exceeding
300°C that may be expectd below such faults
at depths exceeding 15 km (Heard 1976), and
at the strain rates of the order of 0.1y strain per
year, observed in the neighbourhood of strike-
slip faults (Savage and Burford 1973, Prescott
and Savage 1976), the rocks would be sufficiently
ductile to undergo large creeping deformations
without frecture. Finally, we note that the tectonic
forces causing stress accumulation are likely to be
more prominent in the lower lithosphere. Keeping
all these points in view, we consider a two-layer
model, The upper layer is taken to be elastic, in
;.vcldg:d contact with a viscoelastic half space be-
ow it.
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A locked vertical strike-slip fault is taken to be
situated in the upper layer, reaching upto the
surface. We assume that tectonic forces maintain
a constant shear stress in the half space, at a great
distance from the fault, and obtain exact solutions
for the displacements and stresses in the system
in the absence of fault slip, and also between two
consecutive slips on the fault. The eflect of taking
into accourt any possible creep in the upper litho-
sphere, by taking the upper layer also to be vis-
co-elastic, is considered briefly.

2. Formulation

We take H to be thickness of the upper elastic
layer. We consider a plane vertical strike slip fault
F of depth D, where D<H, so that the fault siip
is in the upper layer to start with. We introduce
rectangular cartesian coordinates (x, y, z) with
the free surface of the upper layer as the plane
x=0 and the plane of the fault as the plane y=0,
as shown in Fig. 1, which represents the section
of the model by the plane z=0. We assume that
the length of the fault is large coimpared to  the
depth D. We therefore assume that the stresses
aad the displacements are independent of the
coordinate z. We consider the displacement com-
ponent W (x, y, t) parallel to the z-axis, associa-
ted with strike slip faulting. Following the usual
notation, we represent the relevant stress com-
ponents by 7., (%, 3, 1) and 7, (x, 3, 1).

The corresponding displacements and stresses
in the visco-elastic half space are represented by
wl (x!y1‘)$ Tl):z (x,,)':t) und Tlu’f_ (x.‘_}',f),
For the elastic layer the constituuve equations
are taken to be :

Jw
I
oy Y
The material of the half-space is taken to  be
linearly visco-elastic and of the Maxwell type. The
constitutive equations are taken to be :
1 39 2 W
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Tes = g =— and 7 = 1y
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ac in Budiansky and Amazigo (1976).

We are interested .in the slow accumulation of
shear stress in the model over long periods of time.
For such processes, the inertial forces are very
small. In fact, the inertial forces would be signi-
ficant only during the period just after fault slip,
when the elastic waves generated by fault slip are
still present near the fault. But this time would
normally be small compared to the time of steady
accumulation ol stress between consecutive slips
on the fault.

We, therefore, consider quasi-static deformations
of the model, in which the internal forces can be

(0,0)
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Fig. 1. Section of the system by the vertical plane Z=0

neglected. This approach was adopted by Budi-
ansky and Amazigo (1976), and also be Braslau
and Lieber (1968), Rosenman and Singh (1973a,
1973b). Singh and Rosenman (1974), Rundle and
Jackson (1977), Nur and Mavko (1974) and Barker
(1976), who considered stress relaxation in visco-
clastic models following strike-slip faulting, For
the quasi-static deformations we consider, the
stresses satisfy the following relations (Fung 1964) :

Ve I7pr s
= o 0, 0<x<H
and
L, 1.
e | e _ 0, x> H
de Jy (3)

We assume that the upper surface of the upper
layer is free, and the shear stress 71, in the half
space at a large distance from the plane y=0 is
7o , which is a constant. We assume that the
share stress 7!,, in the half space vanishes at a
great depth (i.e., as x— ). Then the shear stresses
would satisfy the following boundary conditions :

Ty = 0, at .‘\."_0, Tzz — 1",-3 at x = H,
' =0 as x>0 and 71, >7 as y—>o0 in x=M

Since the upper layer and the half space are
assumed to be in welded contact, we have,

w=u' at x=H (5)

3. Displacements and stresses in the absence of fault skip

We first study the deformations of the system
in the absence of fault slip. We assume that the
displacements and stresses are continuous through-
out the system. We also assume that three is a
displacement field w,, w,' and a stress field (r.2),
(ry2)gs (7' 22)gs (7142)y in the system at time t =0,
satisfying the relationg (1)-(3).

