Mausam, (1995), 46, 2, 111-126

551.524.7 : 551.577.51

Effect of latent heat release on mountain waves in a sheared mean flow
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ABSTRACT. The effect of latent heat release on windward side of the mountain, due (0 precipitation,
over the mountain waves has been studied assuming wind speed changing with respect to height. A single pro-
file based on actual Peshawar data has been considered for the analysis. A thin level of heating has been
chosen at medium level for the purpose of study. For non-hydrostatic case it is observed that in non-
precipitation case when balanced heating/cooling takes place on the windward/leeward side of the mountain
the effect of heating is negligibly small. However, for precipitation case downward displacement on the
windward side, just above the level of heating. is obvious. Interference with the upstream current by the waves,
produced due to elevated thermal forcing and reflected from the ground surface is attributed to this,
phenomenon. Increase in the wave amplitude on the lee-side of the mountain as compared 10 non-
precipitating case is also found. It is also revealed that higher the level of heating, lesser the amplitude of the
induced disturbance. 4.5 km agl is the level which is maximum affected by heating in general.

For large and shallow mountainous terrains, hydrostatic solutions have been produced for three different
levels of heating for sheared low. Streamlines have been drawn. On comparison with no shear case, it may be
inferred that shear effect is opposite to that due to thermal forcing.

Key words — Hydrostatic, Non-hydrostatic, Heating. Cooling. Mountain wave, Precipitation,
Upstream.

1. Introduction

The orography over an area influences the dis-
tribution of rainfall in that region. The inves-
tigations carried out by Bonacina (1945),Bergeron
(1960), Smith(1979) and Browning (1980) illustrate
these details. The orographic influence is generally
caused through forced uplift and thermal effects.
However, the total modifications to the incident air-
flow by the mountains are not yet understood in its
entirety, so as to explain the preferred regions of
increased rainfall in a hilly region or in a valley.
Enormous amount of latent heat is absorbed from
the atmosphere in the evaporation process of the
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clouds causing cooling. Similarly, enormous heat is
released in the atmosphere during the con-
densation/precipitation process in the atmosphere
causing heating. Both these processes cause signifi-
cant difference in the stratified structure of the
atmospheric layers. Effect of cooling induced on the
cloud top and its influence on lee-waves has been
studied by Kumar and Scorer (1993). It has been
observed by them that evaporation/radiational
cooling significantly changes the shape of the lee-
wave and causes steepening of crests and shallow-
ing of troughs. The study of effect of heating due to
condensation has also been attempted in the past.
Investigators in their theoretical attempts have
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combined latent heat with orographic forcing
(Sarker 1966, 1967, Raymond 1972, Gocho 1978,
Barcilon er al. 1980). Though these studies illustrate
the various mathematical methods to quantify the
latent heat released and the orographic forcing, the
final results are not borne out by the observed rain-
fall data. The main difficulty, however, remains to
be the parameterisation of the quantum of latent
heat released. All these studies assume that the con-
densation arises from smooth orderly ascent of the
type resolved by their equations. They also have not
considered the excess of heating that occurs over the
cooling when liquid water is precipitated (Barcilon
et al. 1980).

The “smooth ascent hypothesis” may be more
appropriate in selected mid-latitude belts during
winter periods wherein shallow convection, embed-
ded within frontal clouds, gets modified by oro-
graphic forcing (Browning er al. 1974, Browning
1980, Marwitz 1980). On the contrary, tropics
exhibit vast regions with strong winds impinging on
mountain ranges giving rise to closely packed
strong convection triggered by mountain forcing in
an unstable atmosphere. In any case, if the moun-
tain height is taken as a measure of air ascent, it will
be an underestimate of the condensation taking
place in the actual convection on the moun-
tainous region.

Conscious of the constraints of the “smooth
ascent hypothesis”, Smith and Lin (1982) adopted a
semi-empirical approach, based on the distribution
of the rainfall that may be available from actual
data. The rainfall realised is considered as a
“measure of the condensation aloft” and the effect
of the latent heat thus released on the stratified air
stream is then calculated. The wvertical motion
caused by the thermal forcing can be individually
quantified. This added to the orographic forcing,
provides the total effect of mountain on orographic
rainfall features. They established that in hydro-
static flow, the phase relationship between the heat-
ing rate and the induced vertical displacement is
found to be negative. Taking periodical heating and
cooling rate in an unbounded fluid with heating
layer in the centre, the response of heating function
resulted in vertically propagating waves such that
the vertical displacement at the heating level was
found to be exactly out of phase to the heating rate.
This process can be modified only to a limited
extent by the presence of a rigid lower boundary or
by an increased depth of heating region. The
_clevated heating in their case seemed to produce
vertically propagating waves whose amplitude,

relative to. mountain waves, was expressed by the

parameter , For typical wind speeds

cp TUPNH
and rainfall rates the thermally generated waves in
their case seemed to equal or exceed the orogra-
phically generated waves.

