Probability studies of rainfall and crop production in coastal Tamil Nadu

N. CHATTOPADHYAY* and G. S. GANESAN Regional Meteorological Centre, Madras (Received 2 August 1993, Modified 2 June 1994)

सार — तटीय तमिलनाडु के विभिन्न केन्दों में, वर्ष के दौरान नम व शुष्क अवभियों के लिए मासिक आघार पर एवं उत्तर-पूर्वी मानसून झुतु के दौरान साप्ताहिक आधार पर वार्षिक और मौसमी वर्षा की संमाज्यता ज्ञात करने के लिए अघ्ययन किए गए है। संमाज्यता के समस्त स्तरों के अध्ययन से पता चला कि अलनगुड़ी और टोंडी के उत्तरी केन्द्रों में ऋमश: उत्तर-पूर्वी लपा दक्षिण-पश्चिम मानसून झुतु के दौरान अधिक वर्षा होती है। तथापि ग्रीष्म झुतु के दौरान अदिरामपटिनम के दक्षिण में स्थित केन्द्रों में अधिक वर्षा होती है। तटीय तमिलनाडु के उत्तरी केन्द्रों में जुलाई से सितम्बर तक नम अवधियों की संख्या अधिक होती है। उत्तर-पूर्वी मानसून झृतु के दौरान भी नम साप्ताहिक अवधियों कुछ्यतः ठटीय तमिलनाडु के उत्तरी केन्द्रों तक ही सीमित रहती है। वर्धा-सिचित कुछ फसलों के उत्पादन के आंकड़ों के विश्लेषण से यह ज्ञात हुआ कि ठटीय तमिलनाडु के दक्षिणी केन्द्रों की तुलना में उत्तरी क्षेत्रों में अधिक उत्पादकता किलोग्राम/प्रति हैक्टर दृष्टिगोचर होती है।

ABSTRACT. Studies are made of the probability of occurrence of annual and seasonal rainfall, wet and dry spells on monthly basis throughout the year and on weekly basis during the northeast monsoon season for various stations in coastal Tamil Nadu. It has been observed that amount of rainfall received is more in the stations north of Alangudi and north of Tondi in the northeast and southwest monsoon seasons respectively at all the probability levels. However, the quantum of rainfall is more in stations south of Adiramapattinam during the hot weather period. Number of wet spells are more from July to September in the stations of north coastal Tamil Nadu. During the northeast monsoon season also wet weeks are mainly confined to the stations of north coastal Tamil Nadu. Analysis of production figures of some rainfed crops shows more productivity (kg/ha) in north than in south coastal Tamil Nadu.

Key words — Probability, Rainfall, Dry and wet weeks, Rainfed crops, Southwest monsoon, Premonsoon.

1. Introduction

The agricultural scenario of India is closely linked with the spatial and temporal distribution of rainfall throughout the year, particularly, in rainfed areas. A comprehensive knowledge of the probability of rainfall for a particular area is of great importance because of economic implications of rain-sensitive operations (Virmani *et al.* 1982). Studies of variability of annual and seasonal rainfall. frequency of dry and wet spells on monthly and weekly basis will provide useful information for determining the climatic potential for agricultural development and for evolving suitable cropping pattern (Sarker *et al.* 1982).

Basu (1971) and Medhi (1976) applied Markov chain model to Calcutta and Guwahati respectively for determining dry and wet days during the southwest monsoon. Victor and Sastry (1979) determined the dry spell probabilities during the monsoon season in Delhi by applying Markov chain model. Sarker *et al.* (1982) studied the probability analysis of short period rainfall in dry farming tract of India. Chowdhury and Abhayankar (1984) & Khambete and Biswas (1984) applied Markov chain model for drought studies. Besides, Subramaniam and Rao (1986, 1989) studied the probability of rainfall and estimated the occurrence of dry spells in Andhra Pradesh.

In Tamil Nadu, both irrigated and rainfed agriculture are practised throughout the year (Agrostat 1991). The overall production of pulses, millets, cotton and oilseeds depends on rainfall in different seasons/months/weeks of the year. The literature in respect of the above aspect for Tamil Nadu is meagre. In this paper an attempt has been made to study the variability of annual and seasonal rainfall pattern in coastal Tamil Nadu and Markov chain model has been applied to estimate the probability of occurrence of dry and wet months as well as dry and wet weeks during the northeast monsoon season, i.e., October to December. Productivity of some unirrigated crops grown in the coastal districts of Tamil Nadu are also presented to observe the relation between the probability of rainfall and productivity of crops.

2. Data and methodology

Annual, seasonal, monthly and daily rainfall data for the northeast monsoon season for twelve-

^{*} Present affiliation : Agrimet Division, IMD, Pune.

Fig. 1. Station location map of coastal Tamil Nadu

stations of coastal Tamil Nadu for 30 years, from 1955 to 1984, have been utilised in the present study. The stations selected (Fig. 1) are Nungambakkam (13° 04'N, 80° 15'E), Meenambakkam (13°N, 80° 11'E), Cuddalore (11° 46'N, 79° 23'E), Parangipettai (11° 30'N, 79° 23'E), Nagapattinam (10° 46'N, 79° 51'E), Adirampattinam (10° 20'N, 79° 23'E), Alangudi (10°N, 78° 30'E), Tondi (09° 44'N, 79° 02'E), Pamban (09° 16'N, 77° 45'E), Tuticorin (08° 45'E, 78° 09'E), Palyamkottai (08° 44'N, 77° 45'E), and Kanyakumari (08° 05'N, 77° 30'E). All the stations selected are departmental observatory stations which have long data sets and these stations are well distributed along the coastal districts of Tamil Nadu.

Nungambakkam, Meenambakkam, Cuddalore, Parangipettai, Nagapattinam, Adirampattinam and Alangudi are in the north coastal Tamil Nadu, whereas, Tondi, Pamban, Tuticorin, Palyamkottai and Kanyakumari lie in the south coastal Tamil Nadu.

The variability studies of seasonal rainfall, *i.e.*, northeast monsoon, southwest monsoon, hot weather period, winter period rainfall and annual rainfall are carried out according to the methods enunciated by Oldeman and Frere (1982). The

method followed is the ranking order method described by Frere *et al.* (1975) and Doorenbos and Pruitt (1977). The seasonal and annual rainfall data are arranged in descending order and each year is assigned a ranking number *m*, the ranking numbers are then given probability levels $F_a(m)$ and calculated as follows:

$$F_a(m) = \frac{100 \, m}{n+1} \tag{1}$$

in which *n* is the number of years and *m* the ranking number.

The probability of occurrence of dry and wet months/weeks are calculated according to the Markov chain model described by Robertson (1976). Standard weeks from 40 to 52, during northeast monsoon season, are considered here.

