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Large fractal dimension of chaotic attractor for earthquake
sequence near Nurek reservoir
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ABSTRACT. Fractal dimension ofthe chaotic attractor for earthquake sequence in Nurek dam based on
22,000 earthquakes detected during the period 1976-87 has been studied for this total period of observations as
well as for the period from December 1977 10 December 1987. The second period excluded increased seismic
activity during second stage of filling the reservoir. Large fractal dimensions of the chaotic attractor of 83 and
7.3 were found for the respective period which suggests the complexity of earthquake dynamics in this region

as compared to Koyna reservoir.

Key words — Earthquake, Random, Deterministic, Attractor. Thrust. Fault Chaos, Seismicity.

1. Introduction

The distribution of earthquakes for a region
gives a complex temporal pattern. This distribution
in time and space has been studied by many inves-
tigators in order to understand the earthquake
generation process. If each earthquake occurrence
is totally uncorrelated with previous earthquakes,
then the earthquake distribution would be a ran-
dom process. The random distribution of point
events is known as a Poisson process. A varicty of
statistical methods have been applied in order to
quantify deviations from random occurrence (Vere-
Jones and Ozaki 1982, Matsumura 1984, Dziewon-
ski and Prozorov 1984). Rikitake (1976) noted
quasi-periodical patterns for scquences of great
earthquakes at subduction zone. However, Knopofl
(1964) and Gardner and Knopofl (1974) showed
that although typical catalogues might be non-
Poissonian, but main sequence was Poissonian pro-
vided that the aftershocks are removed skillfully.
Thus, it is necessary to characterize the complexity
of earthquake dynamics more precisely and to
determine whether observed fluctuations in the data
are random or belong to some deterministic
behaviour.

Over the last fifteen years, scientists of many
disciplines have developed physics of chaos to
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look at the complexity of nature. A chaotic system
is deterministic, i.e, it obeys certain equations, but
behaviour of the system is so complicated that it
looks random. A primary motivation of physics of
chaos is to find out whether there exists a simple
explanation for an observation with irregular
behaviour and if it exists, how simple is the
explanation. The realization that highly irregular
and quasi-random behaviour may be generated
from simple deterministic dynamics led to the
secarch of deterministic chaos in many fields.
These investigations were triggered by the work of
Packard er al. (1980) and Takens (1981) which
showed that a phase portrait underlying a given
dynamical system can be associated with a strange
attractor. An attractor is a set of points in a state
(or, phase) space towards which a time history
approaches after transients die out. One of the
most distinctive characteristics of a strange attrac-
tor is that it is fractal and has non-integer dimen-
sion (Mandelbrot 1982). This dimension is a
quantitative measure of the degree of chaos. In a
random sample this dimension tends to be
infinite. Further, the dimension gives minimum
number of independent variables needed to model
the system. This means that the determination of
the fractal dimension of the attractor of the system
sets a number constraints that is required to model
the system.
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Fig. 1. Generalised geology of the Tadjik depression, southem
Tien Shan and north-western Pamir

The earthquake sequence in Nurek dam area is
being monitored by a large number of seismological
observatories. Over 22,000 earthquakes have been
located between 1976 and 1987. This gives an
excellent opportunity to find the presence of chaotic
attractor and to determine the dimension of this
attractor. This, in turn, estimates the minimum
number of independent variables necessary to
model the system.

2. Scismo-tectonics of Nurek dam area

Nurek dam is located in the northern part of the
Tadjik depression which is post-Paleozoic sedi-
mentary basin. The basin is in a gorge of the Vaksh
river, a tributary of Amu Dary'a. The Tadjik depres-
sion is a structural block involved in the collision
between the Indian and Eurasian plate which star-
ted 40 million years ago. The depression on the west
is bounded by the Turan platform. The other three
sides are bounded by major active tectonic features:
the Gissar-Kokshal fault in the north, the Darvaz-
Karakul fault in the east and Hindukush region in
the south (Fig. 1). The Gissar-Kokshal and Vaksh-
Mliack faults form a major boundary between the
Caledonian and Hercynian-deformed structures of
the Tien Shan to the north and Alpine deformed
structure to the south which is compressing north-
north-westward related to the Indo-Eurasian colli-
sion. Many earthquakes of magnitude 8 and above
occurred during this century along Gissar-Kakshal
fault and Pamir-Hindukush region.

Satellite image mapping of Tadjik depression
complemented by field survey shows that the defor-
mation of the subsided margin sequence exposed in
the folds and thrusts of the Vaksh belt has resulted
from northward protrusion of Pamir into the sou-
thern margin of Asia (Leith and Alvarez 1985). The
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Fig. 2. Seismograph stations in the vicinity of Nurek
reservoir

development of folds and thrust belt has included
the progressive overlapping of thrusts.