The phase-relationship between the heating
function and the induced vertical motion is
especially important in the wave-CISK (Con-
ditional Instability of the Second Kind)
mechanism where the heat source is due to the
condensation of water vapour in rising air induced
by wave motion. Downward displacement in the
vicinity of the heating may tend to limit the
amount of condensation/precipitation which
could occur in a standing orographic cloud aloft,
unless the condensation is occurring in small-scale
convection of a sort which is not strongly sup-
pressed by the broad scale (horizontally 10-100
km) descent. Heating at certain special levels can
produce upward air motion at some distance at
and near the level of heating. Under marginal
stability conditions, this could trigger deep
cumulus convections and enhance the condensa-
tion and precipitation on the windward side of
the slope.

Attempt of Smith and Lin (1982), however, was
confined only to the hydrostatic atmosphere when
the horizontal length scale is much larger than the
vertical one. This type of atmospheric situation is
quite not typical one and hence in order to include
the realistic case we need to investigate their
results for non-hydrostatic, atmosphere with res-
pect to lee-waves (Wurtele 1953, Palm 1955).
Sheared mean flow is another general feature of
the atmosphere. Hence any attempt to extend the
study for actual atmospheric case has to include
these two features. In this paper, therefore, an
attempt is made to evaluate the response of the
sheared mean flow to the latent heat released in
both the cases, viz, hydrostatic and non-
hydrostatic types of flow. A single layer two-
dimensional model with exponential [-profile is
considered in the analysis.

2. Formulation and solution

It is assumed that basic mean flow is increas-
ing with height, i.e, U = U (z), with positive wind
shear, thus ruling out any critical level aloft.
Each dependent variable on the lee-side may be
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represented as the sum of a basic mean value and a
perturbation term as follows :

u@z) = U@ + u(x2)
w(ixz) = 0 + w'(x 2)
plx.z) = p(2 + p'(x2) (1)
plxz) = p@ + p'x2)
Tz = T@ + T'k2)

All the variables are defined in Appendix I. Follow-
ing Smith and Lin (1982), the equation for the verti-
cal velocity of steady, two-dimensional, non-
rotating, incompressible fluid, obeying Boussinesq
approximation is,

2w 02w gH |p@)|%
P P 2 -
azz + 3 +I(Z)W c_--?[ po] (2)
wiere,
8B U, SU, § 1
& =gt 7750

Smooth orderly ascent hypothesis (H = w) is not
strictly applicable (Browning 1980, Marwitz 1980)
here. In fact experimental evidence presented by
Hill er al. (1981) strongly supports the view that
orographic rain is largely a low-level phenomenon
and washout of cloud droplets is likely to be an
important mechanism for generating the rain. For
the mathematical formulation of heating function
in the atmosphere we need to consider two different
physical situations as follows :

(1) when cloud forms on the windward side of
the hill and dissipates due to downward
motion on the leeward side, and

(i) when cloud precipitates on the windward
side and the latent heat released exceeds
evaporative cooling on the leeward side of
the mountain.

In the first case one may simply attempt solution

of Eqn. (2) with heating/cooling expressed as a

function of x. Second case has been discussed by

Smith and Lin (1982) in detail. When condensed

water falls from cloud the atmosphere will receive

net amount of heating and hence the heating func-

tion [eg. H (x, z) = Q 8 (x) 8 (z — zx)], which allows

a net heating at any level, causes perturbation verti-

‘el velocity to decay downstream as proportional to
1/x and vertical displacement grows as log (x). This

implies that net heating does not produce localized
disturbance. In such a case slow process of radiative
cooling might cause decay of vertical displacement.
To facilitate entire process, they correctly choose a
prescribed weak and widely distributed cooling
function added to the local heating function. This
not only permits us to simplify our analysis under
the assumption that the net heating at each level
is zero,

[+ o]
ie, [ q@yax=0 )

— 00

but also avoids the inclusion of three dimensions
and Coriolis force for the purpose of compensatory
cooling. We, therefore, proceed to investigate solu-
tion of Eqn. (2) with the help of separable
heating function,

Hx, 2) = Qq(x)f(2) (5)

where, f(z) is normalized according to

[+ o]
Jf@dz=1 (6)
0

[+ o]
sothat. . [ H(x 2)dz=pQq () %)
0

represent the total power added to the vertical
column of atmosphere. We, therefore, consider
below the following two heating functions for the
precipitation and non-precipitation cases res-
pectively :

Non-precipitating case .

& = b d b2 2h3 x
60 b o] e ®

Precipitating case :

® by? by by (9)
x = —
e x2 4 by2 x2 + by

The method of solution is to first find the response
to a heating distribution which is concentrated at zy
according to the equation.