As the average weekly potential evapotranspiration of stations under study ranges from 21 to 38 mm, it will be realistic to take 21 mm as threshold value for determining the occurrence of dry and wet weeks. Because it is the minimum of the potential evapotranspiration observed in the stations. Secondly, it is 51.5 per cent of the maximum potential evapotranspiration, i.e., 38 mm. It may be mentioned here that crop yields especially in dry land areas will not affect adversely if plants get about 30 to 70 per cent of potential evapotranspiration depending on the growth stage of crop (Khambete and Biswas 1984). Besides, Subramaniam and Rao (1989) have seen that rainfall amount 20 mm per week is adequate in all the growth stages of all crops grown in south coastal Andhra Pradesh.

Thus, if rainfall for a particular week is below 21 mm, the week is considered as a dry week. Similarly, a month receiving 90 mm and more rainfall is taken as a wet month.

The probabilities that are calculated by this model are mentioned below:

$$P(D) = F(D)/n \tag{2}$$

$$P(DD) = F(DD)/F(D)$$
(3)

$$P(W) = F(W)/n \tag{4}$$

$$P(WW) = F(WW)/F(W)$$
(5)

- P(D) Probability of occurrence of dry spell,
- F(D) Frequency of dry spell,
- P(DD) Probability of occurrence of dry spell preceded by a dry spell,

TABLE 1

Rainfall amount at different probability levels

Rank	F _a (m) (%)		Period Period						Period							
190	(%)	WP	HP	sw	NE	GT	WP	HP	sw	NE	GT	WP	HP	SW	NE	GT
			Nung	ambakl	ka m			Meen	ambaki	kam			Cu	iddalore		
1.	3.2	199	137	759	1227	1993	322	136	723	1213	1866	396	350	691	1370	2195
2.	6.4	114	115	654	1191	1810	127	124	714	1162	1835	262	170	672	1341	1918
3.	9.7	97	113	625	1156	1749	126	90	698	1131	1823	241	125	594	1259	1901
4.	12.9	87	84	609	1094	1620	108	89	658	1115	1726	211	121	559	1206	1759
5.	16.1	62	82	582	1037	1599	55	88	630	1079	1700	119	78	549	1159	1652
6.	19.3	24	76	579	1009	1591	52	77	608	1014	1600	66	61	541	1113	1600
7.	22.5	22	72	548	972	1542	38	70	604	929	1542	62	49	511	1104	1557
8.	25.8	17	66	513	965	1495	33	44	596	922	1526	56	41	471	1079	1539
9.	29.0	11	62	501	964	1401	24	43	531	902	1454	54	37	468	1077	1474
10.	32.2	10	47	499	906	1363	23	41	505	895	1442	43	33	452	1057	1418
41.	35.5	6	43	465	900	1347	14	40	493	885	1441	31	32	426	925	1388
12.	38.7	5	42	454	857	1344	13	31	485	875	1439	24	26	399	891	1363
13.	41.9	4	34	443	831	1301	10	28	466	808	1370	23	21	392	870	1362
14.	45.2	3	32	438	828	1273	7	24	415	798	1306	21	20	382	867	1268
15.	48.4	2	31	428	778	1238	6	23	395	772	1254	20	19	376	859	1263
16.	51.6	1	22	416	777	1219	5	20	383	709	1223	17	9	351	853	1260
17.	54.8	0	10	393	702	1190	3	14	350	694	1220	13	7	346	805	1236
18.	58.0	_	8	383	664	1175	2	13	345	645	1219	6	2	334	765	1216
19.	61.3	_	7	374	644	1162	1	11	335	603	1214	4	1	318	714	1168
20.	64.5	_	6	371	627	1150	0	10	331	602	1204	3	0	315	691	1157
21.	6/./	_	5	345	504	1131	_	8	323	590	1194	2	-	308	667	1042
	71.0	_	4	330	550	1105	-	6	317	566	1135	1	-	306	647	1001
23.	74.2		2	325	218	1104	-	4	285	558	1094	0		303	541	985
24.	80.6		0	201	404	1044	-	2	245	539	1089	-	_	300	499	894
26	83.0	_	0	230	430	877	_	1	171	526	1080		-	274	447	857
20.	87.1	_		107	429	976		0	1/1	415	1003	_		238	438	784
28	90.3	_		170	413	858	_	_	53	400	730	-	_	183	364	694
29	93.5	_			303	871	_	_	22	400	/30			1/3	303	194
30.	76.8	_		_	383	664	_		_	303			_	137	303	_
			Para	nainett	al	0.01		Nem			—	_		_	91	_
i.	2.2	572	290	020	1601	3196	40	Traga	pattina		2/2/		Adiras	iapattin	8.003	
2	5.2	323	289	829	1601	2180	442	207	460	1912	2626	175	292	636	1743	2353
2.	0.4	195	101	595	1000	1992	236	146	445	1703	2296	144	257	624	1194	1919
3. A	12.0	100	102	580	1400	1838	235	133	397	1535	2139	96	249	564	981	1784
4	16.1	00	90	320	1290	1819	064	107	368	1420	2068	86	244	489	923	1570
6	10.1	71	74	453	1200	1776	173	103	301	1331	1811	84	242	476	853	1538
7	22.5	62	69	410	1045	1697	9/	97	331	1321	1801	79	226	432	845	1533
8.	25.8	51	68	302	0.50	1527	01	90	344	1208	1763	11	105	428	834	1500
9	29.0	43	65	360	976	1441	90	20	329	1220	1703	68	195	418	822	1435
10.	32.2	30	57	350	018	1341	69	60	310	1200	1563	04	1/7	417	794	1395
11.	35.6	32	53	345	812	1305	67	60	302	1176	1302	62	147	404	/85	1358
12.	387	26	50	377	807	1271	60	66	303	11/3	1404	49	144	303	754	1357
13.	41 9	15	47	328	800	1185	50	49	204	1026	1423	41	141	382	745	1354
14	45.2	14	46	327	780	1174	40	40	262	1030	1312	39	140	3/8	741	1341
	13.2	14		521	789	11/5	49		203	1014	1339	3/	131	359	735	1300

6A-246 MD/95

a.