Fault plane solutions for earthquakes in the Tad-
jik depression show both strike fault and thrust fault
(Soboleva and Mamadaliev 1976). Thrust motion is
found on tectonic features with north-easterly trend;
strike slip motion occurs on east-west features such
as the [lliack fault where right-lateral motions take
place on the north-south features in the central and
western part of the depression where left-lateral
motions take place. The induced earthquakes, after
second stage of filling of the reservoir in 1976, are
confined to depths of 8 km and mainly confined in
Ionakhsh thrust, a listric fault 1 km north of the
dam (Keith et al. 1982). Fault plane solutions for the
induced earthquakes show short segment of strike
slip and thrust faulting for the most activity near the
central basin and normal and thrust faulting along
the upstream edges of the reservoir (Keith et al.
1982).

3. Data

Tadjik Institute of Seismo-Resistant Construc-
tion and Seismology has operated 15 seismograph
stations within 100 km of Nurek since 1955. Among
these there were only 5 stations within 40 km of the
reservoir; four additional stations were added
before 1976. In 1975, as a part of joint Soviet-
American program, a radio-telemetered network of
10 stations was instailed around the reservoir. Fig. 2
shows the locations of two sets of stations. As all
these stations were installed by 1976, we have
considered data from this year for the sake of




FRACTAL DIMENSION FOR EARTHQUAKE SEQUENCE 189

uniformity. As mentioned earlier over 22,000 earth-
quakes were located during the period from 1976
to 1987.

4. Strange or chaotic attractors

We may consider the dynamics of system, such
as earthquakes, simulated by partial differential
equations describing the underlying physical pro-
cesses. These cquations can be transformed to a set
of n ordinary differential equations :

Xp=fjley, x3 ..., x0)ij= L 2.un )

where the prime denotes differentiation with respect
to time ¢. The time evolution of the system from an
initial condition can be described by trajectories in
n-dimensional state space with coordinates x,
x3,..., Xp which are n independent variables.
Normally all trajectories converge and remain on a
submanifold of the total available space. The sub-
manifold which attracts the trajectories is called an
attractor. The dimension D of the attractor is less
than that of the state space, i.e, D < n. An attractor
of a dynamical sysiem represents the asymptotic
limit of the trajectories in a state space spanned by
the independent variables which define the
dynamics. Thus, if D = I + p, where [ is an integer
and p is 0<p <1, then minimum number of
independent variables of the system is I+1
(Moon 1987).

The classic attractors are all associated with
classic geometric objects in space, such as, (i) the
equilibrium state with a point has dimension zero
and (i) the periodic motion or limit cycle with
closed curve has dimension one. These attractors
have integer dimensions which are equal to
topological dimensions of submanilfold in the state
space. The trajectories converging on these attrac-
tors do not diverge and maintain a constant dis-
tance from each other. Thus, the states of the system
at a later time will differ to the same extent that they
differed initially. Thus, knowing the evolution of
such a system from an initial condition, we can pre-
dict the evolution of the system from some other ini-
tial condition. Such attractors may be called as
non-chaotic attractors.

But there are other dynamical systems where the
trajectories remain on an attracting submanifold
that is not topological. Such submanifold is strange
attractor which has non-integer dimension and
associated with a new geometric object called a frac-
tal set (Mandelbrot 1982, Peitgen and Richter 1986).
In a three dimensional space, the fractal set of a

strange attractor looks like a collection of infinite
set of sheet or parallel surfaces, some of which are
separated by distances that approach infinitesimal.
With such an attractor, initially nearby trajectories
diverge; thus the evolution of the system from two
slightly different initial conditions will be com-
pletely different. Thus, following the equations that
describe the system, the state of the system after
sometime can be anything despite the fact that the
initial conditions were close to each other. This
imposes limits on prediction and even if the system
is described by equations, the system shows ran-
domness. The randomness gencrated this way has
been termed as chaos. Such systems are chaotic
dynamical systems and their attractors are called
strange or chaotic attractors.

5. Computation of attractor’s dimension

The system (1) can be reduced to a single dif-
ferential equation of one of the variables x; (1), say
x(r), if all others are eliminated by differentiation.
This gives an nth order non-linear differential equa-
tion as:

x(ﬂ) .—_fx_ x' ...... x("—l)) (2)

So, we replace the state space with x, x’, ....x (*D
without any loss of information about the dynamics
of the system.

The theorem of Takens (1981) says that D-
dimensional manifolds can be embedded into
m = 2D + | dimensional space. Thus, for deriving
the dimension of an attractor from a single state
variable, it is sufficient to embed them into an m-
dimensional space spanned by x and its (m-1)
derivatives, ie. x, x'. . . .. x{mD, Thus, it is not
necessary to know the original state space and its
dimension n as long as m is chosen large enough.
Ruelle (1981) suggested that instead of continuous
variables x(r) and its (m-1) derivatives, a discrete
time series x(r) and its shifts (m-1) time lags by a
delay parameter 7 can be considered.