Hx 2)=Q ¢ ()8 — zp) (10)

and then to integrate with respect to zy with the
weighted function f(z). Substituting Eqn. (10) in
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Eqn. (2) and then integrating from just below to just
above the level z = zy, we get

Aw, = p¥ ) Qg () g/ (c, TUpg%) (11
Also w continuity at level = = zy gives the dif-

ference of w from just below to just above as zero.
ie, Aw= 0. (12)

Away from the heating layer. Eqn. (2) reduces to
the equation,

Wer + Wee + B(2)w =0 (13)
Solution of Eqn. (11) — (13) is given below when

depth of the heating region (2d) is small. The details
are given in Appendix IL

Case I: For non-precipitating case, when heat-
ing function is given by Eqn. (8) and if.

o 5y - il
U hal ka=—ikx
n.=Ref ()a_:z vine dk
0 U (2)Jy (po)
©  gQbnphz W ig)Y Lngle kb ik
= Re_f —_— — dk
0 2, TYzapg's Ul2) J\(ng)
T g0b nph(zpN )Y p)ekb+ike
ni=Ref adane ik dk
0 2, TUzapea Ulz)
@ blnpta(zi) Y luyl/ u)e-kbﬂ‘k.t
na= Re J' 2Qb-np¥( H_)_;WH ‘.’_( Jk
0 kpﬂ,},apo%ll(z)
(14)
then
n=m+n-n3 forz<zy (15)
n=m+mp-ng forz>zy (16)

The pressure distribution at the ground level can be
computed by Bernoulli's equation (Scorer 1975).

]

= ad
p(x. 0) = p I2(0) 3’:— an

z=0

_ d
p U2(0) E{nﬁ(nz-ns)}fo (18)

Case II: For precipitating case when heating
function is given by Eqn. (9) and assuming latent
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- —— NN
\

'”Ir - —/\/\/\/

pE— VA

[k}

e e
MO0 -0 M 00 80 -6 40 <0 O 20 40 0 00 10 W0 W0 W
xlwe)

Fig. 2. h = 0.5 km; a = 20.0 km. Steamlines of flow over a bell-
shaped mountain with shear. Solution given by Doos

(1961)
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heat to be centred at a distance ¢ from the mountain top and if

cC =im

F/ J?o ngQb1p¥i(zp) (e~ k01—~ kb)Y (ol () (et +o) dk

" i 2ac, T po%sk U(z),(1g)

¢ =Im JED ngQb1p¥i(zp) (=401 — =Ko\l (u ) Y (w)eikix+) "

" 0 2ae,TGj00tk U(z)

¢ =tm | —_TEQbIHGH) (€~ Ro )Y, et dk

b 0 2ac, Tl ok U(z) -

then,

n=mn1+n3-n3 for z < zy
¢ e (20)
n=my+n2-n4 forz>:zy

The results are expressible only as lengthy
integrals. The most important property of these
integrals is that they include lee-wave resonances —
the contribution of positive wind shear and mon-
hydrostatic effects guarantee them. This also refers
to the findings of Wurtele ( 1953). The pressure dis-
tribution at the ground is given by

-3 d o
) = =pUA0) > fm+nz-ngl ()
z z=0

3. Discussion

Total reflection caused by elevated thermal forc-
ing due to rigid lid (w = 0 at z = 0) below raises the
issue of constructive or destructive wave inter-
ference. This makes the flow field more complex.
Fig. 2 shows the simple case of wave occurrence for
a flow past small bell-shaped mountain (Doos 1961,
Waurtele 1953). To include the normal atmospheric
shear, actual data have been taken from Peshawar
for 5 May 1984 (Fig. 1), which lies on the foothills,
on the west end of Jammu & Kashmir.

Fig. 3indicates the shape of the wave with balan-
ced heating and cooling produced on either side of
the hill. A thin level of heating is chosen at 2.5 km
which is normally the level of medium level
stratified clouds, which do occur in stable atmos-
pheric layers. In all, 3 wave numbers (k =
0.06994204, 2.37675103, 4.62572730) have been con-
sidered. Subsequent wave numbers are appreciably
large to give any significant effect. A comparison of
Figs. 2-3 does not indicate any significant change in

lz-s’;
105 %/\f\/_\/

?

L e e —
”L\—/,\/\/\/\f\v/
C‘St
S R ) I m; i i i L
KO 120 00 -80 -60 -40 -X 0 2 40 60 80 100 120 140 160

