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सार — भारत म�, उ�र-पवूर क्ष म�, असम-बमार �हलस (ABH) को दो �ष-आयामी अण्ाकार बाधाओ ं�ारा 
सं�्�षत �कया गया है, व् कुछ प�रिमत दरू� क� घाट� �ारा अलग �कए गए ह�। इस प्पर म� एबीएच म� म्सो-सक्ल 
�ाई मीन फलो स् जड़्ु 3-्� ली व्व नयम्ू�रकल सॉलयूू न को �ा� करन् का �यास �कया गया है। जहां �वाह एक 
ए�्याब्�टक, इन�विस्, लािमनार, �स्र, बिूसनसक, गैर-घणू� है और मूल �वाह म� जोनल घटक (य)ू और 
म्�र�्यनल घटक (वी) होत् ह�, व् अं् ाकार क् �मखु धरु� क् सामानय और समानांतर होत् ह� बाधा �मूः। सादगी 
क् िलए, मूल �वाह क् दो घटक� (य,ू वी) और उत्लावकता आव�ृ� (एन) को ऊंचाई क् सा् एक समान माना 
जाता है और गविन�ग समीकरण� क् िलए गड़बड़� तकनीक भी लाग ूक� गई है। पटरबबू न व�टरकल व्लोिसट� (w') 

और स्�म लाइन �वस्ापन (η') को ्बल इंट��ल क् रप म� वयय �कया जाता है, �जसका मलूयांकन सखंयातमक 
�वसतार क् रप म� अनमुािनत �कया गया है। अतं म�, गणना �कए गए प�रणाम� क� तलुना पहल् क् जांचकतारओं 
�ारा �ा� �कए गए सपूशनमखु प�रणाम� स् क� गई है। 

 
ABSTRACT. In India, in the North-East region, the Assam-Burma Hills (ABH) has been synthesized by two 

three-dimensional elliptical barriers, they are separated by a valley of some finite distance. In this paper, an attempt has 
been made to obtain a 3-D  lee wave numerical solution associated with a meso-scale dry mean flow across the ABH. 
Where the flow is an adiabatic, inviscid, laminar, steady, Boussinesq, non-rotational and the basic flow consists of the 
zonal component (U) and the meridional component (V), they are normal and parallel to the major axis of the elliptical 
barrier respectively. For simplicity, the two components (U, V) of the basic flow and Buoyancy frequency (N) are 
assumed to be uniform with height and also the perturbation technique has been applied to the governing equations. The 
perturbation vertical velocity (w') and stream line displacement (η') are expressed as a double integral, which have been 
evaluated to approximate as the numerical expansion. Finally, the computed results have compared with the asymptotic 
results obtained by earlier investigators. 

 

Key words  –  ABH, Perturbation vertical velocity (w'), Streamline displacement (η'). 
 

  
 

1.  Introduction 
 

Orography is the study of the formation and relief of 
mountains and can more broadly include hills and any part 
of a region’s elevated terrain. The climate and weather of 
a place are strongly influenced by the orography. In the 
past, many aircraft accidents reported in mountainous 
areas are often attributed to the vertical velocities of large 
magnitude associated with the lee waves. Hence, the 
studies on the lee waves are associated with air flow 
across an orographic barrier, have an important bearing to 
the safety of aviation.   

          
Theoretical studies on this field can widely be 

divided by two categories. In one category, the mountain 

barrier has been assumed the two-dimensional. The two-
dimensional mountain wave problem was first addressed 
by Lyra (1943) and subsequently by Queney (1947); 
Scorer (1949); Sawyer (1960); Sarker (1965, 1966); De 
(1973); Sinha Ray (1988); Kumar et al. (1998) etc. In 
another category of theoretical studies on the three-
dimensional  mountain wave problem was first addressed 
by Scorer and Wilkinson (1956) and subsequently by 
Wurtele (1957); Crapper (1959); Sawyer (1962); Das 
(1964); Smith (1979); Dutta et al. (2002); Dutta (2005, 
2007); Das et al. (2013, 2016) etc.  

