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ABSTRACT. Pressure field associated with a spiralling wind field as in a cyclone is obtained by

" areal integration and also by integration along isogons. Further, expression for vertical motion is
obtained. Vertical downward motion is shown to occur in the eye of the cyclone when the cyclone
is relatively intense characterised by strong winds on the ring of maximum wind and/or contraction

of ring of maximum wind.

1. Infroduction

1.1, An important problem in meteorology can
be stated as follows :

Given a wind field, obtain corresponding pres-
sure field from the equation of motion for horizontal
wind vector V as in (1).

l“" +w L V.V EXV)S+
o1 2z

+KV4+2QcosPwiy=—Vp (n

Here K is the coefficient of fiiction. In this paper
we take frictional term as KV. But for frictional
term, the equation of motion (1) is the same as
8.61 p. 253, Dynamic Meteorology and Weather
Forecasting by Godske et al. (1957). Geostrophic
and gradient winds exteusively used in meteorology
are none other than solutions of (1) under various
constraints. Isobars are same as streamlines in both
the cases. Since cross isobaric winds are conspi-
cuous in cyclones with closed isobars and further
vertical motion associaled with vertical shear
are also important in cyclones, solution of (1) merits
a de novo attack. The objective of this paper are (i)
to obtain relation between cyclone wind field and
pressure field and (i7) vertical motionin a cyclone.

1.2. Nomenclature
V=ui+tovj=V(cosi4 singj), Hori-
zontal wind vector

¥ : direction reckoned positive counterclock-
wise.

s : distance along streamline

n : distance along normal to streamline

m : distance along isogon : positive along
(V¢ xk) vector line

r radial distance in polar coordinate

¢ : angle in polar coordinate

n : unit outward drawn normal vector

_ag 21 ot
V. XY + ,a" 33 dwergence
- E = ﬂ y 2% 3V ici
{ = o » = 3 7 vorticity
L =4(,3_“__31_ﬂ§_”_)_ LI

: 9x Ay 2y I ‘“W'an

Kinematical determinant of V
Ly =L — ( + av)

9¢/3s if positive, streamline is counterclockwise
curved and Q¢/s if negative, clockwise curved.




166 AR CmpE. S. LAKSHMINARAYANAN

v/ 2n if positive, streamline are difluenting
and if negative, they are confluenting.

6y angle between isogon and streamline
bpis angle between isobar and isogon.

2. Characteristics of spiralling wind

2.1. Streamlines in a spiralling wind field
terminate at or originate from a point called the
spiral centre and the curvature is counterclock-
wise/clockwise. At the spiral centre, the speed is
zero. Confining our attention to cyclone circulation
following characteristics are noted :

(i) Streamlines spiral inward and terminate
at cyclone centre where speed is zero.

(ii) Curvature of streamlines is counterclock-
wise/clockwise in northern/southern hemi-
sphere. Hence f (4, 9s) is positive, where
f is coriolis parameter and 4/95 is
curvature.

(iii) Since streamlines spiral inward, they are
confluenting, i.e., 9¥/In is negative.

(iv) The spiral centre is enclosed by a ring of
maximum wind (RMW).

(v) Isogons originate from the cyclone cen-
tre.

Going round the cyclone centre counterclock-
wise, the direction ¢ continuously increases and
changes by -2 on making one complete circuit.
The direction ¢ is the angle wind vector makes
with x-axis and is reckoned positive counterclock-
wise. Meteorological convention is to reckon dir-
ection positive clockwise. Hence it must be noted
that direction will continuously decrease and change
by—2= on making a counterclockwise circuit round
the cyclone centre if meteorologically reckoned
direction is used.

2.2. Vector lines (V¢ X k) are same as isogons.
In this paper, distance n; along isogon is reckoned
positive in the direction of (/¢ xk). The isogon
characteristic (v) can be mathematically expressed
as “Isogons, i.e., (V¢ X k) lines radiate out of
cyclone centre and O (nXx V¢) dl =4 27k
where contour encloses cyclone centre”. In this con-
nection, please see Theorem III of Lakshminara-

yanan (1978).

