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ABSTRACT. The stability characteristics of internal gravity waves, generated by an isothermal bounded
tangent velocity profile in the prescnce of a saturated finite layer, are studied. The moist layer with constant thick-
ness is introduced at different levels in respect to the point of inflection and the variations of moisture content and
distance from the origin are examined. The characteristics of the unstable waves are obtained by solving numeri-
cally the linearized versions of the full equations of motion, in the inviscid and Boussinesq limit, through the

technique of Lalas and Einaudi (1976).

It is shown that the presence of the moist layer can significantly affect the stability characteristics of the waves,
Increases in the moisture and distance of the layer from the inflection point are found to amplify or decay the wave
response, because the saturated layer behaves as a solid boundary to the flow. The presence of such effective
layer is shown to stabilize short wavelengths and destabilise longer wavelengths. Finally, an application of the

model’s results to the real atmosphere is discussed.
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1. Introduction

It becoming apparent that knowledge ol the charac-
teristics of internal gravity waves in the atmosphere is
necessary to our understanding of a wide variety of tro-
pospheric phenomena, such as momentum and energy
transport, boundary layer characteristics, inversions,
thunderstorms and severe storm initiation, lee waves,
tropospheric jet streams and others (Uccellini and
Johnson 1979, Durran and Klemp 1982b, King ef
al. 1987, Finnigan et al. 1984, Stobie ef al. 1983, Wang
et al. 1983, Testud er al. 1980). The advent of the new
remote-sensing techniques of satellite and Doppler
radar imagery has substantially increased our ability to
identify and study such wave motions in the atmosphere.

A full understanding of their generation mechanism,
propagation and influence is likely to require a non-
linear treatment which, however, requires as a first
step, the extensive study of the linearly unstable gra-
vity modes. Thus the appearance of unstable waves in a

dynamically unstable shear flow has been studied by
many authors both experimentally and theoretically
(Drazin 1958, Miles 1961, Jones 1967, Lindzen and
Rosenthal 1976, Davis and Peltier 1976, Pellacani
et al. 1978, Fritts 1980, Narayanan and Sachdev
1982).

Of direct pertinence is the work of Lalas and Ein-
audi (1976) who studied the stability properties of a
hyperbolic tangent velocity profile in an isothermal
atmosphere in the presence of a rigid lower boundary.
The unstable waves they lound, belong to a multitude of
modes. Four modes with the largest growth rates were
analysed in detail : Mode I which coincides with the
Kelvin-Helmholtz type mode found by Drazin (1958)
and Modes IT, ITT and IV which are new modes introduced
by the presence of the giound. While Modes I, II
and 1V are trapped modss (i.e., modes that are rapidly
evanescent outside the region of shear), Modelll is
propagating in the vertical providing an escape of
energy upward, away from the shear zone.
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Fig, 1. The normalized density and velocity profiles and the (BVY)
frequency distribution of the hasic flow. The dashed line
indicates the moist layer locations

Although the above mentioned authors interpreted
their results in terms of tropospheric phenomena, they
neglected moisture process in their models. Since mois-
ture is an important process in the tropospheric dynam-
ics, and since it is generally a stabilising or destabi-
lising property of the flow, the slowly growing resonant
modes should not be assigned a major role in determi-
ning the structure of the various tropospheric phenomena
until the effects of moisture upon them have been asses-
sed. It is the main purpose of the present model to
do this. We will show that the unstable waves of the
resonant modes continue to exist,  with some-
what smaller or greater growth rates, depending on their
propagation characteristics, when moisture has been
incorporated into the model.

The present work differs from the work of Lalas and
Einaudi (1976) in the use of linearized versions ol the
full equations of motion. so that more complete analysis
is performed here. Also. the present model differs from
similar works of Pellacani efal. (1978) and Narayanan
and Sachdev (1982) in the use of continuous profiles
for density and velocity.