X{Km}

Fig. 4. b) = 200 km: b, = 1000 km; z; = 2.5 km: ¢ = 20.0 km;
Q=1107 wm kg™'; h =05 km; a = 200 km. Stream-
lines of flow as a result of Eqn. (20)

the streamline pattern, implying that for balan-
ced heating and cooling on either side of the hill
top the diabatic effect is negligibly small, though
not zero in our computation, Figs. 4-5 show
effects of isolated heating due to precipitation 20
and 40 km away from the hill top. Significant
difference may be noticed in the case of no pre-
cipitation and that of precipitation in the
streamline patterns on either side of the moun-
tain  top. Downward displacement on the
windward side just above the level of heating is
obvious. Wave interference due to reflection from
the ground may be noted at 100 km upstream.
Although details ‘depend on the precise nature of
heating function, it may be noted that such
downward displacement occurs, in the present
case, not at the place of isolated heating but
slightly above it. May be the increase in buo-
yancy associated with the heated zone combined
with the orographic effect restricts downward
displacement at the region of latent heat releas-
ed due to precipitation. Upward propagation
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Fig. 5. by = 20.0 km; by = 1000 km; z5 = 2.5 km: ¢ = 40.0 km;
Q=107 wmkg ;A = 05km; a = 20.0kn, Streamlines
of flow as a result of Eqn. (20)

of disturbance is apparent with the phase of the
wave tilting upstream. Increase in the wave
amplitude on the lee-side of the mountain as com-
pared to the case of no precipitation can also be
noticed. Disturbance induced by heating is more
prominently marked when isolated centre of heat-
ing is further upstream (¢ = 40 km). Upstream dis-
turbance due to wave reflection is more pronounced
at 100 km. This case is more realistic as maximum
condensation rate often occurs far upstrcam of
the mountain.

Figs. 6 (a & b) indicate the sensitivity of wave
phase and its amplitude with respect to the level of
heat. They indicate the streamline displacement
contributed only by isolated heating centred 21 and
41 km upwind from the mountain top respectively.
Keeping in view the damping effect upstream of the
flow, these diagrams are drawn at a point which is
not too far from the mountain top and not too close
to the zone of heat. We, therefore, considered verti-
cal cross section of atmosphere 20 km ahead of the
isolated heating centre. It may be observed that in
the present non-hydrostatic case with the variation
of the level of heating, the phase of the wave is con-
tinuously affected and higher the level of heating,
lesser is the amplitude of the induced disturbance. It
may be noted that maximum and minimum of the
wave amplitudes for all the levels of heating func-
tion are interestingly confined to the same medium
level layer (z=4.5 km). This level remains
unaltered with the horizontal shift of the heating
function from 21 to 41 km away from the mountain
peak. Perhaps, it may be attributed to the inter-
ference between the upward moving wave from the
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Figs. 6(a& b). Streamline displacement contributed by isolated
heating at (a) 21.0 km and (b) 41.0km upwind at
various levels

heating level and the reflected wave from the moun-
tain surface. Fixed dimension of the mountain,
possibly, produces such a resonance level. As in
hydrostatic case, interaction with the direct upward
and downward travelling waves and the reflected
wave from the ground gives complex situation of
destructive and constructive interference at places.
As a result, for a medium level heating (zg = 2.5),
which may be caused by thin layer of altostratus
cloud, constructive interaction causes small positive
displacement of streamline even at the level of heat-
ing. It may also be noted that the shift in the level of
heating from 2.5 to 4.5 km changes the final phase
by almost n/2.

4. Hydrostatic approximation

In the non-hydrostatic case all the expressions
have to be put in integral form. For flow past large
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Fig. 8. U(10) = 10 nvs; T (2.0) = 15 m/s; 2y = 2.0 km; b = 20,0
km; Q = 1107 wmkg™': a = 20.0km; k = 0.5 km. Hydros-
tatic flow with combined thermal and orographic forc-
ing. Heating occurs over the windward side and cooling
over the leeward side; Eqns. 27 (a-b)

mountainous terrain, the horizontal length scale is
much larger than the vertical scale (i.e, a >> h). We
can, therefore, apply the hydrostatic approximation
(k2 << P) to a fair degree of accuracy (Smith and
Lin 1982). Study of these hydrostatic waves is more
relevant for the Himalayan region where large scale
mountains (half width ‘2’ and vertical height is of
the order of 50 to 200 km and 3.0 to 6.0 km respec-
tively) are common features. Also quite often, the
Scorer’s parameter satisfies the condition {k2 << 12}
for the atmosphere in the Himalayan region. For

such a study, assuming Scorer’s parameter of the
form

(22a)
and I, = Aeth

(22b)

40 120 00 80 -60 %0 -0 0 0 & @ 8 100 120 10 &0
X (Km)
Fig. 9. U(0) = 10 m/s; T(2.0) = 15 m/s; zy = 2.0 km; by = 20,0
km; b, = 10000 km; ¢ = 40.0 km; Q = 1107 wm kg™ ';
a = 200km; h = 0.5 km. Hydrostatic flow with combined
thermal and orographic forcing. Isolated heating is
specified over the windward side; Eqns. 27 (c-d)

the following three cases can be considered

O h=zy [Fig. 7 (a)] (23a)
@ mh>zy [Fig. 7 ()] (23b)
@)  hy <zy [Fig. 7 (0)] (23¢c)

The method of solution for case (i) is presented in
this study. Solutions for cases (if) and (iii) are similar
but lengthy. Hence only the final results for them
are presented hereunder.