2.3. The spiralling wind field V of a cyclone
can be modelled as V= AV ¢ + BV¢ X k as
in Lakshminarayanan (1975) paper. Here
¢ =exp [—(x% + y*)[20%, o is the radius of ring of
maximum wind. Taking 4 and B as positive, we get
spiralling-in counterclockwise curved streamline
pattern as in northern hemispheric cyclone.
A ¢$=V,; gives inflow feature and BV ¢ X k=Vg
gives rotational feature.

e () ()7 (2) (3o

(42 + B (T_) i

a a
(V!)ma! = (—4) e—-lm; (Vﬂ)ma! =£ e—l.n'ﬂ .
o o
2 i
(V )mgx — .(_A_‘f&ﬂ. -1l

V.V=—4 (2—%)45;{:8 (2—’;)16

We will use the model in calculating vertical mo-
tion and pressure field at a later stage.

3. Isogon coordinates

3.1. Cartesian (v, »), polar (r, #) and streamline
coordinates (s, n) are commoaly used in meteoro-
logy. A better analytical insight into cyclone featu-
res is provided if we use isogons, i.e., (V¢ X k)
vector lines and normal to isogon, i.e., (V¢ X k)
lines as a coordinate system,

3.2. V = Vig + Vxis where Vi, is component
along isogon and Vxyigz component normal to
isogon. Suffix ‘IS’ and *NIS’ refer to isogon and
normal to isogon. Since Vis = V (34/dn) [ V¢ |
andVyig = V (34/335) | V¢ |~ , we note immedi-
ately in the case of cyclone that Vig gives inflow
features and Vyig rotational features.

3.3. To avoid in situ derivation and facilitate
ease of reference, we list the componentsin Table 1.

Advection term (V.5/) V can also be written as :

Ny = , 2
(V. VIV = S-V 4720 kx V)

=(7.V) V=12 (V¢ X k)
= v+ kX WI

If V is irrotational, i.e, 7.V =0 at all points,
then (V.7) V = VV2 2

If V is solenoidal, ie., { = 0 at all points,
then (V.V/) V= —VXV¢ X K)

We will be using the advection term (V.7)V
expressed in terms of 7.V and { at a later con-
text. The term 202 cos @ wi is small and is
customarily neglected in atmospheric cyclone
problem.

3.4. Multiplying V.V =V (94/9n) + 3[//33
by V (3¢/ 9s) and vorticity L=V (9/ds) — ¥ /dn
by V (¢/dn) and subtracting, we get :

oo (r 3)-o(r 2)

(vgywm
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TABLE 1
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Term n

Nomenclature

Along isogon Normal to isogon

v ? logV | 3¢ Q log vy, 9, (2 logV, . 2
(1) Local change A ar ar v a3 Vis Y Vxis 3 Vxis + Y, Vis
(2) Vertical motion - log V QlogV 2
:I;Lgr vertical | yy —a‘alzr W %EIOg 4 w 2 vV (%3; o8 Vm‘*‘g% V.\:Is) w (3; ey 81+ if‘ VJ.'-;) W
, 14 W 14 .l
(3) Advection term {(V.57)V % V £ % ¥y Vis—V Ty Vxis £ Vais + V? Vis

(4) Coriolis term

v

kxV)f

—f Vs + fVis

(5) Frictional term KV KV 0

K Vis K Vs

(6 Vertical motion |2 2 ¢0s®| 22 cos @ | 202 cos & 2%§m¢ —%fc“¢
with2Q cos @ wi wcosy | wsin g W—97|‘7¢|“" wﬁlvw*‘

We can use this identity to express divergence in
terms of vorticity and vice versq. Further in well
developed cyclones, isogons are radial lines and

isopleths of speed are circles. Hence,
(VV2/2). (V) = 0. In such a case :
W
VYV —=2
ViV on  _ 0
———c = _l’gb‘ tan s
s
where @, is the angle between isogon and

streamline. If spiralling pattern is preserved, i.e.,
6;s does not change with time, then intensification
of cyclone characterised by increase of speed
and/or contraction of RMW, can be expected to
increase both convergence and vorticity. In short,
it is realistic to assume increase of convergence
and vorticity in the intensification stage of
cyclone.

TraeoremM VII

“Given that (i) isogon and isopleths of speed are
orthogonal and (i) the angle between isogon and
streamline is unchanged, then increase in magni-
tude of divergence requires increase in magnitude
of vorticity and likewise decrease”.