265

Rank	$F_a(m)$		P	Period				Period						Period					
No	(%)	WP	HP	SW	NE	GT	WP	ПЬ	SW	NE	GT	WP	HP	SW	NE	GT			
			Para	ngipettai	ř.			Naga	pattinar	n			Adiram	apattina	m				
15	48.4	10	44	326	780	1167	43	45	246	1002	1302	30	115	343	730	1295			
16.	51.6	7	32	313	752	1108	21	42	243	861	1217	24	99	312	721	1265			
17.	54.8	6	30	293	694	1091	14	33	240	849	1190	22	97	291	716	1218			
18.	58.0	5	25	268	662	1077	10	32	233	848	1186	19	93	287	646	1176			
19.	61.3	4	23	252	648	1050	9	28	232	843	1131	15	90	261	570	1163			
20.	64.5	0	21	250	608	1041	8	25	216	831	1129	8	73	254	529	1145			
21.	67.7	_	20	248	588	1026	7	18	210	752	1099	6	59	252	525	1140			
22	71.0	-	18	242	556	1015	5	15	180	726	887	1	57	250	495	1112			
23.	74.2		16	234	540	1003	1	8	162	718	827	0	55	241	476	1105			
24.	77.4	-	12	198	530	961	0	1	158	677	810	_	43	219	463	919			
25.	80.6	_	4	195	529	917	_	0	119	662	800		32	199	452	887			
26.	83.9	_	3	187	520	880	_		113	638	796		21	176	355	868			
27.	87.1		0	167	470	834			64	532	_	_	14	167	343	857			
28.	90.3	_	_	162	454	737	-		47	385		_	10	133	268	797			
29.	93.5	_	-	131	420	717	_	-	_	260	_		_	_	_	793			
30,	96.8	-	_	_	297	-	-	-	-	-	-		-	-	-	713			
			Al	angudi				1	Tondi				Pa	amban					
1	3.2	176	266	608	796	1386	228	469	343	1052	1580	210	249	331	1265	1687			
7	6.4	146	240	544	672	1343	174	377	232	747	1234	202	225	153	1080	1484			
3.	9.7	110	228	528	663	1330	152	299	216	743	1118	201	210	122	956	1386			
4.	12.9	95	184	496	644	1234	133	217	193	737	1104	141	209	87	940	1201			
5.	16.1	85	177	494	613	1216	84	186	174	719	1024	93	206	86	908	1144			
6.	19.3	81	175	489	608	1176	61	180	173	712	1009	81	201	81	880	1135			
7.	22.5	68	155	486	596	1148	56	171	170	681	1006	76	172	67	864	1122			
8.	25.8	58	142	465	562	1146	55	154	162	584	985	48	170	57	798	1060			
9.	29.0	54	141	461	542	1113	52	152	156	581	924	40	128	45	785	1044			
10.	32.2	46	133	459	535	1111	31	134	152	578	908	39	123	43	777	1023			
11.	35.5	40	130	443	526	1073	30	128	150	571	898	38	120	26	767	1005			
12	38.7	29	107	428	499	1054	17	118	146	553	897	37	115	22	740	965			
13	41.9	19	104	420	483	1044	11	112	138	552	873	31	95	21	646	890			
14.	45.2	17	99	390	443	1024	10	106	127	534	786	25	80	19	631	887			
15.	48.4	15	93	375	442	1012	9	97	121	511	784	23	77	17	612	875			
16.	51.6	11	90	372	432	1004	4	96	109	467	770	19	71	15	600	810			
17.	54.8	10	86	364	424	981	0	72	107	452	731	15	70	9	594	759			
18.	58.0	8	82	345	414	939	-	59	105	450	692	10	69	7	575	714			
19.	61.3	2	79	338	369	929		47	96	426	672	8	53	5	539	713			
20.	64.5	0	69	316	362	912	_	45	94	409	665	5	53	4	450	699			
21.	67.7	_	64	294	351	803	-	43	91	363	648	0	50	0	417	625			
22.	71.0	_	52	283	349	780	_	39	77	358	593	-	46		389	608			
23.	74.2	_	31	273	320	761	_	15	59	346	584	—	37	-	242	589			
24.	77.4	_	24	268	286	739	_	_	56	341	564	-	26	-	322	531			
25.	80.6	_	23	262	224	727	-	_	45	333	564	-	23	-	200	442			
26.	83.9	_	22	258	214	659	-		37	295	455	-	20	-	163	406			
27.	87.1	_	0	250	186	654	-	-	6	293	425	_	2	-	157	309			
28.	90.3	-	_	220	163	592		-	0	213	418	_	0	_	116	277			
29.	93.5	—	-	208	162	546	-	-	_	157	382	-	-	-	1	228			
30.	96.8	-	-	206	-	452	-	-	-	-	-	-	-	-	0	_			

TABLE 1 (Contd.)

		Period	I				Period	F				Period	F		F _a (m) (%)	Rank No
GT	NE	SW	HP	WP	GT	NE	sw	HP	WP	GT	NE	sw	HP	WP	(%)	No
	4	akumar	Kany			d	mkotta	Paly				ticorin	Tu			
1699	777	724	630	151	1663	877	229	319	373	1060	848	142	266	288	3.2	L.
1504	687	700	473	100	1033	819	167	250	337	994	650	128	238	156	6.4	2.
1472	608	556	446	92	966	737	159	215	211	958	650	86	211	122	9.7	3.
1408	592	544	439	75	942	705	151	185	166	815	637	56	197	103	12.9	4.
1406	588	540	406	68	938	591	134	179	127	795	605	52	211	80	16.1	5.
1311	534	529	395	59	931	582	126	174	124	760	601	42	168	52	19.3	6.
1252	517	495	391	55	925	580	125	168	105	758	576	41	166	51	22.5	7.
1241	516	396	368	54	904	566	123	157	83	752	546	38	164	43	25.8	8.
1193	492	391	332	48	892	559	117	153	82	745	540	35	146	38	29.0	9.
1186	450	366	291	43	882	525	97	140	76	716	524	30	142	37	32.2	10.
954	430	356	218	42	836	495	85	138	75	695	503	27	115	36	35.5	11.
945	386	344	205	41	809	478	81	119	56	667	499	25	109	35	38.7	12.
863	384	324	188	35	774	469	76	115	49	653	456	23	98	32	41.9	13.
850	362	274	167	29	724	452	72	114	41	621	446	21	95	31	45.2	14.
849	350	272	152	26	667	435	70	106	33	612	445	18	86	21	48.4	15.
840	335	270	141	25	660	402	65	102	31	564	437	12	81 .	19	51.6.	16.
789	327	246	126	20	653	389	61	98	20	554	389	11	79	. 14	.54.8	17.
787	313	208	124	19	617	387	59	92	15	538	365	9	64	9	58.0	18.
775	307	201	123	15	595	343	. 57	90	14	470	356	6	63	6	61.3	19.
758	281	193	122	12	554	338	38	89	13	465	350	- 4	56	5	64.5	20.
730	270	183	106	11	528	319	33	83	11	405	338	0	55	0.	67.7	21.
685	242	180	94	10	522	309	30	65	5	399	282	_	51	-	71.0	22.
627	238	166	85	6	512	288	29	52	0	355	151	-	44	_	74.2	23.
590	207	154	72	0	510	238	28	45	_	353	136	_	39	-	77.4	24.
556	204	145	60	_	491	222	25	35		304	110	-	37	-	80.6	25.
539	179	124	52	-	481	216	20	34	_	193	91	_	35	_	83.9	26.
517	165	81	43	_	406	208	14	21		_	79	_	29		87.1	27.
495	163	74	16	_	363	185	10	20	_		75	_	9		90.3	28.
479	130	46	11	_	223	119	-	_	-	_	_	_	3	_	93.5	29.
414	106	42	-	_	58	107	_	_	_	_	_	-		_	96.8	30.

TABLE 1 (Contd.)