Case (i): hy = zg

Assuming that 2 >> k2, we can-find the solution

in the two layers in a straight forward manner.
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w1=CiJo(w)+DY(p), z<hy, ie. in m-layer (24a) (i) Aw,=H

@
Wy=Caell?+Dye~ iz, z>hy, ie. in U-layer (24b) where. i = l[ He—ikx -
] n -_w L]
w; and Wy are the W — values in m and U-layer plzg) Qgqx)
pVass thI'E, H =
respectively and p = —Tal— and I, = Ae®h. Cy. Cy Po cpﬂﬁ
and D;, D, are constants to be determined by the or
boundary and interface conditions. For upward Cram T (g )+ Drapy ¥ olup )=il,Co el + H
travelling waves we must have D; = 0. : ' ' ¢ (25b)
Atz=h Also applying lower boundary condition, we get,
= hy =
C1Jo () + Dy Youo) = ikU (0) ahe=alk!  (25¢)
M Aw=0, ie, where
. Bp, = M . Mo = m
Cio (p,) + Dy Yo (up)) = CreliM (25a) 1 z=h z=0
Solving (25a), (25b) and (25c), we get,
o CalamnYolu) el - il ¥y (ua) } = H Yo (up)
1 a
C,C,-HY,
_ GG 0 cay (262)
a
Calaun S0 (un,) €hm — il 3 (uy ) } = H Yo (u,)
D] -
a
Cy Dy — HYo ()
_GhH 0 (up, (say) (26b)
a
ikTi(0)ahe~a k! e=itvh1-+ HUY ol Woluio)—Joki Yoo (26¢)
r i
-2 =

o, Y otun, )~ il Yokitn Y oluo)—{amn, Jown, )= iTolian, )} Y oo)

Substituting Eqns. (26a), (26b) & (26¢) in Eqns. (24a)
& (24b) and taking inverse Fourier transform, we get
w; and wy values for m and U—layers respectively.
Vertical displacement of streamlines are, then R

<
I

ly
= Volm) Yo () = Yo lup) Jo () h

Il

{o (un,) Yo () — Yo (un) Jo () }

obtained, with the help of (AIL14). We present a _ . _
hereunder the final results for this case. If, Si = Peoslly G=hp) } + M sinfly G—hp }
S; = Psinll, z—h1)} - M cosll, c—h) },
P = 1L,{Vows)Jo o — Soum,) Yo(ho }
T, = (PN+MV),
M = L, {Jo () Yo (ro) — Yo (1a) Jo (no) 3 T, = (MN-PV),
N =, (Y0 (n) Jo () — Tolun) Yo b, and T3 = (P2+M?)
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then expressions for the displacements in the two
cases of heat functions are given below :

(®) No precipitation case [Eqn. (8)]

gOMB? Tax + aT; b2M T + bT
n = - + » el aah - gQ_- : L ! ] zLzy (27a)
aly e, T G2+ b2 | T2 + a?) Lo TRTy | 2+5) |
aah(S)a=Syx) p28OM bS,—xS;
n = - —== —y 2 >zy (27b)
T3 (2 + a?) I, cpTUg T (x2 + b2

() Precipitation case [Eqn. (9)]

b Taxt+T,
n = —-—-f:,-ﬁ—-{_L bl tan™ (bL) -'bzlan‘l(f-) + zxc* 2 aa.
I, ¢ TU}?I 1 2 T3 (x® + 02)

g0Mb, x¢ x€
+ ==— [{TiGran™! (=) -ban-! ()}
luc, T3 T U, 1 by

TZ 5 2 o 2
+T{b;log(x“‘-i-b])-bzlog(x‘“+b2)}]2$z;; (27¢c)

where, x¢ = x + ¢

aah (aSl —1.'32) Zw af x¢
= > — [{6:5) () tan=1 (—) - bytan—! (=)}
T3 (¢ + a2) Ly cpTUg T3 b by

bS8
+——2 {blog (+* + b2) — by log = + b7) } 2> zy, where x=x + ¢ 7d)
2 2 1
Case (ii) hy < zy W3 = Eyeil? + Fye=ilz z> 2y (28c)

Following the procedure adopted above, we F3=0 for upward travelling waves only.

obtain,

Here,
;6] =E]J0(u)+Fl YO{“) Z-Shl (288) El _Fl E2 —F2 E3 =1
= ; . —-.:—:-.—:—-—-_-_:—-_. 293
Wy = Eyél? 4 Fye—ilz zg2z>h; (28b) Ey Fi Eyy Fyp Ey; XX (298)

where,
XX = Joluo) [ ~2ilyanp, Yolun, Yeeh— vo(up Y2{elhs (e=2uzn + 1)
+ elh @han-1) ] 9¥o (uo) [Jo (un,) B fe~iehs (1-ezn)
= M (1+e2han) | —iap; Ty (up,) 1, {elehi (14 e=2itzn)