Since the system has been undergoing purely
shearing deformations in the absence of fault slip,
we assume that w,,w,! are independent of x, so that
(t4:)n = 0 =(71,:),, To obtain the solution,
we take Laplace transforms of both sides of the
equations (1)-(5) with respect to t. This gives a
boundry value problem whose solution is obtain-
ed without difficulty. The inverse Laplace tras-
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form of that solution is also obtained without
difficulty, and we obtain exact solutions for the
displacements and the stresses. We finally have,
for the half space,

73:?’ f‘l

w! (z, y, t;)=w'y-}+

and F(Al)

e (2, Y, 1) = (tYy)g X exp (—pa fll:f’?) [
+ 7o [1—exp (—p,ty/0)] )

where ¢, is the time measured from any suitable

instant after the relations (1)—(5) become valid
for the system. For the layer :

» T IIJ\": [ﬂ'}: ?hh) — |

T

i
w(z, y,t) = wy +T—°°qy h ®ia (x, ¥, ;)=0 1‘
and r(A2)

o -
T (2, 8, 1) = () 0+

This solution shows that, apart from the initial
displacement, there would be a steady creeping
displacement in the visco-elastic medium under
applied stress 7o, . The elastic layer, in welded
contact with the wvisco-elastic half-space, would
be deformed continuously as a result, giving rise
to a steady increase in the shear stress 7.
corresponding to the termpy, 7o, {fn. After a
sufficient time, the increase in shear stress ;.
in the upper layer would be sufficient to cause a
sudden fault slip, generating an earthquake. How-
ever, in the half space, the initial shear stress de-
cays with time and the additional shear stress
due to the applied stress 7 o, never exceeds 7.
Hence, it may be expected that no significant
accumulation of shear stress would occur in the
balf space, and the fracture would not extend into
the half space, if 7, is not large.

4, Changes in disPlacements and stresses after fault slip

We consider the quasi-static deformations in
the system after the elastic waves generated by
fault slip have propagated far away from the fault.
For such quasi-static deformations, equation.
(1)-(5) are valid. We consider a dislocation
model of the fault, following Chinnery (1961,
1963) Fung (1964), Maruyama (1966), Rybicki
(1971) and others, and assume that, across the
fault F in the region y=0, 0<x<D=<H, we have

[te] = uH(2) (6)
where u is a constant, and
[722] = 0= [ry:] (7

where, for any functon f(x, y, {),
[fl=Lt Slx, »,t; — Lt fx.t)  (7a)
y—=>0+0 y=>0—10
for any particular pair of values of x and ¢.
We assume that, after the coseismic slip, the
fault 1emains locked till the shear stress =

2
in the neighbourhood of the fault becomes suffi-
ciently large, after which the fault slips again.

We assume that the displacements and stresses
remain continuous everywhere in the model, ex-
cept on F, implying that fault slip does not occur
elsewhere in the system. We also assume that, just
prior to fault slip, there is a displacement field
(w)p, (w"), and a stress field (7:2)p, (7yz)s
((r'2)p, (v142)p, satisfying the relations (1)-(5).
Noting that the displacements w, w; given by(Al)
and (A2) are independent of x, we assume that
wy, wly are independent of x, so that (), =
0= (7"22)p.

To obtain solutions for the displacements and
the stresses, we take Laplace transforms of both
sides of the relations (1)—(7) with respect to ¢.
The solution of the resulting boundary value pro-
blem can be obtained on using results given by
Maruyama (1966) and Rybicki (1971). Finally,
on inverting the Laplace transforms, we obtain
exact solutions for the displacements and  the
stresses, valid for all times and distances. For the
elastic layer 0<<x<CH, we obtain,

w(z, Y, ) = (W), + 1,41 + wa (Y )
+ oy (2, ¥, 1),
Txz (:B: Ys t) Lk (37, y) '!_ Tzz9 T, ¥, t) } (8)
and 7y, (2,,t) :‘(Tyz)p + pieo tn—Tyz1s (%) |
+"'uzz (%, 2, 0)

For the half space we obtain

wi(x, pot) = (') + 7 opifn + wii(x,y) ]
L w12(‘r’.y: I) !
T aa(%, 9 1) = —rlezg(x,p) + Tl a(x,0)0) i 9
and 71, (x, p,8) = (7142), exp( - pafn) 1 (9)
+ 7 ll —exp(—pat/n)] — 7lya(z, )+
+rlﬂ=2(‘r: Y, t’) J
In (8) and (9), the first two terms in the express-
ions for w, w!, r,zand !, represent the displa-
cements and stresses that would have been pre-
sent in the absence of fault slip, as in (Al)
and (A2). The last two terms in each of the
expressions in (8) and (9) depend on the disloca-
tion u, and represent the effect of fault slip. In

