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सार – हिमालय के पश्चिमी भाग में सर्दी के मिीनों के र्दौरान नवम्बर से अप्रलै तक वर्ाा हिम के रूप में अच्छी 

मात्रा में वर्ाण िोता िै इन क्षेत्रों में सर्दी के र्दौरान भारी हिमपात िोने के कारण हिमस्खलन की घटनाएँ िोती िैं। हिम 
प ुंज के भीतर रूपाुंतरण (मेटमोरफिज्म) की प्रफिया में तापमान की मित्वपणूा भ ममका िोती िै श्जसके कारण हिमस्खलन 
िोता िै। फकसी स्थान ववशेर् के तापमान के सटीक प वाान मान साए हिमस्खलन का सटीक प वाान मान रे्दने में मर्दर्द 
ममलती िै। इस शोध पत्र में कृत्रत्रम तुंत्रत्रका नेटवका  (ANN) ववधध का उपयोग तापमान के पवूाान मान की साुंश्ययकीय 
डाउनस्केमलुंग के मलए फकया गया िै। 10 × 10 फक. मी. धिड पर मेसोस्केल मॉडल एम एम 5 तापमान पवूाान मान के मलए 
वर्ा 2003-2008 तक की सहर्दायों के मलए तीन स्थानों- कानजलवान, स्टेज-II और ग लमगा को मलया गया िै ताफक इन 
स्थानों पर तापमान का पवूाान मान रे्दने के मलए ANN मॉडल की कायाक्षमता के प्रर्दशान का अध्ययन फकया जा सके। 
प्राप्त पररणाम बताते िै फक इन तीनों स्थानों पर तापमान पवूाान मान के मलए ए एन एन मॉडल का प्रर्दशान 2 हर्दनों तक 
के मलए अच्छा िै। औसत वगामूल त्र हट (RMSE)  सभी तीनों स्टेशनों के मलए मित्वपणूा रूप से कम िै और यि मानक 
वविलन (एस. डी.) से भी कम िै। श्जससे ए एन एन मॉडल के अच्छे प्रर्दशान का पता िलता िै। इस क्षेत्र में तापमान में 
अधधक पररवतशंीलता के बावजरू्द ए एन एन मॉडल में औसत वगामूल त्र हट (RMSE) 2° सेश्ससयस के करीब िै। 
कानजलवान के मलए एम एम 5 तथा ए एन एन मॉडल द्वारा पे्रक्षक्षत तापमान और अन माननत तापमान के बीि का 
ननधाारण ग णाकुं  सत्यापन सेट के अन रूप िमशः 0.28 और 0.66  िै जो डाउनस्केमलुंग के बार्द पवूाान मान रे्दने के कौशल 
में स धार को प्रर्दमशात करता िै। एम एम 5 मॉडल के डाउनस्केमलुंग से प्राप्त पररणाम फकसी स्थान ववशेर् के मलए हर्दए 
गए अन माननत तापमान के पे्रक्षक्षत मानों के करीब िै।  

 
 

ABSTRACT. The western Himalaya receives good amount of precipitation in the form of rain and snow during 

winter months from November to April. Heavy snow fall during winter over these regions causes avalanches.  
Temperature plays a vital role in the process of metamorphism within the snow pack which leads to avalanches. Accurate 

prediction of temperature over specific location helps to predict the avalanche accurately. In this paper artificial neural 

network (ANN) method has been used for statistical downscaling of the temperature forecast. Mesoscale model MM5 
temperature forecast on 10 × 10 km grids has been taken over three locations Kanzalwan, Stage II and Gulmarg for 

winter from 2003-2008 to study the performance of the ANN model for its ability to forecast temperature over these 
locations. Results show that the performance of ANN model for temperature forecast over these three location is good up 

to day 2. Root mean square error (RMSE) decreases significantly for all the three stations and is also less than the 

standard deviation (SD) which shows good performance of the ANN model. RMSE is close to 2 °C in case of ANN 
model, in spite of large variability in temperature over the region. The coefficients of determination between observed 

and predicted temperature by MM5 and ANN model for Kanzalwan, corresponding to validation set are 0.28 and 0.66 

which shows improvement in forecast skill after downscaling. Predicted temperatures at particular location, after 
downscaling of MM5 model output are closer to the observed values.  

 
Key words – Downscaling, Artificial neural network, NWP, Temperature forecast. 