— e~ihh (1+ehan) } ] (29b)
3—1128 IMD/%4
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En = 2i Yo (o) Hiyelon — ikU(O)ahe='¥[ 2il,elh { Yolup,)
— app, Y'o(uh,)}]
Fii = Jo(uo) Heluwn 2il, — ikU(0)ahe= k[~ apy, Jo(un,)
+ il Jo (up,) ) 211, €
En = —Jo(o)[{ans, Yo (us) + il Yo (up) } HeleGah))
~Yo (uo) [{ ampn, Jy (up,) + il Jo (up) } H el thi+2p) |
- k U(0) ahe=a'kh, a
Fyo = Jo(no) Hehan{ Yo (uy ) il, — up, @ Y (up )} elbh
— Yo () H ehlenhi) {il, 1o (up,) = wa, @ JoCup )}
Es; = —Jo(uo) H| —aus, Yo (up) {emihCaho) — elbu-h)}
+ Yy (”hl}{ il, (e~ ih(za=h) 4 eluzr=h) ] ]
— 2k T(0)ahe=a'k\al, + Y (no) H (elGn=h)
+ e~ihes—h) { (—app, Jo (p,) + iluJo (g )}
Case (iii) hy > zg

In this case the solutions are,

W1 = G1Jo (w) + Hy Yo (n) z<zy
Wy = Gy Jo () + Hy Yo(u) hy>z2:zy
W} = (3 el + H; e—ilz 22m

H; =0 for upward propagating waves only.

Here,
& -H, G> ~i5 Gs -
G|1=H|1=Gzzrf122=033:”’
where,
Gy = - ikU©)ahe=a"%![Y§(us,) { aup, eM Vo) Yo (in)

— Jo (un,) Yo (uz)}
— il &k [ Jo () Yo (n,) — Jo (ua) Yo (up) ]
— Yo (nz,) teh™ app, 1o (nz,) Yo (ia) = Jo (ua) Yo (uz) }

— il &k Ty (uz,) Yo () — Jo (uh) Yo (uzp) H ]

(29¢c)

(29d)

(29¢)

(29D

(29¢)

(30a)
(30b)

(30c)

(31a)
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- ’;’H Yo (o) [ { s e, U (hz,) Yo (un,) = Jo () Yduz,) |

o

— il el {Jg (uz,) Yo (un,) — Jo (up) Yo(uz) ]

B —:'kﬁ(())ahe“"l"'au;l {

T ) = il Jo up)) b
ﬂz”

H Jo (uo) el

apg,

[aw, Vo (uz,) Yo (n,) =T (un) Yo (hz) }

il, ek U (uz,) Yo (h,) — Yo (nz,) Jo (up) H]

ikU(0) ah e=alk! .
S— {elh app, Yo (up,) — il @f Yo (up) }
N

~

—— [0 (uz,) Yo (o) — Jo (o) Yo Cuz,)}Ham, Yo (ua,)

Hz,
— il Yo (ua,) | €lvh]

ily Jo (ua,)

I

- ikﬁ(ﬂ)ahe—“lkl(alb (up,) = ) éhh

—~

o (uz,) Yo (o) — Jo (o) Yo () Hamn, Jo (s,
ap,,

= il Jo (up,)} el

ikU(O)ah e~k H
_ ¢ m {¥o (o) Jo (uz,) = Jo (o) Yo (z,)}

"Zy

eflh [ Jo (uoHY (bz,) Vo (nz,) faw, Yo (un,)

— il,Yo (up,) } = Yo (uz,) {amn, Jo (un,) = iluo (un) }}
= Yo (tz,) U (z,) {@mp,) Yo (a) — Yo Gua) i)

— Yo (uz,) {amn, Jo (un) — ilu Jo (un)}}]

— ellehs [ Yo (uo) U () Vo (uz,) &amp, Yo (up,)

— il Yo (up,)} = Yo (uz,) fams Jo (n,) = il Jo (un ) }}
— Jo () Vo (z,) dams, Yo () — il Yo Gap) }

— Yo (uz,) laps, Jo (un) = Jo (k) ily } }]
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Figs. 10 (a-c). Hydrostatic flow with combined thermal and
orographic forcing (Smith and Lin 1982) with (a)
Q=1107 wm kg™'; b =200 km: U=10 m/s;
N=001sec 'z =15%km:h = 05km;a =200
km, (b) @ = 1107 wm kg™ ': by = 20 km; by = 100
km: U=10 m/s; N=001 sec”’; ¢=20 km;
7y =15 km; h=05 km; a=20 km and (c)
Similar to Fig. (b) but with the isolated heating
centred further upstream (¢ = 40 km).