 
In India, studies on the effects of an orographic 

barrier on airflow have been addressed by Das (1964); 
Sarker (1965, 1966); Sarker et al. (1978); De (1973); 
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Sinha Ray (1988); Dutta et al. (2002); Dutta (2005); Dutta 
and Kumar (2005) etc. In  other countries, studies on the 
orographic effects are associated with airflow have been 
addressed by Abbs & Pielke (1987); Bischoff-Gauss et al. 
(1989); Leung and Ghan (1995); Lin and Chen (2002); Li 
et al. (2007); Xu et al. (2008); Jourdain & Gallee (2010) etc. 

 
In some of the above studies, the wind and stability 

were assumed to be either constant with height or assumed 
to be variant with height. Solutions for these studies were 
essentially obtained by an analytical method or the 
numerical method.  Das et al. (2013) developed a three-
dimensional mountain waves problem over the Assam-
Burma hills (ABH) are associated with idealistic basic 
flow. They obtained the asymptotic solutions using the 
perturbation approach and compared with the two-
dimensional waves problem of the earlier authors. 

 
To develop this model, here consider the same 

mountain profile the Assam-Burma Hills (ABH) and 
obtain the numerical solutions for the perturbation vertical 
velocity (w') and stream line displacement (η') are 
associated with 3-D lee wave using the perturbation  
approach and the computed results have compared with 
the earlier investigators Das et al. (2013). 

 
2.   Database 

 
As the Assam-Burma Hills are situated in North-East 

position of India, the only station to the upstream side is 
Guwahati (26.19° N Latitude and 91.73° E Longitude).  
The average of 0000 UTC and 1200 UTC RS/RW data of 
Guwahati for those dates, which corresponds to the 
observed lee waves across ABH, as reported by De (1970, 
1971); Farooqui and De (1974) and Das et al. (2013), has 
been obtained from the Archive of India Meteorological 
Department (IMD), Pune. 

 
3.   Methodology 

        
In this model, an adiabatic, steady, laminar, inviscid, 

non-rotating flow of a vertical unbounded, a stratified and 
Boussinesq fluid across 3-D meso-scale elliptical 
orographic barrier has been considered. Here, this model 
has applied on the Assam-Burma Hills. The profile of the 
Assam-Burma Hills (Fig. 1) is analytically expressed as: 
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where, a and b are the half width of the barrier along 

the zonal wind component (U) and along the meridional 
component (V) respectively, h1 and h2 are the height of the  

 
 

Fig. 1. The profile of the Assam-Burma hills 
 
 
two ridges of the mountain and d be the distance of the 
valley between two ridges.   

 
We consider a co-ordinate system in which the x-axis 

and the y-axis are perpendicular and parallel to the axis of 
the major ridge of the barrier and the z-axis is vertically 
upwards. The two components U and V of the basic flow, 
are normal and parallel to the major ridge of the barrier 
respectively. It is again simplified by assuming U, V and 
the Buoyancy frequency (N), to be invariant with height. 
Under the above assumptions, the linearized governing 
equations can be written as: 
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where, ρ0 = ρ0 (z), θ0 = θ0 (z) are respectively density 

and potential temperature of the basic flow and u', v', w', 
p', θ' are respectively the perturbation  part of the zonal 
wind, the meridional wind, the vertical wind, pressure and 
potential temperature. Since the perturbation quantities  u', 
v', w', p', θ'  are all continuous functions of x, y, z. Hence, 
the  double Fourier integral is : 
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where,  ( ) ( ) ( )dxdyezyxuzlku lykxi +−
∞