) 63 (29
) (oe)mo

(v
(Vaz) = tan (0;) = constant
g

( v
Hence the theorem.

9

g

@ ulo)
S—

Comment

In the central region of cyclone, isogons and iso-
pleths of speed are very nearly orthogonal and this
property appears to exist throughout the life span
of cyclone. The theorem explains the reason why
convergence and vorticity together have higher
values as the cyclone intensifies when speed on
RMW increases and/or the radius of RMW con-
tracts. We will be using this while discussing verti-
cal motion in intense stage of cyclone.
_a_g.) 9._}3 ip 92’ and aﬂp
A’ Jy’ P’ 2y
necessary to determine the occurrence of maximum,
minimum, minimaximum of pressure at a point.
Instead, we propose a simple rule as in Table 2
for determination of the same with first derivate.
Let n; be distance measured in lines radiating from
a point. Evaluate 9p/dn, at all points in the
immediate neighbourhood surrounding the point.
The terms on L.H.S. of equation of motion (1)
are individually investigated to determine what
will be the pressure field each term will favour at
the cyclone centre, viz., a maximum, minimum,
an isobar or no pressure field. We will be using
this rule in that context.

4. Pressure field

4.1. A spiralling wind field can be thought of
as an addition of an irrotational field giving inflow/
outflow feature and a solenoidal field giving rota-
tional feature. To gain analytical insight, we inves-
tigate the pressure field associated with irrotational,
solenoidal wind field and spiralling wind field satisfy-
ing p(V-V)V = —Vp.

4.2.1. Irrotational field

THEOREM 1

Given an irrotational horizontal wind field V
satisfying p (V. V) V = — ¥p, then isopleths

3.5. are
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TABLE 2

b/ m, characteristic

(i) 3P/3"] is positive at all points in the
neighbourhood

Pressure field characteristic

Minimum pressure

Schematic illustration

|
|
|

i)  Qp/dm isnegativeatall points in the
neighbourhood

Maximum pressure

(fiiy Making a circuit around the point,

if wefind aﬂl'a_m is zero, positive,
zero, and negative

An isobar passes through
the point

(iv) Making a circuit around the point, if
we find, ap/ n is zero, positive,
zero, negative, zero, positive, zero
and negative

A  minimaximum  of
pressure

LOW
59°
S Q
O HIGH
o
e — '00
g
_— 1000
— 98
—_— 006

()] ‘ap/anl is zero at all points

Pressure is constant

CORRESPONGING
PRESSURK FIELD

CUTELOW

WITH MAY. PRESSURE

of speed is the same as isobars and isopleth of
density, Further pressure maximum will occur at
speed minimum and pressure minimum at speed
maximum.

Proof

Since vorticity { vanishes in an irrotational field,
(V.7)V = V22, Therefore p V32 = —p.
Hence isopleth of speed is the same as isobar as
well as isopleth of density and pressure maximum
occurs at speed minimum and pressure minimum
at speed maximum.

Comment

Pressure maximum is necessary at the point of
origination of streamlines of an outflow as well as
at the point of termination of an inflow as illustrated

in Fig. 1 since in both the cases the speed is a mini-
mum at the point of origination as well as termina-
nation of streamlines.

4.2.2. Solenoidal field

THEOREM 2
(}ivqn a solenoidal horizontal wind vector V
satisfying  p (V. V) V = —Vp, isobars are

orthogonal to isogons., Further a minimum pres-
sure must occur at the point enclosed by stream-
lines.

Proof P

Since divergence (77.V) vanishes in a solenoidal
field, (V. V) V = —F2(V¢¥ x k). Therefore,
p V2 (V¢ X k) = 4p. Hence isobars are
orthogonal to isogons. (/¢ % k) vector lines
which are isogons radiate out of the point
enclosed by streamlines. Qp [ dny = p V2| Vi1 .
Since Qp /Bm is positive at all points sur-
rounding the point enclosed by streamlines, the
pressure at that point is a minimum.