Figs. 7 (a<) show various possibilities of atmos-
pheric situations for hydrostatic approximation.
For case (i), (when k) = zp), streamlines have been
plotted in Fig. 8 for balanced heating and cooling,
and in Fig. 9 for isolated heating centred at 40 km
away from the mountain peak. Heat is applied at 20
km level. Effect of shear seems to dampen the ther-
mal forcing effect in general. A comparison with
Smith and Lin (1982) case of uniform /-profile [Figs.
10 (a-c)] with our case of exponentially decreasing I-
profile in the lower layer does not show significant
change in the non-precipitating case. However,

COMPLEX K-PLANE

IMAGINARY AXIS

| \
B o

REAL AXIS

Fig. 11. Contour for the evaluation of integrals in the n;. N M,
in complex k-plane

marked depleted displacement values can be obser-
ved in the case of isolated heating introduced ahead
of the mountain. [t may, therefore. be suggested that
the shear effect acts opposite to the thermal forcing.
We also observe a much weakened thermal forcing
effect even above the heating level. in our case, in
the region of uniform [-profile. Presence of shear at
the heating level reduces the effect of thermal forc-
ing at that level itself. This, in turn, leads to dampen-
ing (amplitudes) of hydrostatic waves at all levels.
The amplitudes of all hydrostatic waves are, thus,
less pronounced compared to the case of Smith and
Lin (1982). This also leads to comparatively lesser
propagation of energy at higher levels.

APPENDIX 1
List of symbols

a half width of mountain

horizontal scale of heating function Eqn.
(®)

b width of the heating part of Eqn. (9)
bs width ={ he cooling part of Eqn. (9)

¢ upstream dispiacement of heating func-
tion

p specific heat capacity at constant pres-
sure

d half depth of heating layer

f(2) vertical distribution of héating




Jy (w)

AR TR~ T &~ =

©

q(x)

g

TN NN

EFFECT OF LATENT HEAT ON MOUNTAIN WAVES 123

gravitational acceleration
heating rate (W kg~1)
mountain profile
mountain height

height of the layer with exponentially dec-
reasing l-profile [Figs. 7 (a-c)]

Bessel function of first kind of order v and
argument pe’ represents differential
w.r.t.z.

horizontal wave number
Scorer parameter
constant [ above z = h) (hydrostatic case)

exponentially decreasing within hy, I, =
Aeaz (@ < 0)

Brunt-Vaisala frequency
down stream pressure
incoming pressure
perturbation component of p
amplitude of heating function

horizontal distribution of heating
£ In p(z)

e £ /] Z

dz .

as

E3

incoming temperature

down stream temperature
perturbation component of T

incoming velocity
(suffix z with U denotes differentiation with
respect to z)

0

incoming velocity at z

L}

incoming velocity at z zy
down stream velocity
perturbation component of u
vertical velocity

perturbation component of w
down stream coordinate

Bessel function of second kind of order v
and argument pe’ represents differential
Ww.r.t.z.

vertical coordinate

zy heating level
a exponent parameter for /
1 Gl
B 'y 0z
0 potential temperature
5 Dirac delta function
A value of /atz = 0 for exponentially decreas-

ing profile

" g
la|
g (M) =0

"H ("}Z =2y

B, (1) = 4,

A difference

p incoming density

p down stream density

Po surface incoming density

P(zy)  air density at heating level z = x5

v &
la|

n vertical displacement

Np vertical displacement components
(=12 3or4).

APPENDIX I

First let us consider heating function of the form
given by Eqn. 8 with the heat added at a certain
height z.

H——Q———_wx 8 (
2+ b T

The governing equation can be written as

» 80 2wk p(z)] %
Wit Wyt Fw = T2 (245 &z—zp) {_DT}
(AIL1D)

Let w (k, z) be the one-sided Fourier transform of
w(x, z) in x, ie,

e o]
| wix, z)e—ikx dx

1
W(k,z) = ‘;'— e
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@

W (x. z) =Re I w (k. 2) AR dk
0

Then the Fourier transform of (All.1) becomes.

= — Va(zpigQ bk
WaH (P—k)W = —p—%,—— e~blklg (z—zm)
p'{)l e, TU*
(AIL2)
For = # zy (AIL2) becomes
W + (P = k)W =0 (AIL3)

For Scorer’s parameter varying exponcentially with
height we have.

1(z) = he™® (a<0)
Now if we substitute
; I(z
|a| laj

then (AIL3) becomes

% 1 dw

2
o + (I- —)W=0 (AIl4)
dy? p o dp u?

General solution of (AIL4) is

w=AJy(W+ B Y, (w) forz<zy (All5a)

W=AsJy(W)+ BaYy(w) for >z (AILSb)

where, 41, 4> and B), B; are the unknown constants.
to be determined.