WP - Winter Period, HP -- Hot weather Period, SW -- Southwest monsoon season, NE -- Northeast monsoon season, GT -- Annual.

- F(DD) Frequency of dry spell preceded by a dry spell,
- *n* Number of years,
- PD2 Probability of occurrence of two consecutive dry spells one following another.

Two consecutive dry spells are expressed in percentage. Similarly, for wet spell (W), these probabilites are calculated. Here spells indicate months and weeks.

In order to observe the effect of the probability of rainfall mentioned above on the production of some unirrigated crops, production figures (kg/ha) of cholam, cambu, groundnut and gingelly for the districts of coastal Tamil Nadu for 15 years (1970-1984) are collected from the Department of Statistics, Madras. Average production of crop of the regions of north and south coastal Tamil Nadu are worked out by averaging the production of crop of the respective districts within the region.

3. Results and discussion

3.1. Probability of occurrence of annual and seasonal rainfall

The probabilities of occurrence of annual and seasonal rainfall, *i.e.*, northeast monsoon, southwest

monsoon, hot weather period and winter period rainfall of the stations under study are presented in Table 1. The occurrence of rainfall at various probability levels from 3.2 to 96.6 per cent, as determined by the ranking number method descibed earlier, are presented. In the following discussion, the amount of rainfall at two representative probability levels, namely, 51.6 and 83.9 per cent levels have been taken to inter-compare and discuss quantum of rainfall which occurs in the selected stations of coastal Tamil Nadu.

The amount of annual rainfall ranges from 1108 to 1265 mm and 784 to 1063 mm at 51.6 and 83.9 per cent probability levels respectively in all the stations north of Alangudi which lies extreme south of north coastal Tamil Nadu. In all the stations in south coastal Tamil Nadu, annual rainfall amount ranges from 564 to 840 mm at 51.6 per cent probability level and 193 to 539 mm at 83.9 per cent probability level. During the northeast monsoon season, the pattern of distribution of rainfall is almost same as that of annual rainfall at all the probability levels. At 51.6 per cent probability level, the ranges of rainfall received by the stations north of Alangudi and the remaining stations are 709 to 861 mm and 355 to 638 mm respectively. Same trend of rainfall is also observed at 83.9 per cent probability level. Thus, a sharp variation in the amount of rainfall received at these probability levels is observed between the stations north of Alangudi and the remaining stations of coastal Tamil Nadu.

In the southwest monsoon season except Kanyakumari, all the stations of south coastal Tamil Nadu receive low rainfall ranging from 12 to 109 mm at 51.6 per cent probability level and 0 to 37 mm at 83.9 per cent probability level, whereas, in all the stations of north coastal Tamil Nadu, the rainfall amounts are more than 243 and 113 mm at 51.6 and 83.9 per cent probability levels. As can be seen from the table, where the stations have been arranged according to their latitude, in the order of descending values, it would appear that there is a sharp demarcation in terms of expected rainfall at Alangudi in respect of entire year and the northeast monsoon. But in respect of the southwest monsoon period, the demarcation obtains not at Alangudi but at Tondi, slightly south of Alangudi. In the hot weather period the stations which lie north of Adirampattinam receive low amounts of rainfall both at 51.6 (range : 29 to 42 mm) and 83.9 per cent probability levels (0 to 3 mm) compared to the remaining stations under study (71 to 141 mm and 20 to 52 mm at 51.6 and 83.9 percent probability levels respectively). In the winter period, the rainfall received at all the probability levels in all the coastal stations is comparatively low than at other seasons. The ranges of rainfall are 1 to 31 mm at 51.6 probability level.

Thus, from the above discussion it is observed that the quantum of rainfall at a particular probability level, in general, is comparatively higher in the stations of north than in the south coastal Tamil Nadu during the northeast as well as southwest monsoon season. The agricultural operations, which are sensitive to the rainfall amounts, can be carried out with great ease in the northern parts of coastal Tamil Nadu than is possible in the southern parts of coastal Tamil Nadu during the northeast and southwest monsoon seasons. During the hot weather period, however, greater advantage can be taken of pre-monsoon showers in southern parts of Tamil Nadu coast than in northern parts though the quantum of rainfall available through premonsoon showers can hardly meet the actual water requirement.

3.2. Probability of occurrence of dry and wet spell on monthly basis

Probability of occurrence of a month being dry is 0.77 and above from January to September in all the stations of south coastal Tamil Nadu except Kanyakumari where it is between 0.53 & 1.00 during the same period (Table 2). It is 0.77 and above from January to June in Nungambakkam, Meenambakkam and Cuddalore and from January to July in the rest of the stations of north coastal Tamil Nadu. In Nungambakkam, Meenambakkam and Cuddalore. P(D) ranges from 0.17 to 0.53 and it ranges from 0.23 to 0.68 from August to September in other stations of north coastal Tamil Nadu. From October to November P(D) values lie between 0 to 0.23 and 0.73 to 0.17 in the stations of north coastal and south coastal Tamil Nadu respectively except Kanyakumari where it is from 0.33 to 0.43. As P(D) is equal to 1-P(W), the probability of occurrence of wet month in the stations under study show same variation as that of P(D) but in reverse order of values.

Sharp variation in the probability of occurrence of wet month preceded by wet month are observed from July to August in Nungambakkam, Meenambakkam and Cuddalore and from August to September in the remaining stations of coastal Tamil Nadu. In the stations of south coastal Tamil Nadu, the marked variation in P(WW) values are seen from October to November. In the stations of south coastal Tamil Nadu, the high value of P(WW)

TABLE 2

Probability of occurrence of dry and wet spells over coastal Tamil Nadu on monthly basis