(8), the complete expressions for the terms w,,
and w,, are given by :

woy (2, y) = % [tan™! (D, ,) + tan™1(Dy,)]
t3 D Bfu(ey) (10
m=1

®
and Woz (Z, Y, ” = :,uﬂ_ ZR“ Dﬂ’ll (t)fm (Z‘, y)
m=1

where s = mo/py, R = (1—38)/(14s), Ds=D—z,

D5:D+'E} fm (=, y) :f,:].n'—'(D]mfy)- 'tan‘hl(DM!y)
+ tan™! (Dym/y) — tan™" (Dym/y) (11)
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m
and D,,! (t) =ZA,.,,,[ 1 ¢ ate,_; (ayt) ] (12)
r=1

In (11) and (12),

4= () (55) - -5 ]‘

(a, 2)?
@) =1+ P55, m>1) }“3)
r=1 !
g (2 t) =1, |
Dy = 2mH D+, Doy, =2mH — D, ‘
Dyn=2mH~+-D xand D=2 mll—D—z. |

We also have, in (),
1Y D) h . D ]

'r:f:l (m: ?]) =

2
EN
Plj;:’_y ZRm IP’M (;l‘, y) “4)
) m=1
=4
%"
Tre2 (T, Y, t) = %J ZR"' D (t‘) Y (I,.'ﬂ (15)
B m=—=1
u
@9 =" 0. D) fow 20|~
1 % N
oo ) B du(xy) (16)
27
=1
o
/1
and Tyze (T: U, t) = Elﬂ' sz n,, (’) b (2.9)
m—1 )
(r)

where, ¥y (2, 4) =f1 (¢, Dg) — f1 (% Pow) -

-+ fi (4, Dyw) iy, Dgw) (18)
a.ndqb m (Z, y) :,fg fy, ng) + f:’. (?f’ 1)-1"‘)

fz (?], Dtm) fz (¥, Dam) “".

1 ]
In (14) - (19), fi (9, Diw) = — L P2, (1%a)

Dim q
“d fol. D)= g (D)

where D;n(i=1, 2, 3, 4, 5, 6) have been defined
earlier in (10)—(13). The expressions for wy', w',,
210 Tlaza Tlyzp, and 70y, in (9) are similar
in form to those of Wy, Wos, Trzy, Tzze, Tyz1s and
Ty.o Tespectively, as given in the equations
(10)-(19). Itis found that the terms — 7.,
—Tyz1,—7 g1 aNd—71y, ,, representing the co-seis-
mic stress drops, are all negative throughout the
model. The last term in each expression in (8)
and (9) is zero at (=0, and starts increasing as
{ increases,' finally approaching a finite limit as
t—+oo. In each of the expressions for the stresses,

the sum of the last two terms -0 as {*co, indica-
ing that the post-seismic stress drops relax com-
pletely as t-co.

5. Discussion of the results and applications

We consider the complete expression for the
stress ., which controls the fault slip in the upper
layer. We find that, just after fault slip, the value
of 7,, falls below the critical value for fault slip
due to the coscismic stress drop—r,;,- However,
for t=0, 7,. increases continuousy due to two
reasons. The first reason is the increase due to
creep associated with relaxation of the coseismic
stress  drop, represented by the  term  ry.,.
To explain this physically, we note that, following
fault slip, there would be coseismic stress drops
both in the layer and in the half space. In the
visco-clastic half space, the coseismic stress drop
would relax, and the material would creep, as
indicated by the increasing displacement
Wl o). The layer, being in welded contact
with the half space, would be deformed con-
tinuously as a result, as indicated by the
increasing  displacement wy, (4, 4, ¢). This in-
creasing displacement leads to gradual accumu-
lation of stress in the layer. The second reason
is the increasce in 7,; due to creep associated with
the effeet of the siress 7., maintained by tectonic
forces,  This is  represented by the  term
Ty ty in (9). I 7, is positive, the stress
74: would increase continuously with  in the
ncighbourhood of the fault, tll it reaches the
value required for fault slip. Since 7,, has
no upper bound if >0, the fault slip would
definitely occur after a finite time 7. However,
il ., =0, 7,,. has the upper bound (7,:),. which
it approaches as (oo, Hence if 7, =0, the
fault slips again aficr a finite time 77, if and only
if the stress accumulation required for fault slip
is less than the coscismic stressdrop 7;;.

