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A mechanism of stress accumulation near a strike—slip fault
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ABSTRACT. A vertical strike-slip fault, situated in visco-elastic layer, representing the lithosphere, is conside-
red. The upper part of the fault is assumed to remain locked, except during an earthquake, when it slips. It is assu-
med that the lower part of the fault slips freely, so that the parts of the lithosphere on opposite sides of the lower
part of the fault slip past each other. It is also assumed that tectonic forces maintain a shear stress far away from
the fault. Exact solutions are obtained for the displacements and stresses in the system and it is shown that gradual
accumulation of shear stress would occur in the neighbourhood of the fault. There would be considerable amplifi-
cation of shear stress on the locked part of the fault, leading finally to a sudden slip of the upper part of the fault
under suitable circumstances. The mathematical results are compared with some relevant observations on the
surface deformations in the neighbourhood of strike-slip faults. It is shown that such comparison can be used
to obtain estimates of the probable time of sudden fault slip, if sufficient data are available, and would also
lead to estimates of the ratio of the effective viscosity of the lithosphere in the neighbourhood of the fault and
the shear stress maintained by tectonic forces far away from the fault. Itis also shown that the results are likely to
be useful in obtaining greater insight into the problem of earthquake prediction and in estimating the changes of

seismic risk with time near an active fault.

1. Introduction

In recent years the problem of earthquake pre-
diction has attracted widespread attention among
the seismologists and it is hoped that effective
programme of earthquake prediction would be-
come feasible in the near future. In this connection
it would be useful to have a better understanding
of the mechanism of stress accumulation in the
neighbourhood of the faults, which may lead even-
tually to a sudden fault slip generating an earth-
quake. If it is ible to devise suitable theore-
tical models which incorporate the essential fea-
tures of the mechanism of stress accumulation,
then an effective quantitative analysis of the stress
accumulation and fault slip would be possible.
For strike-slip faults, some theoretical models have
been developed by Turcotte and Spence (1974),
Savage (1975), Spence and Turcotte (1976) and
Budiansky and Amazigo (1976). Turcotte and
Spence (1974), Savage (1975) and Spence and
Turcotte (1976) consider models in which the
stress accumulation near locked faults is taken to
be due to relative motion of the parts of the litho-
sphere on the two sides of the fault. The mechanism
of this relative motion is not considered in such
models. In the model considered by Budiansky

and Amazigo (1976) a locked vertical strike slip
fault situated in a visco-elastic layer which is free
to slide over the material below it is considered, A
constant shear stress is taken to be maintained mn
the layer far away from the fault. It is shown that
accumulation of shear stress would occur in the
layer due to the creep of the material. But the
accumulation of shear stress does not exceed the
shear stress maintained far away from the fault.
We note, however, that fault slip would normally
require fairly high shear stress and hence a large
shear stress has to be maintained far away from the
fault to cause sufficient stress accumulation for
fault slip. The evidence for the existence of tecto-
nic forces capable of maintaining such large shear
stresses does not appear to be adequate. Moreover
the observed coseismic fault slip on shallow strike
slip faults, such as the San Andreas fault, is often
found to extend to depths of 10 km or 15 km
only. One possible explanation of this phenomenon
would be that although the actual fault extends
from the surface to the boundary between the
lithosphere and the asthenosphere, only the upper
part of the fault (to a depth of 10 km to 15 km)
remains locked and the lower part of the fault slips
frecly as stress accumulates. guch an assumption
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Fig. 1. Section of the lithospheric layer containing the fault by the plane z=0

was made by Turcotte and Spence (1974). How-
over they considered an elastic lithosphere. In order
to explain the accumulation of large shear stresses
on the fault and the fact that the coseismic fault
slip does not extend to depths greater than 10
km to 15 km, we consider a visco-elastic model of
the lithosphere, frec to slide over the asthenosphere
below it. We consider a vertical strike slip
fault, the upper part of which remains locked while
the lower part slips continuously. The upper part
slips suddenly, generating an earthquake if and
only if shear stress across it becomes sufficiently
large. We suppose that tectonic forces maintain a
constant shear stress far away from the fault and
study the accumulation of shear stress in the
Systemv

Formulations

We take b to be the thickness of the lithospheric
layer. Let a (< b) be the depth of the locked upper
part of the vertical strike slip fault. We consider
a fault whose length is large compare to its depth.
We introduce cartesian co-ordinates (x, y, z) with
the free surface as the plane x=0, the plane of the
fault as the plane y=0 and th. z—axis along the
trace of the fault on the free surface. For a long
fault we assume that the displacement and stress
are independent of z. We take w (x, y, t) to be the
displacement parallel to the z-—axis, associated
with strike slip faulting. We represent the relevant
stress components by r,. and 7,.. We
assume that the lithospheric layer behaves like a
linearly visco-elastic material of the Maxwell
type for the process of stress accumulation we are
considering. The constitutive equations may then
be written as:

2.