Months	F(D)	FIDD) P(L)) P(DD)	PD2%	F(W) F(WW)	P(B) P(WW)	PW2%	F(D)	F(DD)	P(D) P(DD)	PD2%	<i>F</i> (₩)	F(WW)	₽(₩)	P(WW)	PW2%
	Nungambakkam													М	eenam	bakka	m			
Jan	28	11	.93	.39	90	2	1	.07	.5	0	27	12	.90	.44	90	3	3	.10	1.00	0
Feb	29	28	.97	.96	97	1	0	.03	0	0	29	26	.97	.89	97	1	0	.03	0	0
Mar	30	30	1.00	1.00	100	0	0	0	0	0	30	29	1.00	.97	100	0	0	0	0	0
Apr	30	30	1.00	1.00	90	0	0	0	0	0	30	30	1.00	1.00	97	0	0	0	0	0
May	27	27	.90	1.00	77	3	0	.10	0	3	29	29	.97	1.00	73	1	0	.03	0	0
Jun	24	23	.80	.95	33	0	1	.20	.11	10	23	22	.77	.96	80	7	0	23	0	17
Aug	0	12	30	.00	10	21	16	.55	.18	30	5	2	.30	.07	2	21	10	.70	24	60
Sep	14	4	.47	.28	0	16	15	.70	.70	57	9	1	30	.40	0	23	14	.05	67	60
Oct	1	0	.03	0	0	29	17	.97	.58	90	2	0	.07	0	0	28	18	.93	.64	87
Nov	1	0	.03	0	0	29	29	.97	1.00	46	2	0	.07	0	õ	28	26	.93	.93	57
Dec	12	0	.40	0	37	18	18	.60	1.00	6	13	1	.43	.07	53	17	16	.57	.94	6
					Cudda	lore								1	arang	ipettai				
Jan	26	6	.87	.23	83	4	1	.13	25	0	27	7	.90	.26	87	3	3	.10	1.00	0
Feb	29	23	.97	.86	93	1	0	.03	0	0	29	26	.97	.90	97	1	0	.03	0	0
Mar	29	28	.97	.96	97	1	0	.03	0	0	29	28	.97	.96	97	1	0	.03	0	0
Apr	30	29	1.00	.97	93	0	0	0	0	0	30	29	1.00	.97	97	0	0	0	0	0
May	29	28	.97	.96	87	1	0	.03	0	0	. 29	28	.97	.96	90	1	0	.03	0	0
Jul	16	15	.93	.93	10	14	0	.07	0	22	28	27	.93	.96	70	2	0	.07	0	0
Aug	11	7	37	64	6	19	0	63	1.00	43	14	4	47	.90	10	16	2	53	10	10
Sep	9	1	.27	.12	3	22	14	.73	.64	63	10	3	.33	30	0	20	11	67	55	77
Oct	4	1	.13	.25	0	26	19	.87	.73	87	4	0	.13	0	õ	26	18	.87	.69	83
Nov	0	0	.01	0	0	30	26	1.00	.87	66	2	0	.07	0	0	28	20	.93	.71	70
Dec	9	0	.30	0	13	21	21	.70	1.00	6	7	0	.23	0	16	23	20	.77	.87	10
				N	lagapat	tinan	1							Adi	iramap	attina	m			
Jan	24	6	.80	.25	77	6	6	.20	1.00	3	26	7	.87	.27	87	4	0	.13	.01	3
Feb	28	23	.93	.82	93	2	0	.07	0	0	29	26	.97	.90	87	1	1	.03	1.00	3
Mar	30	28	1.00	.93	97	0	0	0	0	0	26	26	.87	1.00	77	4	1	.13	25	0
May	29	29	.97	1.00	90	2	0	.03	0	0	27	25	.90	.92	70	3	0	.10	0	3
Jun	27	25	.90	.92	70	3	ő	10	0	0	27	21	.90	./8	67	3	0	.10	0	0
Jul	23	21	.77	.91	43	7	ĩ	.23	.14	ŏ	22	21	.72	.95	27	8	0	.07	0	6
Aug	20	13	.67	.65	40	10	0	.33	0	10	14	8	.47	.57	26	16	2	53	12	30
Sep	18	12	.68	.66	6	12	4	.40	.33	27	14	6	.47	.43	0	16	10	.53	.62	37
Oct	4	2	.13	.50	0	26	10	.87	.38	87	3	1	.10	.33	0	27	14	.90	.52	80
Nov	0	0	0	0	0	30	27	00.1	.90	83	2	0	.07	0	0	28	24	.93	.86	47
bee	0	v	.2	0			24	.00	1.00	10	10	U	.33	0	20	20	15	.67	.75	3
	20				Alang	udi									Ton	dă				
Jan	28	16	.93	.57	93	2	1	.07	.50	0	27	13	.90	.48	87	3	2	.10	.07	0
Mar	30	28	1.00	.93	100	0	0	0	0	0	29	26	.97	.90	87	1	0	.03	0	3
Anr	7	27	00	1.00	90 72	2	0	10	0	0	27	27	.90	1.00	83	3	1	.10	.33	3
May	23	21	.77	.91	73	7	1	.10	.14	6	20	23	.8/	.90	/3	4	2	.13	.50	0
Jun	27	22	.90	.81	57	3	2	.10	.66	3	30	25	1.00	.00	97	0	0	.17	20	0
Jul	23	21	.72	.94	10	7	1	.23	.50	20	28	28	.93	1.00	87	2	0	07	0	0
Aug	7	3	.23	.43	13	23	7	.77	.30	43	28	26	.93	.93	70	2	õ	.07	0	õ
Sep	13	4	.43	.31	10	17	16	57	.94	50	23	21	.77	.91	20	7	0	23	0	20
Oct	2	2	.07	1.00	3	28	17	.93	.61	66	6	6	.20	1.00	6	24	6	.80	25	67
Nov	7	2	.23	.28	13	23	20	.77	.87	-30	6	6	.20	1.00	6	24	17	.80	.71	40
Dec	17	4	.57	.23	50	13	10	.43	.77	3	13	8	.43	.61	50	17	12	.57	.70	10

269

Months	F(D)	FIDD	P(D) P(DD)	PD2%	F(W)	F(WW)	PIN) P(₩₩)	PW2%	F(D)	F(DD)	PtD	P(DD)	PD2%	F(W)	F(WW)	P(W) $P(WW)$	PW2%
					Paml	ban									Tutic	orin				
Jan	26	7	.87	.26	83	4	4	.13	1.00	3	28	14	.93	.50	90	2	1	.07	.50	3
Feb	28	26	.93	.93	93	2	1	.07	.50	3	28	26	.93	.93	87	2	11	.07	.50	0
Mar	29	29	.97	1.00	83	1	1	.03	1.00	3	28	26	.93	.93	80	2	0	.07	0	0
Apr	26	26	.87	1.00	70	4	1	.13	.25	0	26	24	.87	.92	80	4	0	.13	0	0
May	25	24	.83	.96	83	5	0	.17	0	0	28	24	.93	.86	93	2	0	.07	0	0
Jun	30	25	1.00	.83	100	0	0	0	0	0	30	28	1.00	.93	97	0	0	0	0	0
Jul	30	30	1.00	1.00	97	0	0	0	0	0	29	29	.97	1.00	97	1	0	.03	0	0
Aug	29	29	.97	1.00	93	1	0	.03	0	0	30	29	1.00	.97	97	0	0	0	0	0
Sep	29	28	.97	.96	33	1	0	.03	0	0	29	29	.97	1.00	43	1	0	.0.3	0	3
Oct	11	11	.37	1.00	6	19	1	.63	.05	50	11	10	.37	.91	23	19	1	.63	.05	50
Nov	2	1	.07	.50	3	28	18	.93	.64	43	9	5	.30	.55	23	21	15	.70	.71	37
Dec	7	1	.23	.14	20	23	17	.77	.74	3	16	7	.53	.44	53	14	11	.47	.78	3
				1	Palyaml	kottai								ŀ	Kanyak	umari				
Jan	26	15	.87	.58	80	4	0	.13	0	3	30	22	1.00	.73	97	0	0	0	0	0
Feb	27	24	.90	.89	90	3	1	.10	.33	3	29	29	.97	1.00	97	1	0	.03	0	3
Mar	29	27	.97	.93	80	1	0	.03	0	0	29	29	.97	1.00	63	1	1	.03	1.00	3
Apr	25	24	.83	.96	73	5	0	.17	0	3	20	20	.67	1.00	47	110	1	.33	.10	20
May	26	22	.87	.84	83	4	1	.13	.25	0	19	16	.63	.84	33	11	б	.37	.54	17
Jun	29	25	.97	.86	97	1	0	.03	0	0	16	11	53	.68	40	14	5	.47	.36	10
Jul	30	29	1.00	1.97	97	0	0	0	0	0	23	14	.77	.61	77	7	3	.23	.43	13
Aug.	29	29	.97	1.00	77	1	0	.03	0	0	26	23	.87	.88	67	4	4	.13	1.00	3
Sep	24	23	.80	.96	17	6	0	.20	0	20	23	20	.77	.87	30	7	1	.23	.14	20
Oct	5	5	.17	1.06	3	25	6	.83	.24	57	10	8	.33	.80	17	20	6	.67	.30	17
Nov	9	1	.30	.11	3	21	17	.70	.80	33	13	4	.43	.31	17	12	12	.57	.70	17
Dec	18	7	.60	.39	46	12	10	.40	.83	0	22	9	.73	.41	73	8	5	.27	.62	0