 
1.  Introduction 

 

 Western Himalaya is badly affected by snow 

avalanches during winter months due to heavy snowfall 

associated with the western disturbance (WD). A huge 

loss of property and human life is witnessed every year 

because of avalanches in the snow bound regions of 

western Himalaya. Many factors are responsible for the 

avalanche initiation. Snowpack at a particular place 

consists of different layers of snow and changes 
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continuously due to metamorphic processes. Temperature 

is one of the most important parameters responsible for 

these processes. Thus temperature forecast plays an 

important role in the prediction of avalanches.  

 

 Due to the geomorphology, high altitude and 

different orientations of mountain ranges in western 

Himalaya, prediction of surface weather parameters 

becomes very complex. Therefore forecast generated by 

NWP model available on a coarse grid of 10 km 

resolution over western Himalaya needs to be statistically 

treated for downscaling to specific location. Downscaling 

is the method used to convert NWP output on a course 

resolution into local meteorological variables. Local 

weather is also affected by the past state besides the large 

scale atmospheric state. There are two approaches for 

downscaling, dynamical downscaling and statistical 

downscaling. Dynamical approach is based on high 

resolution climate models or limited area models. These 

methods require high computing power and their 

resolution is too coarse to use for station specific 

requirements. Statistical downscaling techniques are 

easier and require inexpensive and simpler computation 

(Khalili et al., 2013).Two widely used statistical methods 

for downscaling and forecasts are: the perfect prognostic 

method (PPM) (Klein et al., 1959) and the model output 

statistics (MOS) (Glahn and Lowry, 1972).  

 

 Several studies have been carried out to predict 

location specific weather parameters over the western 

Himalaya. Analogue method has been used for location 

specific surface weather parameters over the western 

Himalaya by Singh et al. (2008).  A perfect prognostic 

approach has been employed for location specific 

prediction of maximum and minimum temperature by 

Dimri and Mohanty (2007) and probability of occurrence 

and quantity of precipitation by Mohanty and Dimri 

(2004) over the western Himalaya. Srinivasan et al. 

(2010) demonstrated that a statistical regression approach 

to statistical downscaling (SDM) of MM5 model output 

yields significant improvements in the prediction of 

surface weather parameters over the western Himalaya. In 

the present study an Artificial Neural Network (ANN) 

model is developed to downscale the MM5 temperature 

forecast over selected stations in Western Himalaya and it 

gives better results than simple linear techniques and 

persistent forecast. A number of studies have also been 

conducted using statistical downscaling techniques and 

ANN based methods. ANN promises to deal with the 

complex and highly non-linear problems associated with 

natural systems including atmosphere, ocean and climate 

systems.  

 

 Joshi and Ganju (2013) used ANN, a non-linear 

method for downscaling of MM5 model output to provide 

station specific precipitation forecast over western 

Himalaya. Gardner and Dorling (1998) presented a 

detailed review of application of ANN in the atmospheric 

science. Adya (1998) found that ANN had potential for 

forecasting and prediction. Hall (1998) developed a neural 

network model using input from Eta model and upper air 

soundings. The neural network produced a very good 

forecast of both the probability and amount of 

precipitation. Holger (2000) presented modeling issues of 

neural network models in the prediction of water resource 

variables. Neural network was used to improve 

temperature forecasts produced by the Advanced Regional 

Prediction System and the improvement varied between 

5% and 90% in terms of mean-squared error (Marzban, 

2003). Coppola
 
(2006) applied ANN to combine satellite 

imageries and data from NWP model to estimate real time 

rainfall. Roebber
 
(2006) developed ANN model for real 

time snow forecasting across the contiguous United States 

east of the Rocky Mountains. Forecast skills of maximum 

and minimum temperature over Delhi improved by 

applying ANN (Roy et al., 2009). Hoai et al. (2011) 

applied feed-forward multilayer perceptron (MLP) using 

error training back-propagation method to develop an 

empirical-statistical approach to downscale the 

precipitation from global NWP outputs to a basin-scale for 

flood runoff prediction. ANN model was developed for 

prediction of maximum and minimum temperature at 

different locations in western Himalaya (Joshi and Ganju, 

2012). Coulibaly and Dibike (2005) proposed the time-

lagged feed-forward neural network (TLFN) for 

downscaling daily total precipitation and daily maximum 

and minimum temperature series for the Serpent River 

watershed in northern Quebec (Canada). The downscaling 

models are developed and validated using large-scale 

predictor variables derived from the National Centers for 

Environmental Prediction - National Center for 

Atmospheric Research (NCEP - NCAR) reanalysis 

dataset. The study results show that the time-lagged feed 

forward network (TLFN) can be an effective method for 

downscaling daily precipitation and temperature data as 

compared to the commonly used statistical method. 