Comment

Pressure minimum occurs whether the streamlines
are counterclockwise or clockwise since in both
the cases (V¢ x k) lines radiate outward only.
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Fig. 2

4.2.3. Spiral field

Cyclone is characterised by both inflow and -

rotational features. Inflow favours a maximum and
rotation a minimum. Since rotation in predomi-
nent compared to inflow in atmospheric cyclones,
a minimum occurs. In the irrotational cases as well
as rotational cases, (V. /) V lines are compatible
with §/p vector lines. Now we study vector lines
of (V. YY)V for a spiralling V field. As a
preliminary we invoke Therorem IV (Lakshmi-
narayanan 1978) defining spiralling property.
Kinematical determinant of V = ui 4 vj is

du v 2u v
dEﬁHCdaSLl—"' (gﬂsy—-a—'-ysrz) and
Ly =1, -(%;: -+~ g; )h . Streamlines/vector lines

of V in the immediate neighbourhood of a
point where V = 0, L; and L, are positive will be
spiral shaped or closed lines,

The kinematical determinant of :

(l)(VV)vz‘{}—l—gatV=0

@ (v. v) v—[ 7. {(v.v)v} ]

2
=L (v.v) atvVv =20
_ 492 ‘f!'“’i’_( 27 )}
[V = 4‘ a? 2y’ 223y
= 4 Hessian of p

@ vo—{ v.(ve)|

-
-

Bl 2‘2}_2’2)2_ ( aﬂp)2—q
- -5 53 =
THEOREM 3

Given a spiralling wind field V such that V=0
and L, and L, are positive at spiral centre, then
(V. VSV will be spiral shaped. Given a pressure
field such that Hessian of p exists at points where
Vp = 0, then p vector lines will not be
closed and will not be spiralling.

Proof

Using kinematical determinant of (V.v/)V and
Vp and kinematical determinant minus (diver-
gence)? as in Theorem IV(c), this theorem is
proved.

Comment

(/) In the case of a cyclone, p (V.7)V£—Vp
since p(V'7) V vector lines are spiral shaped and
77 p lines cannot be spiral shaped. Further p (kX V)f
and KV are also spiral shaped Hence,

AV ¥
P (5? +w 3,)

i~

must exist and ensure vector line of left hand side
of Eqn. (1) to be compatible with vector lines of
—Vp.

4.2.4. Pressure field

T/p is an irrotational vector. Its vector lines can-
not be spiral shaped or closed. That p vector

lines cannot be closed lines can also be established
by using Stoke’s Theorem as well.

THEOREM 4

Closed 7/p vector lines without change of dir-
ection is impossible.

Proof

A

Fig. 3

If possible, let ABCDA as in Fig. 3 be a closed
Vp vector line without change in direction. Using
Stokes Theorem,

ﬁ:(v X Vp)dS= f{’ (Vp).(dl) =§ | vp|ldl|

where, area of integration is enclosed by ABCDA,
dS is an element of area directed upwards and
dl is an element of length parallel to T7p, We note
that Y XVp=0 and (Vp).(@l) = | yp||dl|
= a positive quantity. Since,

L
g:l»(vxv'p)-ds=0andr|; I vpl Jdl] is

a positive quantity, closed /p vector line is im-
possible.

Comment

@(Vp)- (dl) = 0 where the contour is any
closed curve. We will make use of it to evaluate
vertical motion in cyclone.

4.3, Closed isobars

Isobars enclose a pressure minimum in the case
of cyclones. In such cases, we can obtain pressure
by areal integration,
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THEOREM 5

Given a spiral circulation with a spiral centre
enclosed by isobars, then

20090 D) ge
e o ) At

where, (i) area of integration is bounded by
closed isobars p, and p_

(ii) p, is inside pa
(i) spiral centre is inside p,
Proof
TPX V=T X (pV)
& (vpx v ds- [p (x 7y dl

= p (5‘ (n>< vl,b) dl

where area of integration is enclosed by isobars.
Invoking Lakshminarayanan’s Theorem IIT as given

2.2, we get \p(nxv!ﬁ) dl= -+ 2= k. Hence,

r rc {2p2¥
{‘ (Vpx V) kdS = i (2—; T

2p 2 )
T omes dS=2m (py—p1)
Comment (i)
If there is no spiral centre and more specifically
there is no point where V= 0 and isobars are closed,
then

fi (E’J’ 2 2r _Bi) g =0
98 dm N o
Comment (ii)