TABLE 2 (Contd.)

extends up to April or May, whereas, the P(WW) values are not observed after January in stations of north coastal Tamil Nadu till May except Adirampattinam.

Sharp variation in the probability of occurrence of two consecutive dry weeks are observed from August to September in the stations of south coastal Tamil Nadu, whereas, in north coastal Tamil Nadu it is observed from May to June or June to July. It ranges from 0 to 43 per cent from July to November and 3 to 43 per cent from September to November in the stations of north coastal and south coastal Tamil Nadu respectively.

The probability of occurrence of two consecutive wet weeks is above 30 from July to November in Nungambakkam, Meenambakkam, Cuddalore and from August to November in the remaining stations of north Tamil Nadu. In the stations of south coastal Tamil Nadu *PW*2 values above 30 per cent are seen from October to December.

From the above study, it is revealed that the probability of occurrence of dry month, dry month preceded by dry month, two consecutive dry months are less in the stations of north coastal Tamil Nadu form July to September compared to the stations of south coastal Tamil Nadu. In other words the probability of occurrence of wet month, wet month preceded by wet month, two consecutive wet months are comparatively high in the stations of north coastal Tamil Nadu than in south coastal Tamil Nadu from July to September. During northeast monsoon season, i.e., from October to December, the probability of getting wet month preceded by wet month, two consecutive months is much higher in the stations of north coastal than south coastal Tamil Nadu. Thus, it, can be inferred that cultivation of crops can be made possible from July to December in north coastal Tamil Nadu, whereas, agricultural operation can be made with great ease from October to December only in south coastal Tamil Nadu and during the other months, massive inputs of irrigation water would be required.

TABLE 3

Probability of occurrence of dry and wet spells over coastal Tamil Nadu on weekly basis

Weeks	F(D)	F{DD) P(D) P(DD)	PD2%	F(W)	F(WW)	<i>P</i> (#) P(B.B.)	PW2%	F(D)	F(DD)) P(D)) P(DD)	PD2%	<i>F</i> (₩)	F(WW)	P(W) P(WW)	PW2%
				N	ungam	bakka	m							м	eenam	bakka	ım			
40	30	30	1.00	1.00	1.00	0	0	0	0	0	30	30	1.00	1.00	100	0	0	0	0	0
41	30	30	1.00	1.00	73	0	0	0	0	0	29	29	.97	1.00	70	1	0	.03	0	0
42	26	22	.73	.86	53	8	0	.27	0	7	25	23	.83	.92	48	5	0	.17	0	7
43	22	16	.73	.73	46	8	3	.27	.37	0	19	15	.63	.79	48	11	3	.37	.27	3
44	25	16	.83	.64	73	5	0	.16	.20	7	25	14	.83	.56	77	5	1	.17	.20	3
45	26	23	.87	.88	70	4	3	.13	.75	0	27	24	.90	.89	73	4	1	.10	.33	0
46	25	21	.83	.84	56	5	0	.17	0	3	27	26	.90	.96	54	4	0	.10	0	3
47	23	20	.77	.86	70	7	1	.23	.14	3	22	20	.73	.91	68	8	1	.20	.12	3
48	28	22	.93	.78	83	2	1	.07	.05	0	29	20	.97	.69	73	1	0	.03	0	0
49	27	25	.90	.92	86	3	0	.10	0	0	26	24	.87	.92	80	4	0	.13	0	0
50	29	28	.97	.93	96	1	0	.03	0	0	30	25	1.00	.83	100	0	0	0	0	0
51	30	28	1.00	.93	96	0	0	0	0	0	30	30	1.00	1.00	93	0	0	0	0	0
52	29	29	.97	1.00	100	1	0	.03	0	0	29	29	.96	1.00	93	1	0	.03	0	0
					Cudda	alore								I	arang	ipetta	i i			
40	27	26	.90	.96	90	3	2	.10	.67	0	30	30	1.00	1.00	90	0	0	0	0	0
41	29	26	.97	.90	76	1	1	.03	1.00	3	29	29	.97	1.00	80	1	0	.03	0	0
42	23	22	.77	.96	60	7	1	.23	.14	3	26	25	.87	.96	62	4	0	.13	0	3
43	21	17	.70	.81	50	9	2	.30	.22	10	24	20	.80	.83	60	6	1	.20	.16	0
44	22	15	.73	.68	63	8	2	.27	.25	6	6٢	20	.87	.77	60	4	0	.13	0	0
45	26	19	.87	.73	66	4	0	.13	0	0	24	20	.80	.83	60	6	0	.20	0	72
46	23	20	.77	.87	57	7	1	.23	.14	3	24	20	.80	.83	63	6	2	.20	.33	3
47	24	17	.80	.71	57	6	0	.20	0	0	26	23	.87	.88	73	4	1	.13	.25	72
48	23	12	.77	.74	.86	7	0	.20	0	0	26	24	.87	.92	70	4	1	.13	25	3
49	23	19	.77	.83	77	7	4	.57	.13	0	26	24	.87	.92	76	4	1	.13	.25	3
50	27	23	.90	.85	83	3	3	.10	1.00	10	29	27	.97	.93	87	1	0	.03	0	0
57	28	25	.93	.89	83	2	0	.07	0	0	29	28	.97	.96	87	1	0	.03	0	0
	21	25	.90	.92	90	3	0	.10	0	0	29	28	.97	.96	90	1	0	.03	0	0
				r	agapa	ttinam	1							Adi	ramap	attina	m			
40	30	30	1.00	1.00	100	0	0	0	0	0	28	28	.93	1.00	67	2	0	.07	0	3
41	30	30	1.00	1.00	77	0	0	0	0	0	29	28	.97	.96	61	1	1	.03	1.00	3
42	23	23	.17	1.00	56	7	0	.23	0	0	26	26	.87	1.00	58	4	1	.13	.25	3
43	24	17	.80	./1	67	6	0	.20	0	6	28	25	.93	.89	58	2	1	.07	.50	0
44	24	20	.80	.83	67	0	2	.20	.33	6	27	25	.90	.92	58	3	0	.10	0	3
46	24	20	.80	.63	60	0	2	.20	.33	10	27	25	.90	.92	64	3	1	.10	0	3
47	23	18	80	.91	67	6	3	20	.43	5	29	21	.97	.93	61	1	0	.03	0	0
48	24	20	.86	.83	63	6	2	20	.10	3	27	20	.90	.90	61	3	0	.10	0	0
49	24	18	.80	.75	77	6	1	20	.55	0	20	20	.93	.93	64	2	0	.07	0	0
50	29	23	.97	.79	93	1	0	.20	.10	3	20	20	.93	.93	67	2	0	.07	0	0
51	28	28	.93	1.00	87	2	1	.07	.50	0	29	27	.91	.55	61	2	0	.03	0	0
52	28	26	.80	.93	93	2	0	0	0	0	28	26	.93	.93	67	2	0	.07	0	0