We may begin computation with a time series of
dependent or independent variable x(¢) of the sys-
tem. We construct points X; in an m-dimensional
embedding space :

Xi= (), x(t; +7), ....xl+m-DTH (3

i=12,...,N-m+1( = k, say), where Nis the num-
ber of data in the time series of x. Here #; is initial
time and t; = 1) + (i-1)7". Thus one discretizes the
orbit to a set of k points X; in the state space. The
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Figs. 3(a &b). In Cm (v) versus In (v) during (a) September 1976-December 1987 and (b) December 1977-1987

distance s;; = |x; - lebclween pair of points X; and
X; is calculated. A correlation integral is then
obtained as (Grassberger and Procaccia 1983):

Cp(r) = ‘]—

number of pairs (i. j) (4)
k2

with s; <r

where r is correlation length. For an attractor with
dimension D it has been found:
lim lim Cn(=arP
m—o r—0
where, a is a constant. Thus, the (correlation)
dimension is obtained by

D= lim lim d{InC, ()} )
m—s0 r—0 d(Inr)

Cpm (r) may be calculated more effectively using the
relation (Abraham er al. 1986, Theiler 1988)

Coy(r) = i i % I (r=1X;=X;l)  (6)
K i=1j=i+1
where.
H(x) = 1, forx>0
=0, forx<0

and K = k(k—=1)/2 is number of distinct pairs of
points. In practice, In C,,(r) against In r is plotted.
The C,,(r) saturates at large values of r due to finite
N.In the plot we get a scaling region, where In C,,,(r)
is linear to In r. The slope v of the straight line pass-
ing through the points in scaling region is obtained.
The value of v is obtained for increasing sequence
of embedding dimension m. If the time series
belongs to deterministic dynamics, v will reach a
saturation value D with increasing m and if D is
non-integer the system is chaotic. However, if the
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Fig. 4(a & b). Embedded dimension versus v for time delays 2,4,
6 days during (a) September 1976-December
1987) and (b) December 1977-1987

time series is random, v will not saturate with
increase of m (Fraedrich 1986).

6. Results and discussion

The second stage of filling in the reservoir of
Nurek dam began in July 1976 and level of seis-
micity began to increase by the end of August 1976.
This increased activity continued till November
1977. For this reason we have considered two
periods : () From September 1976 to December
1987 and (i) from December 1977 to December
1987. Thus the former period includes the increased
activity that occurred immediately after second
stage of filling and the later period excludes this
period.

The number of earthquakes in each of two days’
duration is considered as observed variable and the
time series is formed. For the first period, N = 2069,
and for the second period, N = 1840. With this time
series and using the method described in previous
section, the correlation integral Cp(r) is obtained
with7 = 2, 4 and 6 days; C,,(r) is plotted against cor-
relation length r. For each embedding dimension m,
the scaling region is determined and the slope v is
12—1128 IMD/94.

calculated by fitting a straight line through the
points in the scaling region. Fig 3 (a) shows such
plotting for 7 = 6 days and for the first period.
Similar plotting for the second period is shown in

Fig. 3 (b).

Fig. 4 (a) shows the slope v as a function of
embedding dimension m for 7 = 2,4, 6 days and for
the first period. It is seen that v increases with m
until saturation value of v is reached at m = 14 and
the saturation value is 8.3. This gives fractal dimen-
sion D = 8.3 of the attractor and since the dimen-
sion is non-integer, it is a strange attractor.
Similarly, Fig. 4 (b) depicts saturation of v for the
second period. The slope v saturates to 7.3 atm = 14.
Thus the fractal dimension of strange attractor for
this period is 7.3. Figs. 4 (a & b) show that the dif-
ference in variation of v with 7 = 2, 4, 6 is very
small.

It may be mentioned that the strange attractor
was also noted for earthquakes in Hindukush
region with fractal dimension 6.9 (Bhattacharya
and Srivastava 1992). This was almost similar to
that reported for Parkfield, California where the
underlying structure had only six degrees of
freedom. On the other hand, only 5 parameters are
needed to model earthquakes in the Koyna region
which is one of the unique examples of reservoir
associated seismicity in the intra-plate regime, far
away from the Indian-Eurasian plate boundary
(Srivastava et al. 1993). Thus, large fractal dimen-
sion in the Nurek dam area could be attributed to
the complexity of earthquake dynamics in the
region as compared to Koyna region.

7. Conclusions

(i) Using the data of September 1976 to Decem-
ber 1987, it has been shown that the earthquakes in
Nurck dam area are chaotic and a strange
attractor exists.

(if) The strange attractor has a fractal dimension
of 8.3. However, the fractal dimension becomes. 7.3
if we exclude the increased seismic activity of Sep-
tember 1976 to November 1977.

(iff) Minimum 9 independent variables are
necessary to model the dynamics of earthquake sys-
tem in Nurek dam area. However, minimum num-
ber of the variables reduces to eight in case we
exclude the increased seismic activity of September
1976 to November 1977.

(iv) The large number of independent variables
for modelling the system is due to complexity of
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tectonic features leading to better understanding of
earthquake dynamics of the region.
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