Schoof and Pryor (2001) applied regression techniques 

and ANNs to downscale maximum and minimum daily air 

temperature and daily and monthly precipitation totals at 

Indianapolis and quantified the relationships between the 

synoptic-scale circulation and local climate parameters in 

the Midwestern United States.  

 

 Kidson and Thompson (1998) compared Statistical 

and Model-Based Downscaling Techniques to estimate 

Local Climate Variations over New Zealand, using 

boundary conditions from European Centre for Medium-

Range Weather Forecasts (ECMWF). Statistical 

downscaling (SD) models, the non-homogeneous hidden 

Markov  model (NHMM) and  the statistical down-scaling
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Fig. 1. Schematic diagram of multi layered ANN 

 
 

 
model (SDSM) were used to downscale precipitation over 

the Tarim River basin, located in China (Liu et al., 2011). 

Ferrero et al. (2009) compared several statistical 

downscaling methods for operational short-term forecast 

of precipitation in the area of Bilbao (Spain). It was found 

that the coarse resolution models in combination with a 

statistical downscaling provide usable information to 

achieve a quantitative precipitation forecast. Wilks (1999) 

used a simple stochastic precipitation model to downscale 

precipitation for 6 groups of 5 U.S. stations. There was a 

large difference in climate statistics between local and 

area-averaged series. A computationally economical and 

flexible approach to produce local climate-change 

‘scenarios’ is through the use of stochastic weather 

models, or ‘weather generators’ (Wilks, 1999).  

 

 Charles et al. (2004) investigated the ability of the 

extended non-homogeneous hidden Markov model 

(extended-NHMM) to reproduce observed inter-annual 

and interdecadal precipitation variability. He presented the 

relevance of statistical downscaling to hydrological 

research, potential applications of the extended-NHMM. 

Huth (2001) compared the performance of several linear 

downscaling methods and several sets of large-scale 

predictors and the performance of the two ways of 

reproduction of variance (inflation vs. randomization). He 

also estimated the dependence of the downscaling output 

on the size of the domains on which the predictors and 

predictands are defined. The downscaling is performed for 

daily mean temperature in winter at a network of stations 

in central Europe. Flexible nonlinear regression models 

like ANNs, which represents arbitrary forms of 

nonlinearity and complicated interactions between 

predictors may yield better predictions than classical 

linear models for a variable. A nonlinear, probabilistic 

synoptic downscaling algorithm for daily precipitation 

series at multiple sites is presented by Cannon (2008).

  

  In the present study ANN method has been used to 

downscale temperature forecasts by MM5 model, to 

provide location specific temperature forecast for three 

stations under study over the western Himalaya (Fig. 4). A 

multilayer ANN model has been developed to downscale 

daily temperatures over three stations in the western 

Himalayan region. The model is validated with the 

observed data. The MM5 and ANN model description has 

been given in section 2 while Data and methodology have 

been described in section 3. Results are provided in 

section 4 and conclusions are given in the last section 5. 

  

2. Model description  
 

 SASE used the fifth generation Pennsylvania State 

University (PSU)/National Centre for Atmospheric 

Research (NCAR) mesoscale model, MM5 to forecast  

different meteorological parameters such as precipitation, 

temperature, wind etc from 2002 to 2011. MM5 is a 

Limited Area Model (LAM) to simulate and predict 

mesoscale systems and regional atmospheric circulations 

(Anthes and Warner 1978). Its vertical coordinate system 

is terrain following sigma coordinates with options for 

non hydrostatics approximations. The complete MM5 

modeling system consists of five modules: TERRAIN, 

REGRID, RAWINS/little_r, INTERPF  and MM5. For the 
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Fig. 2. Flow chart of ANN methodology 

 

 
Fig. 3. Error minimization curve with numbers of epochs in x-axis 

and error (ºC) in y-axis 
 

 

 

generation of terrain and land use, USGS 2’ and 30” 

topography and land use data are used in MM5. Initial and 

lateral boundary conditions for the model are taken from 

National Centre for Medium Range Weather Forecasting 

(NCMRWF) T254 analysis and its forecast. 

 

 ANN is a computational structure modeled loosely 

on biological processes. Development of an ANN for any 

system involves topology of the network, a proper training 

algorithm and activation function (Chattopadhyay and 

Bandyopadhyay, 2007).
  

In any ANN, there is an input 

layer connected to output layer with different weights. In 

between there may be one or more hidden layers also 

connected by weights. This interconnected set of weights 

contains the knowledge generated by the ANN. 