2. The governing equations

Lalas and Einaudi (1976) restricted attention to a
*shallow convection™ version of the Boussinesq approxi-
mation. In the present study the equations to be solved
are the linearised versions of the full equations of
motion, thermodynamics and continuity for adiabatic
stratified flow, instead. In the absence of coriolis effects,
these equations can be written (in the inviscid Boussi-
nesq limit) as follows :

ou . dU op
Pn(rr Uy wpy d:" ) “: (1

Fig. 2. Normalized growth rates aC; | yand phase veloci-
ties Cp o ) versus a—=AxS, of Mode I for dilferent
values of J and a saturated layer of normalized thickness
v 3.0, located at a normalized distance from the inflec-
tion point ¢ 5.0 (a)d-—0.46 and (b)5=—0.24,

The corresponding curves for a dry atmosphere are  also
shown with dotted (growth rates) and dot-dashed (phase
speeds) lines
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where, g is the acceleration of gravity. 1In
(1) - (4). u. w, p, p denote the honzontal velocity, ve rtical
velocity, pressure and  density respectively, ol the
disturbance, U, is the basic state velocity in the x
direction, p, is the basic state density and py is that of
pressure. The velocity profile in non-dimenstonal form
Is miven as !

iy (v) tan /i (1)

where y=z/h is the non-dimensional height, /i is the
characteristic length scale and 1 1s the velocity scale.
The background density field py 1s of the form.

P (2) pe exp (—z/H) (6)

pe is the density at the level ol maximum shcar, and
H the scale height of the atmosphere.

I'o analyse the stability of the above configurations,
we follow closely the approach and notation of Lalas
and Einaudi (1976). Thus. in Egns. {1)-(4) a solution
is sought in the form :

A A LY
(1, wo p.p) = po— 12 Re {u(2). W (2). p(2)- p(2)
exp[i(k,x —wi)]} (7

where, Re denotes the real part. ¥ is an unknown
function ol height (the eigenfunction), and k..
Ao—=27/k, and @ —w, ' jw; are the horizontal wave-num-
ber. wave length and complex [requency respectively.
Substitution of (7) into Eqns. (1)-(4) and subsequent
climination ol w. p, p results after much algebra,
ina single equation of ¥,

d=y

A Nt 3
o (N~ 0 (%)
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where,
. N 1 {1 dpg dug | 1 [dpy
NO)=F—pe—g ( po dy —d);) T 2p ( d}‘-’_)
2 D
_ﬁlgn(% __ 1 dm 9)
4p2 \ dy Q dy>

Here a = k.h, C, = w,)'k,-V, C = W.'/ka and
0 = C,— uy - iC; are the normalized horizontal wave-
number, normalized phase velocity of the wave, norma-
lized imaginary pait of the fiequency of oscillation and
Doppler frequency respectively. N*is the square of
the Brunt-Vaisala (BV) frequency to be defined later.
Eqn. (9)is quite different from that of Lalas and
Einaudi (1976), since the present analysis deals with the
full hydrodynamic equations of motion. This difference
resulted on the piopagation characteristics of the
unstable modes, especially on the phase velocities as
well as the growth rates.

A rigid boundary condition is imposed on ¥ :
Y()=0 aty=y=2z/h (10)

where, y; is the height of the lower boundary from
the point of inflection. At large heights y>yp. (1)
is essential constant and equal to A (yy). and the solu-
tion to Eqn. (8) in this region takes the form :

¥~ exp (iKy).
where. K is the normalized vertical wavenumber given by
K=2[—AQ=A12=K +iK (1D

If K;#0 then the sign in (11) is chosen so that
K;=0, implying exponential decay of the wave amplitude
above y=yy. If K;=0, then the sign in (11) is chosen so
that the group velocity has a positive vertical compo-
nent. The upper boundary condition is :

d¥

_d}, — iKY at y =y (12)

Following Thorpe (1969). we choose J, the minimum
value of the Richardson number in the flow, as the main
stability parameter, so that,

N2h®
I=5 (13)
where, N2 is the BV frequency, which is given as,
o & (4T
m=£(F + 1y (14

whete, T, is the temperature of the atmosphere, and
I'y the dry adiabatic lapse rate. It is a well known
fact that unstable solutions will exist only in the range
0<J<1/4, as required by the Miles-Howard (1961)
theorem and its extension to compressible fluids of
Chimonas (1970). If J=1/4 the flow is stable,