1.2 e _ 2o |
3 AT T
and (N
19 e Qe
woor e T T gy
as in Budiansky and Amazigo (1976). We

note in this connection that the process of the long
term creep of the lithosphere is likely to be charac-
terised by secondary creep, for which we may

assume the Nabarro-Herring creep mechanism
{(Heard 1976). For such a mechanism, the material
would have Newtonian viscosity, and the consti-
tutive Egn. (1) would be reasonable.

We consider steady accumulation of shear stress
in the model, leaving out the period just following
fault slip when the elastic waves generated by
faulting are present near the fault. Both before
[ault slip and after the elastic waves have propaga-
ted far away, the inertial forces would be very small
and can be neglected. This assumption was made
by Budiansky and Amazigo (1976) and also by
Braslau and Lieber (1968), Rosenman and Singh
(1973a, 1973b), Singh and Rosenman (1974),
Nur and Mavko (1974), Barker (1976) and Rundle
and Jackson (1977), who studied post-seismic stress
relaxation following fault slip. For such quasi-
steady deformations, the stresses satisfying the
relation :

Txz Tyz
a_'r + g,a,‘.{f = 0 ('_)
9 Y

We assume that the shear stress 7, has a cons-
tant value 7o, far away from the fault. We note
that for the system we are considering the boundary
conditions given by :

Typ— > 1, a8 Yy ——>00
(] forz =0, b
w = omy =0, 0<<z<<a

Tyy = () fory =0, ax<b

J (3)

We also assume that at the time =0 from which
we study the deformation of the system, there is an
initia] stress and displacement field wg,(7.2)q.(Ty2)0
satisfying the conditions (1), (2), (3). Fig. 1 shows
the scction of the lithospheric layer (with the fault)
by the plane z=0.

3. Displacements and stresses in the lithospherjc layer

To obtain the displacements and stresses, we
take Laplace transforms of both sides of the equa-
tions (1)--(3) with respect to ¢&. The resulting
boundary value problem can be solved, as ex-
plained in the Appendix, using the results given
by Turcotte and Spence (1974). On inverting the
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Laplace transforms, we finally obtain exact solutionsin closed form for the displacements and
stresses given by, using the notation z; =x-}-iy |
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Hence the rate of accumulation of shear strain on the free surface is given by :
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On the free surface near the fault the rate of accumulation of shear strain is
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From the solution (4) we find that the initial stresses relax completely with time and tend to zero
as t>co. The initial displacement remains in the system. Under the applied stress 7. the material of
the layer creeps as indicated by the monotonically increasing displacement . %his leads to an
increasing accumulation of shear stress. The stress 7y, finally tends to

ro In | ms(g%)//sinf(%)—sinQ(%)] 0

If this shear stress exceeds the critical shear stress required for fault slip at an int of the 1
part of the fault then the locked part would slip when 7,, reaches this crﬁical V.rajl(ule).mn o

The shear stress r,, across the locked part of the fault is given by
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4. Discussion of the results and applications

We now try to apply these results to observe
strike slip faults. For the San Andreas fault we take
a=10 km and b=100 km, where the value of &
is taken to be equal to the commonly used value of
the thickness of the lithosphere. We note that it
has been reported by Savage and Burford (1973)
that the average rate of the strain accumulation
near a locked section of the San Andreas fault
near Ross Mountain has been found to be 0.55p
strain/year. On equating this to the expression for
strain accumulation on the surface given by (6)
we obtain the value of v, /5. We note in this con-
nection that if sufficient data are available on the
rate of strain accumulation on the free surface at
different distances from the fault we may use the
equation (3) to obtain a more reliable estimate of
7o |- To choose a suitable value of 7 for our model
we note that Cathles III (1975) has considered
theoretical models for the post-glacial uplift in
Fennoscandia and Canada, and has compared the
theoretically calculated results with obsevational
data. He estimates that the effective viscosity of
the lower lithosphere for slow deformations is of the
order of 1021 poise. Budiansky and Amazigo (1976)
also estimate a similar value of 7. We therefore
use the estimate = 102! poise. From the estimate
of 7 /7 Obtained earlier, we can obtain an esti-
mate for 74 .