We next consider the stress 7!y, in the lower
half space given by (9). The initial stress
(71y.)p relaxes completely as {0, and the coseis-
mic stress drop also relaxes completely as oo
ands!,, finally -7 as -0 at all points in the
layer, including points below the fault. Hence, if
the shear stress 7. is not sufficiently large to cause
downward extension of the fault into the half
space, the fault remains confined to the upper
layer only. The fault slip in the upper layer and
the fact that the fault slip does not extend down-
wards into the lower medium can thus be ex-
plained in this model. We also note that 7,
and 7',, -0 as £>o0.

After the second fault slip at =T, the system
would again reach the quasi-static state of stress
accumulation after the elastic waves generated
by faulting have propagated far away from the
fault. The time required for this would normally
be small compared to 7. Stress accumulation
would occur again, as before, and the fault would
slip again when the stress 7,. becomes suffi-
ciently large in the neighbourhood of the fault.
The results we have obtained would again be
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Fig. 2. Variation of (";-f )
unit for a, is 10™%/year and the unit for
(e;f), for is p strain year

expected to represent approximately the process
of stress accumulation between any two such con-
secutive slips on the fault. We note, however, that
since 7. becomes large in the upper layer at points
below the fault as ¢ increases, the fault slip would
be expected to extend downwards, after a few slips,
to the boundary x = H. However, in the half
space, the shear stress 7!;,, would - 7, as
t » oo ecven at points below the fault. Hence,
no significant stress accumulation occurs’ below
the faults if 7., is not very large, and the fault
does not extend into the half space.

T
T ( Tyza ) yand e.,= ?“’ (22)

where 1,,, is given by (17). Then e,4, and e,,
represent the rates of accumulation of shear strain
due to creep associated with relaxation of coseismic
stress drop and the creep due to the shear stress
Tw .

We shall try to compare e,; and e,
with the observed rates of strain accumulation
on the surface near strike slip faults. For the San
Andreas fault, Savage and Burford (1973) have
reported that, in the neighbourhood of a section
of the San Andreas fault near Ross mountain,
which has remained locked since the San Fran-
cisco earthquake of 1906, the averge rate of
strain accumulation near the fault from 1906 to
1969 has been (0.554:0.05)u strain per year. It
has also been reported by Prescott and Savage
(1976) that, during the period 1971-1975, the
avcragc rate of strain accumulation near another
locked section of the southern part of the San
Andreas fault near Palmdale, along which fault
slip occurred in 1857, was about (0.21 4-0.003) .
strain per year. These two observational results
give :

(;{)l + ere = 0.55p strain/vear
and (e,r); + €0 = 0.21p strain/year

Let Cpf=

(23)
Here (e,5), is the average value of e,y near the
fault on the surface (x &~ 0, y a 0) for the locked
part of the fault near the rupture of 1906, from
1906 to 1969, and (e,;), is the average
value, from 1971 to 1975, of the rate of accumula-
tion of strain near the rupture of 1857 on the
surface (x~0, y~ 0 ). In writing (23),

with a;: The Fig. 3. Variation of y with a,: The unit for Fig. 4.
7 is 10 * Poise and the unit for a,
is 10—2/year

Variation 7., with »: The unit
for 5 is 10! Poise and 7, is in
bars.

we assume that 7 [n has the same value for the
two parts of San Andreas fault near the ruptures
of 1906 and 1857. From our analysis, it is clear
that (e,r),, €, and (e.s), are non-negative in our
model, assuming that 75 =0. Hence ¢,, < 0.21 p
strain/year, and (e,s), lies between 0.34p strain/
year and 0°-55u strain/year. We compute the
values of (e,s), for different values of 7, taking
D=H=10 km and u=4 metres, following Knopoff
(1958), p,=3.7 x 10" dynes/cm?, following Aki
(1967) and s=1, x=0, y=0.

It is found that (e,); is a monotonic fun-
ction of a;, as shown in Fig. 2. Since (22) is satis-
fied by (e,s);, we find, from Fig. 2, that 0.0045/
year < a; < 0.0081/year. Taking p=3.7x 101
dynes/cm?, following Aki (1967), we find that
0.71x10% poise < n < 1.26X10%! poisc  (24)

as shown in Fig. 3. This gives an estimate of the
effective viscosity of the lower lithosphere below
the fault. We note in this connection, that Cathles
III (1975) has also obtained estimates of the order
of 102! poise for the effective viscosity of the up-
permost part of the mantle from the analysis of
data on post-glacial uplift in Fenno-Scandia and
Canada.