Now, if a region of the atmosphere is saturated, its
effective stability may be lowered because of the re-
lease of latent heat associated with condensation pro-
cess. Therefore, in the'presence of moisture, we choose
as the main stability parameter, the modified effective

(BV) frequency N2 as this is given by Lalas and
Finaudi (1974) and Durran and Klemp (1982a) :

ca_ & (4T | 4 ( o Las )
j\m ’T}('dz Tlm) ‘l T RTG)

g dq‘,.
“ilgq, d as)

where, ¢, is the saturation mixing ratio, ¢, the
total water mixing ratio which is the sum of ¢, and the
liquid water mixing ratio ¢p (4, = ds +q.) L
is the latent heat of vaporization and R is the gas
constant for dry air. I, is the saturated adiabatic
lapse rate. In fact two dynamical systems, with identical
values of N and N,,. will have an identical linear beha-
viour. The nonlinear behaviours of the moist and dry
systems differ primary because the saturated adiabatic
lapse rate I',, is not independent of height, and non-
linear effects act to increase the buoyancy restoring
force in the wave crests beyond that predicted by linear
theory, while decreasing it in the troughs. Durran and
Klemp (1982b) have demonstrated that the difference
in the behaviour of linearly equivalent wet and dry
systems becomes significant in moderately strong waves.
In any case, since we demand that the fluid is stably-
stratified both N2 and N,2 will be taken as positive
constants in the present treatment. Fig. 1 depicts the
normalized density and velocity profiles and the dry BV
frequency distribution of the basic flow.

In our modelling we assume that the moist region is
uniform . so that N,2 is constant; this region contains
sufficient moisture so that it always remains saturated.
This can be the case when the saturated layer contains
liquid water of the order of about 0.2 gm/kg to
0.4gm/kg. Fig. 1 shows the positions of the moist
layer which indicated by the BV frequency distribution.
According to Lalas and Einaudi (1974) in a saturated
environment, the linear wave equation has the same form
as that for a dry atmosphere, if the stability parameter
is appropriately altered to include the influence of
moist process. In this way, N, has replaced N (see
Bretherton 1966: Durran and Klemp 1982a). Thus, the
two dimensional, linearized hydrodynamic equations
of motion lead to the same second order differential
equation as Eqn. (8), except that the dispersion relation
includes the stability reduction, i.e., the new effective
BV frequency N,,. so that we can write for A(y):

Nm2]12 _I_ l_ ‘!Eﬂ_ (_{“Q
yer Q@

po dy dy
4 1 ((F_Pf' I 1_ ﬁﬂ 2_ 1_ égu" 16)
2o \dy2 ) dpg\ dy aar (

Eqn. (8) with boundary conditions (10) and (12) is an
cigenvalue problem for the complex frequency. It is
solved iteratively using the algorithms described by
Lalas and Einaudi 1976). In the presence of the moist
layer Eqn. (8) is integrated from y = yr to ¥ =y, (yu 18
the height of the upper edge of the layer) employing
Egn. (9) as the dispersion relation. From y=y,t0
y=y; (4 is the lower edge of the layer) the modified
dispersion relation Eqn. (16) is wused; and from
y=y4 to y=y;, again Eqn. (9) is used in the procedure.

A@)=at—
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Fig.3. Asin Fig. 2 but for Mode 1V

3. Numerical results and discussion

The number of the parameters characterizing the
problem, ie.. N3, N2 0 J, V. vio Yo Yur Yoo €IC is
so large that we are forced to limit our investigation
to two specific parametiic studies. The effect of the
moist layer location with respect to the ground and the
inflection point, and the effect of stability variation,
on the waves.