∞−

∞

∞−

′=′ ∫∫ ,,,,
 

is 

the double Fourier transformation of u' (x, y, z). Using 2-D 
Fourier transformation in the equations (2)-(6) and they 
are transformed to : 
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where, θ̂,ˆ,ˆ,ˆ,ˆ pwvu  are respectively double Fourier 

transformations of u', v', w', p', θ'. Now, eliminating 
θ̂,ˆ,ˆ,ˆ pvu  from the equations (7) - (11) we have : 
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in equation (13) are smaller in their magnitude than other 
terms in the square bracket. So, the equation (13) reduces 
to : 
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If η' (x, y, z) be the perturbation streamline 

displacement, then we can write : 
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Using 2-D Fourier transformation in the above 

equation, then it becomes : 
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The equations (14) and (16) will be solved using the 

following boundary conditions: 
 

(a) At the surface, that is lower boundary streamline 
pattern follows the contour of the terrine. 
 
(b) At the upper boundary, the mountain waves are 
permitted to propagate vertically.  

 
The general integral of the equations (14) and (16) 

are [using boundary condition (b)] : 
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Clearly m may be recognized as the vertical wave 
number of the vertically propagating mountain waves. 
Now, at the lower boundary, that is, at the surface, the 
airflow follows the contour of the mountain profile which 
is given in Eqn. (1).  

 
In the present study, the values of a, d, h1 and h2 are 

the same as those in De (1971) and b = 2.5a as in Dutta 
(2005), as in Das et al. (2013, 2016). Therefore, we take           
a = 20 km, b = 2.5a, d = 45 km, h1 = 0.9 km and                    
h2 = 0.7 km. Now, the 2-D Fourier transformation of the 
mountain profile (1) is :   
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is the zero-order 

second kind Bessel function. Using lower boundary 
condition, we have : 
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Using double Fourier transformation in the above 

equation, we get : 
 
( ) ( )lkhlk ,ˆ0,,ˆ =η  

 
Hence,  
 

( ) 




 ++= − 2222

0212 lbkaKehhabB ikdπ  

 
Again, the linearized lower boundary condition for 

'w , the equation (15) becomes : 
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Using double Fourier transformation in the above 

equation, we have :  
 
 
( ) ( ) ( )0,,ˆ0,,ˆ lklVkUilkw η+=                                (20) 

 
Hence, 
 

( ) 




 ++= − 2222

0212 lbkaKehhiabA ikdπ  

Thus, the solutions of (14) and (16) are obtained by 
putting the values of A and B respectively, we get : 
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Using inverse Fourier transformation ( )zyxw ,,1′  can 
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Similarly, ( )zyx ,,1η′   can also be expressed as : 
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The above two equations (23) and (24) reduce to : 
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Figs. 2(a-d). Down-stream variation of w' along the line Uy – Vx = 0, at 1.5 km, 3 km, 6 km and 9 km above the mean sea level respectively 
 
 

     
 

     
 

Figs. 3(a-d). Down-stream variation of η' along the line Uy – Vx = 0, at 1.5 km, 3 km, 6 km and 9 km above the mean sea level respectively 

(a) (b) 

(c) (d) 
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Figs. 4(a-d). Contours of the perturbation vertical velocity (w') at 1.5 km, 3 km, 6 km and 9 km above the mean sea level respectively 
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The integrals (25) and (26) are evaluated 
numerically, we get : 
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Figs. 5(a-d). Contours of stream line displacement (η') at 1.5 km, 3 km, 6 km and 9 km above the mean see level respectively 
 
 
where, the above summations are extended between 

those wave numbers determined by the maximum wave 
length and the minimum wave length of the disturbance 

and ,
4
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length. 
  

4.  Results and discussion 
        
The numerical computation for both the vertical 

velocity (w') and streamline displacement (η')  are made 
using equations (27) and (28) respectively, for all those 

waves for which ( ) ( )
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the basic flow consists of both the zonal wind (U) and the 
meridional component (V), scale of the disturbance should 
not exceed 150 km. Since the horizontal grid size in the 
present study, has been taken to be 5 km. Hence, the 
minimum wave length should not be less than 30 km. In 
the equations (27) and (28) the summations k  ranges 
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4δk  to 20δk. Where, we have been taken to avoid all those 
wave number vectors (k, l), which are inclined with the 
basic flow vectors (U, V) at an angle of 90° or more, to 
eliminate the critical level effect.  
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1.5 km, 3 km, 6 km and 9 km above the mean sea level, 
which is approximately resemble to 850 hPa, 700 hPa,  
500 hPa and 300 hPa respectively.   