For any value of 5 in the range (24), we find the

corresponding values of 2, and (e,;), and hence
by (23), the correzponding value of e, This
gives the corresponding values of 7o, = 5 e,
These estimates of 7o, are given in Fig. 4. It
is found that 7o, does not exceed 8.4 bars in
this model. Hence, in the lower medium, the
maximum shearing stress would not become
greater than 8.4 bars as {—o00. This may explain
the fact that the fault slip does not extend into
the lower medium,

We next use the estimates for r, and 5 we
have obtained to compute the variations of the
ratio 7o/tp, where 7, = 7y, + py T Uy
represents the post-seismic stress accumulation
at time ¢, for points on the fault near the surface
(x~ 0, y~0). In Fig. 5, the curves I, II,
IIT and IV correspond to 7, = 8.4 bars, 6.0
bars, 3.0 bars and zero, with the corresponding
values of 7, which are n = 1.26 X 102! poise,



-

358 ARABINDA MUKHOPADHYAY anp (Mrs.) PURABI MUKHERIJI

]

-0

12+ P

®
08+

sie

04r

i} I'C;O 200 300 400

t— =

Fig. 5. Variation of the ratio of the post-seismic stress ac-

cumulation v and the coseismic stress drop 7.

The time ¢ in years and the carves L. 1L, I1T and IV

correspond 10 7, =84 bars, 6°0, 3 0 bars and zcro.
1+1% 102 poise, 0.92 102! poise and 0.71x10%
poise respectively, from Fig. 4. It is seen that the
rate of accumulation of stress depends significant-
ly on the values of 7o, and 7. For 7,5 =0, the stress
accumulation 7, never reaches the seismic
stress drop 7p, and hence fault slip does not
occur again, unless the stress accumulation  re-
quired for fault slip is less than =5 However,
if 7o >0, 7, becomes greater than 7p after a
sufficiently long time, and then there is a possibi-
lity of a fault slip similar to the onc which occurred
at t=0. For the locked part of the San Andreas
fault near the rupture of 1906, Iig. 5 shows that
this would occur at a time exceeding 260 years
after the fault slip. The exact time depends on the
values of 7, and 3. When r,/7) exceeds I,
there would be the possibility of a major fault
movement generating an earthquake with a magni-
tude of the same order as that of the San Francisco
carthquake of 1906. If the fault slips at a smaller
value of 7,/rp, the magnitude of the fault
slip would be expected to be smaller, since the
stress accumulation is smaller. If more reliable
data become available on the ground deformation
on the surface over a long period of time at difl-
erent distances from the fault, it would be possible
to obtain more definite and reliable estimates of
7o and 7, and this would enable us to de-
termine more defimtely the variation of 7,/7rp
with time. This, in turn, would enable us to obtain
more reliable estimates of the return times of major
carthquakes on the fault, and of the time-depen-
dence of seismic risk near the fault.

If, instead of taking the upper layer to be per-
fectly elastic, we assume that 1t is lincarly viscoclas-
tic and of the Maxwell type, with coefficient of
viscosity 7, >>> 7, we find that the method
used here would again give exact solutions for
the displacements and the stresses. However,
would be bounded, and would —(n,/m) 7o as,
t » oo, while 7', » 7g, a5 > 0o, a5 1IN
the model considered here. Since #,>>7, Ty
attains values > 1. Hence, the stress acc-
umulation is much greater in the upper layer.
This would again explain the fact that the fault
slip is confined to the upper layer. Estimates for
the return time of fault slip can be obtained, as in
the case of the model considered here, and the
estimates are found to be slightly greater than
those we have obtained here.

In conclusion, we note that the simple model
we have considered cannot be expected to re-
present all the features of the complex process of
stress accumulation and fault slip. However, this
model appears to explain some relevant observa-
tional results on shallow strike-slip faults, and also
gives estimates of the effective viscosity of the lower
lithosphere near the fault for the process of stress
accumulation. This model would also enable us to
obtain estimates of the return times of major earth-
quakes due to strike-slip faulting, provided suffi-
cient data on the ground deformation near the
faults are available, and to estimate the changes
in seismic risk with time.
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