We take the origin to be at the point of inflection.
The ground then located at a distance. y—y;= —10.0
and the top of the computational regime above which
the velocity is constant and Eqn. (12) holds is at y—y
=10.0. Referring to Fig. 1. we define . the distance to
the beginning of the saturated layer (rom the inflection.
ie.,d=y,. In thisstudy the layer thickness is taken to be
constant, ¥,,—3.0, while d is taken to be 4= —5.0. 5.0,
and 0.0. In the latter case the moist layer is just below
to the inflection point. Here. it must be noted that the
choice of the layer positions are the most effective ones.
Finally, we define & as the ratio of N, to N, ic.,
8==N,,/N, where 8 is a measure of the amount
of moisture in the saturated layer since it is a function
of the specific humidity. Two values of & have been
used, 0.46 (N,,=0.00623s—1) and 0.24(N,,—0.00322s—1)
which correspond to specific humidity of 0.2
gm/kg and 0.4gm/kg.  Although these  values
could be viewed as large but in the atmosphere arce
measured routinely instead. In a saturated atmosphere
typical values of the moist N, range around 2 10— 5L,

In presenting the results, normalized growth rates
aCi and phase velocities C, are plotted as functions of
the normalized horizontal wave number a—=k.fi Tor difter-
ent values of the Richardson number. On the same.
graphs are plotted also. for the sake of comparison the
aC; and C, for the dry atmosphere.

We will discuss each unstable mode as labelled by
Lalas and Einaudi (1976) because each mode is affected
differently by the presence of the moist layer.

P. JACOVIDES
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Fig. 4. As in Fig. 2 but for normalized distance from the
inflection point d——35 0

3.1. Effect of moaist laver position on the unstable
Modes
The unstable waves of Mode I, because of their short
wavelengths, have been found not to be affected by the
presence or the position ol the saturated layer.

F.1.ls Additional Modes I and

Long wavelengths
v

The results for waves of Modes I and IV are pre-
sented in Figs. 2-6. Figs. 2 and 3 give resulis with
layer thickness y,,~—3.0 and ¢ 5.0, while Fig. 4 repre-
sents results with d= -=-35.0: Figs. 5and 6 depict results
with ¢—0.0. but for layer thickness 1, 2.0. The
presence and position of the saturated layer alter the
characteristics of the waves. The position of the eritical
levels is affected by the different geometry, accompanied
by variations in the phase velocities of the disturbances.
The growth rates of the unstable waves ol both modes are
seen Lo increase substantially and almost three times
and more (relative to the dry one) for 0.0 . Whi'e for
d—35.0, the growth rates are seen (o increase almost
double. For d—= 5.0, different results are oblained : the
unstable waves of Mode IV disappear. while substantial
reduction of the growth rates of Mode I1 are observed.
The position now of the critical levels v, is affected
drastically and the phase velocities of the disturbances
are seen to go to —I, with cortesponding levels going
toward the lower edge of the shear layer. wherc the
local Richardson number is large.

On the other hand. since the moist layer seems to
behaves as a solid boundry (Jacovides 1988) the auu
value of the waves is scen to move to the longer wave-
lengths domain, so that the destabilisation ol longer
wavelengths is obvious. The case discussed above with
d—0.0. seems to be in qualitative agreement with the
results presented by Lindzen and Tung (1976). In this
way, some resonance effect is introduced by the presence
of the saturated layer, which in combination with the
exponential growth of the waves, drastically “alters the
characteristics of the disturbances. Perhaps this layer
position could be formed a more effective duct toget her
with the ground swiface as in the case of Lindzen and

Tung (1976).
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Fig. 5.7As in Fig. 2 but for normalized distance from the point
of inflection d=0.0 and layer thickness ym=2.0

Fig. 7. Asin Fig. 4 but for ModzTIT

3.1.2. Longer wavelengths : Additional Mode 111

The results for the waves of Mode 11I, are presented
in Figs. 7 and 8. Fig. 7 gives results with d—=—5.0 while
Fig. 8 depicts results with d=5.0. As we mentioned
already, the unstable waves belonging to Mode III are
mostly evanescent in the bottom layer and largely propa-
gating above the shear zone. Thus the saturated layer
behaves differently on the waves of Mode III than on
Modes II and IV. Therefore, in the case with d=—S5.0,
the growth rates are seen to increase substantially while
the position of the critical level is affected once again”
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Fig. 6. As in Fig. 3 but for normalized distance from the
inflection point 4=0.0 and layer thickness ym=2.0
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Fig. 8. As in Fig. 7 but for normalized distance from the inflection
point d=5.0

by the different geometry, with corresponding variations
in the phase velocities of the disturbances. The intro-
duction of the moist layer above the point of inflection,
unlike for the other Modes II and IV, is stabilizing.
What effect does the moist layer position just below to
the inflection point, on the unstable Mode III ? As
shown by Jacovides (1988), the saturated layer behaves
as a solid boundary, so that, the ground seems to reach
the origin and the unstable waves of type ILI Mode, which
radiate energy upward, dissappear. This is in accor-
dance with the results reported by Lalas and Einaudi