From equation of motion (1), we get

3
== pl K'dl

3

dis
and —;-2 = ~—pV (f# Ji_') Hence,

)
r { 2 {loe T
So((r®)r 2+ )
‘%b-}ds--:’w{ﬁ ) (2)

Comment (iii)

gﬁ is rate of change of pressure along stream-
5
line.

er negative = (K—}—
28

dlogV

dt

(Cross isobaric flow into a
relatively lower pressure)

) positive

%}; positive = ( F—l-gfi log V) negative

~  (Cross isobaric flow into a
relatively higher pressure)
op ( d log V) ;
— 0 K= = (I
a: = } di ‘
= (Isobar and streamline are
the same)

.
%{- is rate of change normal to streamline

(]
g—?}: negative =3 ( f+%"{£) positive
=  (Relatively lower pressure to
left of streamline)

p dp .
> positive = ( f+ ﬁ) negative

= (Relatively higher pressureto
left of streamline)

2P _ g = by _
on = (f_i_m) =4

= (Streamline and isobar are
orthogonal)

We immediately note that if we constrain that
(f+dib/dt) is positive in northern hemisphere and
negative in southern hemisphere and K +
d(log V)/dt is positive in both hemispheres, we
get Buys Ballot’s Law.

Comment (iv)

The only constraints are the existence of spiral
centre and isobars enclosing it. Hence this relation
has applicability especially for unsteady and tilted
system with growth/decay, vertical motion and
vertical shear, i.e., where (9V/31)+ w(dV/DZ) term
exists.

4.4. Deepening of pressure system

Let p, be the outermost isobar and p, be the
pressure at cyclone centre. Noting VpX Vi =
|7p| |74 sin Opia We get from Theorem 5 :

o (Pu—p0) ={3:p { (f+ %)2 %

4 ( _}_5 log ¥ )2]i V sin Opis V4 | dS
' 3)

where @y« is the angle between isobar and iso-
gon. Now we assume |7 =1/r and outer-
most isobar p, remains the same as cyclone inten-
sifies. Deepening pressure system is indicated by
relatively very low values of p.. Deepening,
therefore, will be associated with increase of value
of terms inside the integral. Hence,
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(i) increase of value of speed: the mean speed
increasing with time will indicate deepen-
ing.

(ii) Increase of sin fps, ie., isobars and
isogon tending to become orthogonal.

(iii) Increase of

{ (f+% )2-1- (K+ J(z log l-')z,}
The role of { (f-{-ddir)Z_‘r (I\’ dlog V)E]*

T

requires specific case studies. However, the in-
crease of speed and isobars tending to become ortho-
gonal to isogon in the context of deep pressure
systems associated with cyclone are observationally
seen. A schematic diagram illustrates the near
orthogonal property between isogons and isobars.

Fig. 4
4.5. Integration along isogon

Ap/an; is rate of variation of pressure along
isogon. Hence integrating isogon from cyclone
centre where pressure 1s p., we get

P—Pe J Ejidm_ From Table I, we get:
[ 3n1

@ _ ., Q¥ ,
EC Vw1V
a’!” > _3‘!’ 7 —
.i, p ——3{' J ‘a—“ I.L/(III J

(Local change term)

D logV €
— p¥ 32 l’a—n|-ﬂ!’\‘]
S

i W oy —
e vy

(Vertical motion Vertical shear term)

14 % 1
AT V ,(JHIVV"]

(Inflow feature term)

yov2 v 2 gy
(Rotational feature term)
—pk Vg
(Frictional term)
+of V2 gy

os
(Coriolis term) (4)

Inflow feature term -}- Rotational feature term
can be expressed as :
Y ' o
—p(TV) VO |Gy a2y

of —p LUy~ +pt V% |7 i~

Making use of the rule in 3.5 we can state :

Friction — Friction associated with confluence
favours a pressure minimum and with difluence,
it favours a pressure maximum.

Coriolis parameter-- Counterclockwise/clockwise
curvature in northern /southern hemisphere favours
a pressure minimum and opposite curvatures
favour pressure maximum.

Inflow|Outfiow — Inflow and outflow feature
favour a pressure maximum.