		_										_		-						
Weeks	F(D)	F(DD) P(D)	P(DD)	PD2%	F(W)	F(W,W)	P (W)) ₽(₩₩)	PW2%	F(D)	F(DD) P(D) P(DD) PD2%	F(W)	F (₩₩)	₽(₩)	₽(₩₩)	PW2%
					Alan	gudi									To	ndi				
4()	30	30	1.00	1.00	100	0	0	0	0	0	29	29	.97	1.00	100	0	0	.03	0	0
41	30	30	1.00	1.00	81	0	0	0	0	0	29	28	.97	.96	100	1	0	.03	0	0
42	28	28	.93	1.00	83	2	0	.07	0	0	28	27	.93	.96	100	2	0	.07	0	0
43	29	27	.97	.93	90	1	0	.03	0	0	28	26	.93	.93	100	2	0	.07	0	0
44	30	29	1.00	.97	100	0	0	0	0	.0	29	27	.97	.93	100	1	0	.03	0	0
45	30	30	1.00	1.00	100	0	0	0	0	0	29	28	.97	.96	100	1	0	.03	0	0
46	30	30	1.00	1.00	90	0	0	0	0	0	30	29	1.00	.97	100	0	0	0	0	0
47	29	29	.97	1.00	87	1	0	.03	0	0	30	30	1.00	1.00	100	0	0	0	0	0
48	29	28	.97	.96	80	1	0	.03	0	0	29	29	.97	1.00	100	1	0	.03	0	0
49	27	27	.90	1.00	83	3	0	.10	0	0	28	27	.93	.96	100	2	0	.07	0	0
50	29	27	.97	.93	90	1	1	.03	1	0	29	27	.97	.93	100	1	0	.03	0	0
51	30	29	1.00	.97	100	0	0	0	0	0	28	27	.93	.96	100	2	0	.07	0	0
52	30	30	1.00	1.00	100	0	0	0	0	0	30	28	1.00	.93	100	0	0	0	0	0
					Pam	ban									Tuti	corin				
40	30	30	1.00	1.00	93	0	0	0	0	0	30	30	1.00	1.00	97	0	0	0	0	0
41	28	28	.93	1.00	79	2	0	.07	0	3	29	29	.97	1.00	96	1	0	.03	0	3
42	27	25	.90	.92	67	3	1	.10	.33	0	27	27	.90	1.00	80	3	1	.10	.33	0
43	23	21	.77	.91	60	7	1	.23	.14	3	27	24	.90	.89	83	3	0	.10	0	0
-14	25	19	.83	.76	76	5	1	.17	.20	0	28	25	.93	.89	77	2	0	.07	0	0
45	29	21	.97	.83	83	1	0	.03	0	0	26	24	.87	.92	86	4	0	.13	0	0
46	27	26	.90	.96	75	3	0	.10	0	0	29	24	.97	.83	93	1	0	.03	0	0
47	26	23	.87	.88	69	4	0	.13	0	3	29	28	.97	.96	97	1	0	.03	0	0
48	25	22	.83	.88	75	5	1	.17	.20	3	30	29	1.00	.97	100	0	0	0	0	0
49	26	23	.87	.88	83	4	2	.13	.50	0	30	30	1.00	1.00	100	0	0	0	0	0
50	29	25	.97	.86	93	1	0	.03	0	3	30	30	1.00	1.00	100	0	0	0	0	0
51	27	25	.90	.92	83	3	1	.10	.33	0	30	30	1.00	1.00	100	0	0	0	0	0
.52	28	25	.93	.89	90	2	0	.07	0	0	30	30	1.00	1.00	100	0	0	0	0	0
					Palyan	nkottai	ĺ								Kanya	kuma	ri -			
40	30	30	1.00	1.00	96	0	0	0	0	0	30	30	1.00	1.00	77	0	0	0	0	0
41	29	29	.97	1.00	93	1	0	.03	0	0	29	29	.97	1.00	74	1	1	.03	0	0
42	29	28	.97	.96	80	1	0	.03	0	0	29	28	.97	.96	70	1	0	.03	0	0

29 1.00

28 1.00

30 1.00

29 1.00

30 1.00

.90

.97

.93 1.00

.97

30 1.00 1.00

.96

.93

.97

1.93

1.00

1.00

1.00

.97

1 .07

. 0

0 .03

.07

.03

0 .03

3 .13

0 .03

0 .03

0 .03

.07

.75

26 1.00

30 1.00

30 1.00

30 1.00

2 .97

.97

.93

.87

.97

29 1.00

.96

.82

.92

.87

1.00

1.00

1.00

1.00

.96

.97

TABLE 3 (Contd.)

Fig. 2. Average productivity (kg/ha) of some rainfed crops in north coastal and south coastal Tamil Nadu

Besides, long duration crop varieties can be cultivated in north coastal Tamil Nadu.

3.3. Probability of occurrence of dry spell and wet spell on weekly basis during the northeast monsoon season

Northeast monsoon season is the main rainy season in state of Tamil Nadu (Raj et al. 1993). As most of the rainfed crops are in active growing stage in this season, probability studies of rainfall on weekly basis for this season has been undertaken. The probability of occurrence of dry week, wet week preceded by wet weeks, two consecutive dry and wet weeks are presented in Table 3.