(1976).
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TABLE 1

Characteristics of the unstable modes of gravity waves generated by
shear flow, as predicted by the present model. the inodei
used by Wang ¢ al. (in parenthesis) alona with ohser

ved values of 6 March 1979

Richardson
number

Horizontal phase Horizontal
velocities wavelenuths
(m's) (km)

Below the inflection point

Modz | 8 (10} 31.5-6.7 (2.64.2 0.25
Mode I 10-12 - 9.3-12 —~ 01
Mode 11T 12-14  (11-12) 11.5-19  ((.3-14.5) D.14
Mode IV - .
Observed 13 12-19 0.22
Above the inflection point
Mode IT 10 8-14 R-11.5 0.1
Mode 111 11.5-16 12-21.5 n.143
Mode IV 12.2-17 14.23 0.2

3.2, Effect of the stability variation 8. on the waves

If cne compares the two cases (a) and (b)for all
figures the influence of the stability reduction is easily
discernable. As =N, /N, is decreased [rom 0.46 to
0.24 the growth rates increases, the critical levels tend
toward the infiection point and the phase velocities
toward the mean shear value while smaller wavenum-
bers become unstable. Negative values of 6 (i.e., N, 0)
arc omitted because convective activity will then be
triggered and the applicability of the present analvsis
will be in doubt. The above results referred to the case
with ¢=5.0 and lor waves ol Modes I1 and IV. For the
case with d= —35.0the growth rates decrease substantially
when 3is decreased. However, the stability reduction is
more important when ¢=0.0, especially on the waves
with greater Richardson numbers.

Thus .if the water vapour increases so that  becomes
less than a critical value of 0.18 there is an Increase
of growth rates as one could expect but also in this
case, there is evidence of change in the model struc-
ture. Therefore a singular neutral mode analysis has
heen carried out for this case to establish the stability
boundary and the results are shown in Fig. 9. The
shape of the neutral curve is very similar to the one
obtained by Lalas and Einaudi (1976) in their attempt to
include an elevation inversion in the overall profile of
temperature.

The influence of stability reduction on the waves of
type Mode 111, is illustrated in Figs. 7 and 8. Comparing
the cases (a) and (b) is easily shown the effect of sta-
bility reduction on these waves depending on the propa-
gation characteristics and the moist layer position.

FFig. 9. Neutral stability boundary plots in the (e J) plane proiec-
fion for normalized laver thickness v, —2.0. normalized
distance -0 0 and Rruni-Vaisala frequency N, 0,00230

s Ewhich corresponds to a specific hunsidity of 0 435 gup foo

This reduction resulted in an increase of the range of
the unstable wavenumbers by incorporating smaller
vialues of a. For the case ol layer position above the
point of inflection the stability reduction is more im-
portant, since for a critical value of 50,17 the uns-
table waves ol Mode 11, disappear.  For the case with
0.0 the unstable waves ol Mode 111 seem to merge
into one continuum of modes (i.e.. Mode I).

The present analysis reveals the eflects of moisture
on & broaden spectrum of gravity modes. In this way,
the practical implementation of this apalysis is that, it
allows the stability ol any atmospheric prafile 1o be
tested as the one presented in the next section.

4. Model application to the atmosphere

The simple model of condensation effects on gravity
waves presented in this analysis could be used to ex-
plain the conditions under which some mesoscale phe-
nomena are organised and triggered. The ranges of the
parameters considered in the previous sections have
been chosen keeping in mind representative atmosphe-
ric situations.