Rotational features — Counterclockwise and clock-
wise curvature features favour pressure minimum_

Local changes — Increase of speed at all point
indicates intensification and decrease weakening,
Hence intensification associated with confluence
favours pressure minimum and weakening a pres-
sure maximum. In the case of difluence just the
opposite.

If the centre moves, Q/df is positive on one
side and negative on the other. Hence second part
of local change term in Eqn. (4) favours an isobar
to pass through the centre.

. ' . ’ log IV
Vertical motion with vertical shear — %_ 8
r

indicates change of speed with height. The
intensity of cyclone decreases with height in
which case this term is negative. There can be
cases when this term is positive. Vertical motion
can be positive as well as negative.

TABLE 3
D logV Mol _@ log vV g{: Pres-
w |5:z V ETR T ) Van !sure
| - | = - Max.
j—. —_ e | } .\I‘:l&l.
+ 4 — -+ Min.
== 4 — — Max,

The role of first part of vertical motion/vertical
shear term in Eqn. (4) is given in Table 3 for cycl
ones.
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A similar table for difluence can be constructed.
If the axis of cyclone is tilted, y/9z is positive
on one side and negative on the other. In such a

case, the term pw Ll V_a._“"’ |7¢— favours an
3z s

isobar to pass through the centre.

Now we derive expressions for vertical motion
on the basis of ideas developed in previous chapter,

5.2. Closed (7)) vector line

We have already noted that §(7p).(d)=0.
In the case of cyclone, 74 vector lines enclose
the centre. Let Vi =7y dl and hence,

(J'}(‘{Tg)- (%) 210

Replace 77p from equation of motion and obtain @

Bl( 7+2) vt (kv 2" V2 vyt a

e
. Y]
ﬂ&"m*‘&

THEOREM 6
Given a cyclonic wind field satisfying

p (‘%‘f + (kxV) f+A‘V) - —vp

such that streamlines are confluenting, ie..
)/ is negative and their curvature is

()%

log
2 8 v2) o ivy ma

1
(k+v.v4 2080) 2

Qs

(5)
3¢

where i is the mean of w on the closed T
vector line,

5.2.1. Orthogonality of isogon and isobar — We
noted that isogons and isobars tend to become
nearly orthogonal when the pressure system be-
comes deep. If so, (Vp) . (V) =0

VT ar) e T 2 X "
_ (_%V_ai‘..;_i log v |, .3_94‘)
2z m Dz s

counterclockwise/clockwise in northern/southern
hemisphere, ic., f(34/ds) is positive and speed
generally decreases with height, ie., 9 (logV)/?:
is negative, then at the cyclone centre :

(i) friction, coriolis parameter, rotational fea-
ture, intensification and downward mo-
tion favour a pressure minimum,

(i7) inflow, weakening and upward motion fa-
vour pressure maximum and

(iif) motion of centre as well as tilt of axis
favour an isobar.

Comment (i)

Ultimately the observed pressure field is due to
all factors. Since rotation, friction and coriolis
are predominant, pressure minimum is seen.

Comment (ii)

It is possible to have no closed isobar in case
vertical shear associated with vertical motion

Ve

W=

where orthogonal conditions are not exactly
fulfilled, we have to add —p "t (Vp) . (V4) on
the numerator.

5.2.2. Circular isobars

A polar cooridinate system (v, 8) with origin
coinciding with the centre of circular isobar is
chosen and the equation of motion is split
into radial and tangential component. The tangen-
tial component is :

2z r

dvo : A R
R N %18,

where V, and ¥y are radial and tagential com-
ponents of wind vector. From this, we obtain:

; 20 1(_—» log Vo
7+ 2 v (% V,+(K+v.v + 2 ) vo

[ 90 3 log ¥y = (N
— 2 v _9
[ 3 + 3 Vo ]
and local change term are predominant and cyclone . 11 9
is in a very weak stage. If isobars are not exactly circular, and -~ 1 ?‘;_
pr

5. Vertical motion

5.1. Theoretical considerations require existence
of (3V/31) +w(AV/2z) and observationally ver-
tical motion and vertical shear are seen in cyclone.

on the numerator. Note the remarkab]e similarities
among the three expressions.