Except Alangudi the values of probability of occurrence of dry week fall in the range of 0.63 to 0.83 in certain weeks between 42nd and 49th week in all the stations of north coastal Tamil Nadu. P(D) values are more than 0.83 in all the weeks in the stations of south coastal Tamil Nadu. Except Adirampattinam and Alangudi, the probability of occurrence of dry week preceded by dry week lies between 0.56 & 0.83 in all the stations of north coastal Tamil Nadu in a number of weeks from 43rd to 50th week in this season. Similar to P(D), P(DD) values lie above 0.83 in all the weeks in the stations of south coastal Tamil Nadu. The probability of occurrence of wet week preceded by wet week is less in the stations of south than north coastal Tamil Nadu in all the weeks in this season. In some of the weeks from 40th to 51st, the stations of north coastal Tamil Nadu have P(WW) values in the range of 0.14 to 1.00. The probability of occurrence of two consecutive dry weeks falls in the range of 46 to 67 per cent in a number of weeks in this season in all the stations of north coastal Tamil Nadu and Pamban. PD2 values are comparatively high in the stations south of Pamban in all the weeks in this season. PW2 ranges from 6 to 10 per cent in Cuddalore and Nagapattinam in between 43-45, 47, 49 and 50th

7A-246 1MD/95

week, whereas, PW2 is 72 per cent in 45th and 47th week in Parangipettai.

Thus, from the above discussion it is observed that the probability of occurrence of dry week, dry weeks preceded by dry week and two consecutive dry weeks are, in general, comparatively low in all the weeks under study in all the stations north of Alangudi except Pamban. In other words, the probability of occurrence of wet week, wet week preceded by wet week and two consecutive wet weeks are comparatively higher in stations north of Alangudi in all the weeks in the northeast monsoon season. Among the stations in north coastal Tamil Nadu, Nungambakkam and Meenambakkam which lie south of it, the probability of wet week, wet week preceded by wet week and two consecutive wet weeks are more in 42nd to 45th and 47th week, i.e., 15 October to 11 November and from 19 to 25 November while P(W), P(WW), PW2 in other coastal stations of north Tamil Nadu are less between 42nd and 50th week, i.e., 15 October to 16 December. The finding so far obtained gives an idea of the percentage chances of dryness and wetness in a particular week. The knowledge could be utilised in supplementing water source by recourse to irrigation or conservation of excess rainfall in the crop growing period. Besides, the sowing dates can be adjusted so that grand growth and development phases of crop can fall in the weeks having the maximum probability of rainfall 21 mm or more in the coastal districts of Tamil Nadu and also in the choices of crops to be grown in this region.

In Tamil Nadu, rainfed crops like cumbu, cholam, groundnut and gingelly are generally cultivated from June to December (Crop Production Guide 1991). Analysis of production figures (Fig.2) shows that the production (kg/ha) of rainfed cumbu, cholam, groundnut and gingelly is higher in north than south coastal Tamil Nadu in the order of 9.0, 17.1, 14.6 and 12.9 per cent of the production of south coastal Tamil Nadu respectively. Among the other factors which play important role in crop production, it appears that the quantum of rainfall and occurrence of more wet spells from July to December and in the weeks of the northeast monsoon season helps produce more cholam, cumbu, groundnut and gingelly in the coastal districts of north Tamil Nadu though the water requirement of the crops mentioned is comparatively low than that for other cereal crops.

4. Conclusions

Annual and northeast monsoon rainfall amounts are found to be higher in stations north of

Alangudi whereas rainfall during the southwest monsoon is high north of Tondi among the coastal stations of Tamil Nadu. During the hot weather period rainfall mainly occurs in the stations south of Adiramapattinam. The occurrence of wet spell. i.e., rainfall 90 mm or more per month starts from July and continues up to December in the stations of north coastal Tamil Nadu. As the chance of getting rainfall 90 mm or more per month is high from July to December, agricultural operations can be started from the month of July in the north coastal Tamil Nadu and long duration variety of crops can he cultivated in this region, whereas, all the agricultural operations dependent mainly upon rainfall have to be necessarily limited to the northeast monsoon season in south coastal Tamil Nadu as the wet spells are observed only in the months of October to December. During the northeast monsoon seasons the wet weeks are mainly confined to the stations of north coastal Tamil Nadu. As most of the crops are in active growing stage in this season, these findings could be utilised in a quantitative fashion in supplementing water sources through recourse to the irrigation or conservation of excess rainfall in the crop growing periods. Sowing dates can be adjusted so that the grand growth and development phases can occur in the weeks having the maximum probability of rainfall 21 mm or more in coastal Tamil Nadu. Analysis of production figures of rainfed cumbu, cholam, groundnut and gingelly shows that the average production of these crops is higher in north than in south coastal Tamil Nadu. The obvious inference is that the production of those crops - even though this requires marginal amounts of water only - is very sensitive to the actual amounts of rainfall, a fact that should be incorporated in any agricultural strategy related to these crops.

References

Agrostat..1991, Department of Agriculture, Government of Tamil Nadu, Madras.

- Basu, A. N., 1971, "Fitting of a Markov chain model for daily rainfall data at Calcutta", *Indian J. Met. & Geophys.*, 22, 1, pp. 67-74.
- Chowdhury, A. and Abhyankar, V.R., 1984, "A Markov chain model for the probability of drought incidence in India", *Mausam.* 35, 3, pp. 403-405.
- Crop Production Guide, 1991, Department of Agriculture, Government of Tamil Nadu, Madras.
- Doorenbos, J. and Pruitt, W. O., 1977, Irrigation and Drainage Paper No. 24, FAO of the United Nations, Rome.
- Frere, M., Rijks, J.C. and Rea, J., 1975, J. Tech. Rep. FAO/ UNESCO/WMO Inter-agency Project in Agroclimatology, FAO, ROME, pp. 375.
- Khambete, N. N. and Biswas, B. C., 1984, "Application of Markov chain model in determining drought proneness", *Mausam*, 35, 3, pp. 407-410.
- Medhi, J., 1976, "Markov chain model for the occurrence of dry and wet days", Indian J. Met. Hydrol. & Geophys., 27, 4, pp. 431-435.
- Oldeman, L. R. and Frere, M., 1982, Tech. Rep., pp. 143-188.
- Raj, Y. E. A., Sen, P. N. and Jamadar, S. M., 1993, "Outlook on northeast monsoon rainfall of Tamil Nadu", *Mausam*, 44, 9, pp. 19-22.
- Robertson, G. W., 1976, Fiew Rep. A-6, UNDA/FAO, Malaysia, pp. 1-30.
- Sarker, R. P., Biswas, B. C. and Khambete, N. N., 1982, "Probability analysis of short period rainfall in dry farming tract of India", *Mausam*, 33, 3, pp. 269-289.
- Subramaniam, A. R. and Rao, P. S., 1986, "Probability studies of rainfall in relation to agriculture at Chirala, A. P.", *Mausam*, 37, 2, pp. 273-274.
- Subramaniam, A. R. and Rao, P. S., 1989, "Dry spell sequences in south coastal Andhra", *Mausam*, 40, 1, pp. 57-60.
- Victor, U. S. and Sastry, P. S. N., 1979, "Dry spell probability by Markov chain model and its application to crop development stages", *Mausam*, 30, 4, pp. 479-484.
- Virmani, S. M., Sivakumar, M. R. L. and Reddy, S. J., 1982, ICRISAT Res. Bull. No. 1.