An interesting physical situation to which our analy-
sis can be applied is the formation mechanism ol the
so-called wavelike rainbands. In this way we are con-
cerned with rainbands similar to these described by
Wang er al. (1983). They reported that the vertical
velocity profiles of the herizontal component perpendi-
cular to the wavelike rainbands is similar to a hyperbolic
tangent one (see Fig. 18 of Wang ¢/ af. 1983). 1t must be
noted here that, although these types of rainbands are
rare, some of them have a horizontal scale commen-
surate with gravity waves.
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Assuming now that the unstable waves ol Modes
I 11, 11T and 1V, with @ equal to @,u. are excited,
let us see how they compare with observations. In
Table 1, we reproduced the cases mentioned by Wang
et al. (1983) along with their calculated and observed
efficient wavelengths and phase velocities of our most
unstable waves. In the present model, wavelengths
and phase velocities have been calculated by assuming
a moist region above and below the origin, as opposed
to an atmosphere saturated throughout, as assumed
by Wang et al. (1983). The relevant physical parameters
have been taken from their reported data (i. e., width of
the shear layer, Richardson numbers, height of inflec-
tion point, etc).

The results of the present model agree approximately
with those of Wang et af. (1983) for Modes I and II,
with the present results covering wider wavelength and
phase velocity range. Mode 1V, which was not investi-
gated by Wang et al. (1983) though possesses phase
velocity as well as wavelengths that are quite close to the
observed ones. However, it can be seen that the type
11l Mode agrees best with the observed wavelengths
of the wavelike rainbands. Given the uncertainties in
the experimental data and the departures of the actual
velocity and density profiles from the simple configura-
tion utilised, the agreement seems to be good enough to
suggest that instabilities of the gravity type can be
associated with the formation mechanism of the wavelike
rainbands. It is evident, however that, the lack of experi-
mental data together with the coarsenes of the model do
not permit a definite identification of the gravity waves as
the cause of the rainband structure.

5. Conclusions

It has been shown that the presence of a moist layer
at different levels, in respect of the point of inflec-
tion and the ground, can significantly affect the sta-
bility characteristics of internal gravity waves. The
presence of such effective layer is shown to stabilise
short wavelengths and destabilise substantially longer
wavelengths. Also it is found that moisture-saturation
has a destabilising effect on the resonant modes which
contain long wavelengths. Additionally, the propagation
characteristics of the waves may be altered, even no
convection is triggered by ducting phenomena generated
by the wave itself. through the induced changes of the
vertical structure of the atmosphere via the presence of
the effective moist region.

The characteristics of internal gravity waves in
actual atmospheric flows, once the velocity and tempera-
ture profiles are known, can be readily obtained by the
present model. Also, the waves studied in this work,
which are excited in an almost saturated shear flow, arc
bound to play an important role in determining possible
new generation mechanisms for various phenomena which
are  organised and triggered with spatial and
temporal scales well within the gravity wave domain
(Wang ef al. 1983). Thus, the present analysis, reveals
some new important results which are associated with
rainband structure, since only Mode 1II provides a
consistent interpretation of the observed waves in such
environment (Testud ef /. 1980). However, incorpora-
tion of several other important features such as more

realistic distributions of temperature, nonlincar effects,
etc. which were not taken into account here, isessen-
tial.

Acknowledgements

This work was undertaken while the author was com-
pleting his Ph. D. research. The author wishes to ex-
press his gratitude to his advisor Prof. Lalas, D.P.
(Wayne State University) for much advice and en-
couragement and for reviewing an earlier manuscript.
He would also like to thank Dr. A. Satya Narayanan
(Indian Institute of Science, Bangalore) for several
comments and for critical reading of the manuscript.

References

Bretherton, F.P.. 1966, ‘The propagation of group; of internal
gravity waves in a shear flow’, Quart. J.R. m:t. Soc., 92,
466-480.

Chimonas, G., 1970, *‘The extension of the Miles-Howard theorem
to compressible flows,” J. Fluid Mech., 43, 833-836.

Davis, P.A. and Peltier, W.R., 1976, ‘Resonant parallel shear
instability in the stably stratified boundary layer,” J. atms.
Sci., 33, 1287-1300.

Drazin, P.G., 1958, *The stability of ashear layer in an unbounded
heterogeneous inviscid fluid’, J. Fluid Mech., 4, 214-224.