5.3. To gaip an analytical insight, we propose
using Lakshminarayanan’s mathematical mode

1
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Fig. 5. East-west profile of vertical motion : (a) Case I — Weak stage, (b) Case [I—Intense stage

as explained in 2.3 and evaluate vertical motion from Eqn. (6) :

[_(f_{_ %)(Vﬁ)m.,x + {K‘F—(?ﬁcm(ﬂ—Z)qS—l- 2 logV}]

A1) (V B) max o kT |
W= ; (8)
_(_3{& (Vi) mx _i_MOgV)
32 ( VR) max aZ
For illustrative purposes, we assume following: TABLE 4

¢
=)

e ) "
(i) axis is nearly vertical, i.e,. 2%

dz

(if) motion of the centre is small, i. e.,

gisz
2t

(iii) Lat. 15° N; f=.3775X10—* sec—!

(iv) speed increases exponentially to double
the value in 24 hours, i.e.,

% log ¥ — .08 x 104 sec —1

(v) speed decreases exponentially to half
the value in 3 km, 7. e.,

‘alogV_ 2.31 — -
—_ = —2.31X10-% gec -1
2z

(vi) K=2.5x10—4 sec—1 (p. 661, Compendium
of Meteorology)

Case (i) — Weak cyclone|depression : (Vi)mex =
Smps; (Ve)max = 15 mps; (V)max = 158 mps,
o=100 km. This is a weak stage of cyclone
called depression.

Vertical motion (mps)

Weak cyclone (Case I) Intense cyclone (Case 1)
A o —
) Distance  Vertical s Distance  Vertical !
(km) motion (km) motion
(mps) (mps)
0 +0.34 0 —1.75
20 +0.37 10 —1.68
40 +0.45 20 —1.36
60 +0.56 30 —0.89
80 +0.68 40 —0.35
100 +0.81 50 +0.20
120 +0.95 60 +0.67
140 +1.04 70 +1.04
160 +1.09 80 +1.28
180 +1.13 90 +1.42
200 +1.14 100 +1.45
0 +1.06 oo +1.06

Case (ii) — Intense cyclone : (V;)msx = 10mps;
(VR)max = 30 mps; (Fmx=31-6 mps, =50 km.
This is an intense stage of cyclone. Compared to
weak stage, speed has doubled and radius of ring
of maximum wind has contracted to half the
value in intense stage.

Case (iii)
Table 4 lists value of w in both the cases and

Fig. 5(a &b) gives profile of w along east-west
oriented radial distance. :
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Fig. 6. East-west pressure profile : (a) Weak stage — Case [ and (b) Intense stage — Case Il

We note that : TABLE 5
Pressure field (in mb)

(i) vertical motion is upward at all points Py - = -
Distance Inflow Rotational Fric- Coriolis

with a minimum value at cyclone centre km) - feature  feature s
in the weak stage of cyclone. 2 e -

(a) Weak cyclone/depression — Case I

20 —0.031 ~0,156 +0.054 +0.025
60 —0.220 +1.200  --0.397 0.179
100 —0.397 +2.509 +-0.947  4-0.429
140 —0.450 -3.410 +1.,504 +0.681
180 —0.432 +3.814 -1.931 +0.875
220 —0.409 +3.938 42.194 +0.994
260 —0.399 +3.965 +2.326 41.053
300 —0.397 +3.690 --2.381 +1.079

(ii) As the cyclone intensifies characterised
by increase of speed on the ring of
maximum  wind, increased inflow,
increased rotational component and hence
increased convergence and vorticity,
vertical downward motion near cyclone
centre occurs and elsewhere vertical
upward motion continues. Vertical down-
ward in the centre of cyclone is characteri-
sed by absence of cloud and is picture-
squely referred to as eye of the cyclone. (b) Intense stage — Case I1

10 —0.123  +0.623 +0.054 +0.025

30 —0.879 +4.802 40,397 +0.179

50 —1.588 -10.037 10.947 +0.429

70 —1.802  +13.641 1,504 +0.0681

920 —1.727 +15.258 .931  -+0.875
—1.636 +15.754 £2.194 +0.9%4
—1.598 --15.8061 12,326 1.053
—-1.588 -}-15.878 -2.381 -1 1.079

Ga\luma—o:\ta

We conclude that as the cyclone intensifies
by increase of speed on RMW and/or contraction
of RMW and hence increase of both convergence
and vorticity, the eye forms where downward
vertical motion and hence absence of clouds
takes place. In reaching this conclusion, we require
nearly vertical axis and small motion of the centre.
Further, we make use of Theorem VII as in 3.4.