 
From these figures, we see that both  w' and η' decay 

downwind of the barrier, in qualitative conformity with 
the asymptotic solutions of Das et al. (2013, 2016). But,  
is no such specific rate of decay like as in the case of the 
asymptotic solution [Das et al. (2013)] could be found in 
the numerical case. From the expressions (27) and (28) of 
w' and η' respectively, we see that there are only one 
damping factor Bessel function is present, whereas in Das 
et al. (2013) found two damping factors in the asymptotic 
solution across the ABH.  

 
The contours of the perturbation vertical velocity w' 

and streamline displacement η' at different horizontal 
planes above the mean sea level have been shown in         
Figs. 4(a-d) and Figs. 5(a-d)  respectively. These figures 
show that, the vertical  tilt of the wave field is 
insignificant and the maximum updraft/downdraft regions 
are no specific shaped, whereas, Das et al. (2013) have 
shown that,  the maximum updraft/downdraft regions are 
crescent shaped in the asymptotic case across the same 
mountain barrier ABH.  

        
Das et al. (2013) found the vertical velocity (w') and 

streamline displacement (η') tilt upstream and spread 
laterally with the vertical across the ABH. But, in the 
numerical case, the spreading rate of both w' and η' are 
almost the same at every level, i.e., is no spreading 
laterally with the vertical across the same barrier ABH. 
The dynamical cause of this situation may be due to the 
presence of a divergent part in the asymptotic case and the 
absence of a divergent part in the numerical case.  
 
5.  Conclusions  

 
In this model, we have presented the numerical 

solution of 3-D meso-scale lee wave across the 3-D 
elliptical mountain barrier following the numerical 
approach. In the sequel, we have furnished some 
remarkable results. Moreover,  

 
(i) The numerical solution for the vertical velocity (w') 
and streamline displacement (η') along the line                  
Uy – Vx = 0 both decay down wind of the barrier. But, is 
no such specific rate of decay has found across the barrier. 
 
(ii) In the horizontal plane, the contours of the vertical 
velocity (w') and streamline displacement (η') have not 
been seen any specific shaped across the barrier. 
 
(iii) Both the vertical velocity (w') and streamline 
displacement (η') across the 3-D mountain barrier are 

upwind tilt along the line Uy – Vx = 0  and  not spread 
laterally with height. The spreading rate almost the same 
for both w' and η'  on every level across the barrier. 
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The Fourier Transform of the function ( )
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Putting x = aX, y = bY for the first term and x – d = aX, y = bY for the second term 
 

and use 
b
ll

a
kk

′
=

′
= ,  for the both terms, we have 
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Putting X = r cos θ, Y = r sin θ and k' =  κ cos α, l' = κ sin α we get 
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( )2 cos
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ˆ ,
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π κ θ α

θ
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π

rde ir
0

cos
2

0

J2=−−∫
  

[Dutta et al. (2002)] 

 

and    
( ) ( )κκ

02
0

0
1
J Krdr

r
r

=
+∫

∞

    

[Dutta et al. (2002)] 

 
where ( )κr0J  and ( )κ0K  are Bessel function of 1st and 2nd kind of order zero respectively. 
 

Hence, ( ) ( ) ( ) 2 2 2 2
1 2 0

ˆ , 2 , whereikdh k l a bh h e K a k b lπ κ κ−= + = +  

 

Therefore, ( ) ( ) ( )2 2 2 2
1 2 0

ˆ , 2 ikdh k l a bh h e K a k b lπ −= + +  

 
 
 
 
 
 
 
 
 
 
 