Durran, D.R.and Klemp, 1.B. 1982(a), On the effects of moisture
on the Brunt-Vaisala frequency, J. Atniss. Sei., 39, 2152-2158.

Durran, D.R. and Klemp, 1.B., 1982(b), ‘The effects of moisture on
trapped mountain lee waves', J. Atmos. Sci., 39, 2490-2506,

Finnigan, J.J., Einaudi, F., and Fua, D., 1984, ‘The interaction
between an internal gravity wave and turbulence in the stably-
stratified nocturnal boundary layer’, J. armos. Seci., 41, 2409-
2436.

Fritts, D.C., 1980, *Simple stability limits for vertically propagating
unstable modes in a tan i (z) velocity profile with a rigid lower
boundary’, J. atmos. Sci., 37, 1642-1648.

Howard, L.N., 1961, ‘Note on a paper by John W. Miles’, J. Fluid
Mech., 10,509-512.

Jacovides, C.P., 1988, <The cffect of moisture on the gravity waves
in an atmospheric shear layer’, Ph. D. Thesis (in Greek),
University of Athens,

Jones, W.L., 1967, ‘Reflzction and stability of waves in stably-
stratified fluids withshear flow : A numezrical study’, J. Fluid
Mech., 34, 609-624,

King, J.C., Mobbs, 5.D., Durby, M.S. and Ress, LM, 1937,
«Observations of an interaal gravily wave in th: lowzr
troposphere at  Halley, Antarctica’, Bound. Layer Met,,
39, 1-13.

Lalas, D.P. and Einaudi, F., 1974, ‘Oa the correct use of the wet
adiabatic lapse rate in the stability criteria of a saturated
atmosphere’, J. appl. Mer., 13, 318-324,

Lalas, D.P. and Einaudi, F., 1976, ‘On the characteristics of gra-
vity waves generated by atmospheric shear layers', J. atmos,
Sei., 33, 1248-1259,

Lindzen, R.S. and Rosenthal, A.J., 1976, “On the stability of
Helmholtz velocity profiles in stably stratified fluids when a
lower boundary is present’, J. Geophys. Res., 81, 1561-1571,




Lindzen, R.S., and Tung, K.K. 1976, ‘Banded convective activity
and gravity waves’, Mon. Weuth. Rev., 104, 1602-1617,

Miles, J.W., 1961, ‘On the stability of heterogencous shear flow’,

J. Fluid Mech. 10, 496-508,

Narayanan, S, and Sachdev, P.L., 1982, ‘Instabilitics induced by
variation of Brunt-Vaisala frequency in compressible stratified
flows’, Phys. Fluids, 25, 1317-1321,

Pellacani, C., Tebaldi, C. and Tosi, E., 1978, ‘Shear instabilitics
in the atmosphere in the presence of a jump in the Brunt-
Vaisala frequency’, J. atmas. Seci,, 35, 1633-1643.

Stobie, J.G., Einaudi, F. and Uccellini, L.\V., 1983, *A case study
of gravity waves-convective storm interaction : 9 May 19797,
J. atmos. Sci., 40, 2804-2830.

256 C. P. JACOVIDES

Testud, J., Berger, G., Amayenc, P., Chong, M., Mutten, B. and
Sauvaget, A., 1980, *A doppler radar observation of a cold
front : Three dimensional air circulation related precipita-
tion system an associated wavelike motions’, J. atmos. Sci,,
37, 78-98.

Thorpe, S.A., 1969. Experimeznis on the stability of stratified
shear lows’, Radio Sci.. 4. 1327-1331.

Uccellini, L.W. and Johnson, D.R. 1979, ‘The coupling ol upper and
lower jet-streaks and implications for the development ol
severe convective storm’, Mer. Wearh. Rev., 107, 682-703.

Wanz. P.T.. Parsons, D.B. and Hobbs, P.V., 1983, *The meso scale
microscale structure and organisation of clouds and precipi-
tation in midlatitade cyclones. VI : Wavelike rainband
associated with a cold-frontal zone J. atmos. Sei., 40, 543-
554

-