We now study the changes in the shear stress
[7yely=o across the fault with time. We take
—102! poise, p=3.78x 10" dynes/cm? following
Aki (1967), a=10 km and »=100 km. We study
the change in the ratio :

g — (@ Oly=y — [7ee (2,0, 0)] )

Teo
With time, at different points on the locked part of
the fault atdifferent depths x. Here R gives the
ratio of the stress accumulation on the fault to the
stress Ton . In Fig. 2, we show the variations of
this ratio R with time, assuming that the initial
stress 7y (x,0,0)is small. The time ¢ is in years and
the numbers against the different curves give the
depths of the points of the fault in km. It is found
that there is considerable amplification of stress
on the locked part of the fault. The amplification
becomes greater with increase in depth and is very
large near the lower end of the locked part. Even
close to the free surface where the amplification
is a minimum, 7,, approaches a value which is
greater than 6 7. Thus even if 7o is small, the
shear stress can become large on the locked part
of the fault due to this amplification. Hence after
a sufficient time the shear stress 7, on the locked
fault may become sufficiently large to cause a
sudden fault slip, resulting in an earthquake.
We now study the changes in the average value
R of the ratio R on the fault, given by
_ 1 (@
R = — Rdr (10)
a ).
which is easily obtained on using Eqn. (8).

995

8or

70

€0+

99

40r

3ok

20

o - = |
400 500

Il I Il
0 100 200 300

t - —

Fig. 2. Variation of (R) with increase in time. The time
¢ is in years.

We find that K approaches a value greater than
10. If the average stress accumulation in the criti-
cal configuration for fault slip is less than 10 7
the fault would slip after a sufficient time, which
can be determined from Fig. 3, if the average
stress accumulation in the critical configuration
is known. For example, if the average stress
accumulation is 7 74 in the critical state, the
fault would be expected to slip after 100 years.
But if the average shear stress in the critical state
is 9 74 , the fault would slip after nearly 200 years.
Thus we can obtain some estimates of the return
times for slip on the fault and we can also estimate
the changes in seismic risk with time.

The uncertainty about the average stress in th®
critical configuration can be reduced to some
extent if we assume that fault slip would occur
when the post-seismic stress accumulation be-
comes equal to the co-scismic stress drop. To
estimate the co-seismic stress drop on the fault,
we may usc the result given by Chinnery (1964).
However, in our model, the coseismic dislocation
over the fault may not be uniform as in Chinnery
(1964), since there may be some coseismic  slip
in the lower part of the fault, and it may be necess-
ary to take into account the case of a non-uniform
dislocation, using the results given by Maruyama
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Fig. 3. Increase in R with time The time ¢ is in years.

(1966). However, the detailed observational data
needed to distinguish between different possible
distributions of the coseismic dislocation on the
fault do not appear to be available. When such
data are available, it would be possible to obtain
definite estimates for the average co-seismic stress
drop, and this would enable us to estimate more
definitely the time of slip on the fault, using the
results given in Fig. 3. Thus, if sufficient obser-
vational data on ground deformation are available,
the results we have obtained may be used for long-
term earthquake prediction and for the estimation
of the time-dependence of seismic risk.
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Appendix

Taking Laplace transform of (1), (2) and (3)
with respect to ¢ we obtain the relations
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where p is the Laplace transform variable and
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The conditions (la) to (4a) would be satisfied
if ;

w = w + w,

"sz = (;22)] ‘:" (;.r-z)z

az = (;w)l + (:uz)z

where wy, (74,);, (7y:); satisfy the relations (1a) —
(3a) and the condition :

;.‘,z ——> 0 asy - o (4b)
which replaces (4a) and w,, (752)a (Tys)s

satisfy the relation (2a), (3a) and (4a) and the
following relations which replace (la), :

B _3_“"_
Tzs © 3z (]b)
T J

The boundray value problem for oy (17_;3)2, (_1",‘,1,_)2
can be solved on using the results given by Tur-
cotte and Spence (1974) for a fault in an elastic
lithosphere. The boundary value problem for
wy, (T22)15 (1y2), can also be obtained without

much difficulty in the fault :

]
w = 2 T
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Finally on inverting the Laplace transform we
obtain the exact solution of the displacements and

stresses.