Boundary Conditions

(a) At the ground, the flow is assumed to follow the
terrain, thus

(AIL6)

where /(x) represents the terrain profile. For a small
amplitude topography and disturbance (AIL6) can
be simplified as

d

w = U hix) atz=0 (AILT)
dx
Since h(x) is assumed to be a bell shaped
function
ha*
hix) = —————- (AILR)
(x-+ a-)

substitute (AIT.8) into (AILT) and take the Fourier
transform. Then

W(k.0) - ikUDO)yhae=a'kl atz =0 (AILY)
(b) Radiation condition prescribes us that

as - — . w(x. z) = £ &

where & (P—=k?)%

and 0 <e << 1:

for @ < 0 as z — oo. £ is imaginary. Ilence as
(AIL10)

c> W= ()

(c) Matching condition at the level z = zy is given
by Eqns. 11-12 along the heating level zy.

Taking the Fourier transform of Eqns. 11 & 12,

()
- p¥a (zpy) g0q (x)
AW, =

i p}‘)ﬁ ep TU?

(AIL1D)

Aw =0 (AIL12)
we solve Eqns. (AIL5a) and (AILSb) and assuming
only upward propagation of energy, we get, using
the lower and upper boundary conditions only

it Yy ()
w =4 Jy(w) — Jy (p )}
‘{ Yoo ~
ikU (0) ha e=a'k| ¥
A0 e w) (AIL13a)
Yy (np)
for z < zy
w=Ays,(p) for z>zg (AIL13b)

To obtair. A; and A, we apply matching conditions (AIL11) and (AIL.12). Thus,

) Jy (1o)

P ikU (0) ha e=a!¥! igQ bﬁkf-‘;'*ln Yo(o [ oG
Jy (o) 2, TUZI M)\ Po
5 - ikU (0) ha e=a'¥! ig0 b2k e=b'kly o¥ (zp7) {
Jy (o) 20, T U Jy (o) 0%

Yy (ug) Jy (o) — Jy (up) Yy (o) }
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We substitute the values of 4; and 4, into Eqns.
(All.13a) and (AIL.13b) respectively and take the
inverse Fourier transform. Thus,

wix, 2) = w) +wy— w3 z< zyy
wx z) = w; + wy;— wy 22y
where,
D kU0 hae™ J, (p) &*¥
w = Re| dk
0 Jv (F‘U)

© igQ b2k e~bkny, o)y () Iy ()% (1) €5

The relation for vertical displacement can be

obtainedas w = U _%:c_ S0

L *
N, z) = -ﬁj w (x, z) dx (AIL14)

— @

Now let us consider the case when heat is uniformly
added to a layer of z =z —d to z = zg + d, that
is

—2b3x

=0Ty

ZH—d<Z<ZH+d.

elsewhere.

dk The solution can be obtained by superposition of

0 2ep Tﬁ}zgﬂ-’v (no) 01{)& heating term. It gives us, for Eqn. (8)
‘ zyt+d
. Re}” :'ngzke"”"n.},&;)}’v(u)p%(z”)v"“ 4k n(x.z) =mn + ? mz-mn3)dh, z<zy—-d
0 2¢, T Uy a plf z~d
z
D igQb2keHn ¥, (u)Jy (WY (21) 5 =m+ [ a-nodh
ws = Re| _,_., dk zy—d
0 2¢, TUga plf
zytd
Similarly, if we take precipitation case when g (x) is * ‘[ (n2 = n3) dh. zg—d<z<zprtd
given by Eqn. (9), ‘
zy+d
Then =m +I (m2—ng)dh, z>zyp+d
zy—d
wix, z) = wp + wy — w3, z<z
! 2 3 H for Eqn. (9)
wix, z) = wy + wy — wy, z>zH zy+d
nkx.z) = m +j (n%—n%)dh.z(zy—d
where, zy—d
® 77 = i
kU (0) ha e~k J, (n) k>
sy = e ikU (0) ha e~ J, (u) dk
0 Jy (up)
NSOV LY Ll it i LA O L O Ll
0 Olf cp T U% 2 @ Jy (o)
© ot (zp) 1 gQ by (€K — e=0K) I, (npy) Y () €5
w3 = Re/ = dk
0 i epTU,20a
© pa (zi) 1 gQ by (e 21k — e=B:K) I, () ¥ () e*
wg = Re| dk
0

P, TUY20a



P. KUMAR & al.

= +] (Y% - n% dh

zy—d

z+d
+ 7_‘- (n%—n‘i)dh. zy—d<:z<:zpy+d
z

zy+d
=m +]
Zu—d

(ng—ng)dh. ::>z”+d

where,

%=1 for c=0 (p =2.3.4).

Evaluation of the integrals ny. n» are to be made
with the help of contour integral in complex k-plane
(Fig. 11).

Since the zero ofJ,, () for real argument. are real we
make indentation around the poles on real axis and
evaluate the integral by computing residues of poles
on the real axis added with the values of the
integrals along the imaginary k-axis. J, (n) has no
zero on the imaginary k-axis and values of the
integrals along the arc tend to zero for large k. n3.n4
are evaluated numerically using Gauss-Laguerre
quadrature formula.
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