=
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6. Pressure field of cyclone

6.1. We take the same cyclone model which
we used for obtaining vertical motion, to get
pressure field :

2 2 2
(p—p)=%p(Vi) max [—e—{—(l _Lz) exp (14*%\ ]
o o<}

(Inflow feature)

ST e (|

(Rotational feature)

- ) 1 r2
+pK(V) 0\ @ [9 — exp ( —._,—*'2;2) ]

(Frictioﬁal term)

1 2
+ of Vi), © [ e® —exp ( %- — fv;,) ]
ax a 20‘* '
(Coriolis term) (9)

6.2. Table 5 gives termwise pressure field
contribution for wz2ak stage (caseI) and intense
stage (case II). Sincez w2 have taken rotation
feature as predominant, the contribution due
to rotational feature is predominant, next is friction
and coriolis parameter is least due to choice of
Lat. 15°N. Inflow contribution is just the opposite
to other terms as required by theory. Fig. 6 (a & b)
gives pressure profile along east-west oriented
radial line.

7. Discussion i Ml T X

7.1. Pressure and wind relationship is basic
and fundamental not only in meteorology but
also in hydro/fluid dynamics. Hence the available
literature is extensive and vast on this topic. Well
known relations like Bernoulli’s theorem, geostro-
phic and gradient wind equations are none but
solutions of Eqn. (1) under various constraints.
The two basic difficulties in dealing with pressure
field associated with a spiralling wind field are
attributable to lack of :

(i) definition of spiral properties,

(ii) adequate mathematical model.

The properties of spiral are given in a set of six
theorems by the author (Lakshminarayanan 1978)
and a simple mathematical model for spiralling

circulation has been formulated by him (Lakshmi-
narayanan 1975). The set of theorems and the
model are used in this paper.

7.2. A deliberate attempt is made to cast mathe-
matical expressions to follow the inherent natural
configurational geometry of isogons, isopleths
of speed, streamlines, curvature, confluence/
difluence etc so that conclusions are easily
interpretable in terms of prominently recognisable
Cyclone features. Isogon coordinate system is
especially chosen instead of cartesian/polar coordi-
nate systems extensively used in meteorology.
The initial difficulty in getting familiar with isogon
coordinate system is adequately compensated
by analytical ease/clarity of expressions in inter-
preting cyclone features. With a view to over-
come difficulties, if any, we have listed in Table 1
components along and normal to isogons.

7.3. Geostrophic and gradient wind relations
are popular in meteorology. In both the cases
streamlines and isobars are the same. Inflow
features of cyclones with closed isobars necessitate
cross isobaric flow. We establish that inflow featu-
res of a cyclone favour a maximum pressure at
cyclone centre. Friction with confluence, coriolis
parameter with counterclockwise/clockwise curva-
ture in northern/southern hemisphere, rotational
feature, and growth with confluence favour a
minimum pressure at cyclone centre. Inflow and
decay with confluence favour a maximum presssure.
The role of vertical motion associated with verti-
cal shear and confluence favouring a minimum/
maximum is given in the text of this paper. Move-
ment of centre and tilt of axis favour an isobar.
All other terms put together favour a constant
pressurefield or added together must vanish as
exemplified by :

112p
: —f) BF S S =0

(Vp)- (V) 30
In the atmospheric context, rotational feature,
friction and coriolis parameter in that order con-

tribute to low pressure with a minimum.

7.4. Since vertical motion in atmosphere is
relatively smaller compared to horizontal motion,
the equation of motion for horizontal wind vector
Instead

is not customarily used to evaluate w.
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equation of continuity is used. In this paper,
vertical motion is obtained from the equation
of motion itself. The eye of cyclone where verti-
cal downward motion can be inferred to take

place is shown to occur when the cyclone is in-
tense.

8. Conclusion

The role of inflow, rotation, friction, coriolis
parameter, local change and vertical motion associa-
ted with vertical shear in forming the pressure
field of a cyclone is investigated. Formulation

of the eye is shown to occur when the cyclone is
intense.
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