 

 In the present work, a three layer ANN model with 

single hidden layer is developed using back propagation 

learning algorithm. Joshi and Dimri (2008) developed a 

three layer ANN model for precipitation forecast over 

western Himalaya using surface parameters. In present 

model there are 8 nodes (number of input parameters) in 

input layer, 7 nodes in hidden layer and one node 

(temperature) in output layer. Fig.1 shows the architecture 

of a three layer neural network. The number of hidden 

layers is variable according to the problem. Generally one 

hidden layer is considered sufficient to approximate any 

smooth measurable function between inputs and outputs 

(Hornik et al., 1989).  

TABLE 1 

 

Three layer artificial neural network architecture 

 

Network parameters Optimal numbers 

No of inputs 8 

No of hidden layers 1 

No of hidden nodes 7 

No of outputs 1 

Learning rate 0.8 

Momentum 0.5 

Activation function Sigmoid transfer function 

f(x) = (1+e-x)-1 

 
TABLE 2 

 

Input parameters considered for the study 

 

Parameter Time of observation 

Maximum temperature (Tx) 1730  (previous day) 

Minimum temperature (Tn) 0830  (current day) 

Dry bulb temperature (T) 0830 

Av wind speed (wsavg) Average of last 24 

Pressure Change 24 hour 

Cloud amount (cla) 0830 

Precipitation amount (mm) 0830 

MM5 predicted temperature Day 1, day 2 and day 3 

 

 

 

 If the learning rate is high, training is fast but there is 

a problem of generalization as the network memorizes the  

patterns and large error is produced when validated with 

independent data set. This is the case of over fitting. With 

a large number of hidden nodes the complexity of network 

increases and it takes too much time to train the network.  

With very small learning rate and less number of hidden 

nodes, network is not able to capture the variability in data 

(under fitting) and the error even with training set is very 

large. To overcome the problems of over fitting and under 

fitting the parameters of the networks are to be optimized. 

To determine the optimal numbers of network parameters, 

network has been tested with various combinations of 

hidden layer, hidden nodes, learning rate and momentum 

and 8-7-1 network with learning rate 0.8 and momentum 

0.5 was found to be the best and used for the present study 

(Table 1). Fig. 2 represents the flow chart of the 

methodology. 

  

 Initially random weights are assigned between  

input-hidden and hidden output  layers. If  number of 
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TABLE 3 

 

Principal observatories considered for study 

 

Station 
Altitude 

(m) 

No of data points 

(training set) 

No of data points 

(validation set) 

Kanzalwan 2440 400 135 

Gulmarg 2800 400 135 

Stage II 2650 400 139 

 
 

 

inputs, patterns and hidden nodes are denoted by n,                    

m and p respectively, the input at hidden layer is 

computed as: 

 

  i ij kjZ f W X              (1) 

 

 Final output O is computed with this input and 

hidden-out weights as; 

 

  k i iO f V Z         (2) 

 

 where, i = 1, 2…p,  j = 1, 2…n, k = 1, 2…m. 

 

 and f is a function called activation function. In this 

study the activation function is a sigmoid transfer function 

for both input-hidden layer and hidden output layer,             

given as: 

 

    
1

1 xf x e
         (3)  

  

 The weights are adjusted in such a way that the error, 

the difference between the network output and desired 

output is reduced. The error is given by: 

                           

 Error = 1/2∑ (desired output-network output)
2   

 

  
21

2 k kE Y O                                                      (4) 
 

 

 The error term at output layer is computed as: 

 

    1T k k k kE Y O O O           (5)  

 

 This error is propagated backward to the hidden 

layer and error term at hidden layer is computed as: 

 

  1H i T i iE V E Z Z           (6)  

 

 These error terms are used for modification of the 

weights. The weights are adjusted so as to minimize the  

 
Fig. 4. Observatory network in western Himalaya showing the stations 

under study 
 

 

 

error functions. This technique is called gradient descent. 

Change in the weights is given as:  

 

 W E X W
ij ijH kj

     


                         (7) 

 

 and 

 

 V E Z V
i i iT

     
        (8) 

 

 where, η is the learning rate and α is the momentum. 

 

 These modified weights are used for the next pattern 

and error at each pattern is summed up to get the net error. 

The network is trained till the net error is minimized to a 

desired accuracy. This has been presented in Fig. 3.  

 

3.  Data and methodology 

 

 SASE has established a network of snow and 

meteorological observatories over the western Himalaya. 

These observatories represent different road axes/sectors, 

prone to avalanches. There are number of avalanche 

activities along these axes every winter resulting in huge 

loss of lives and property. In present study, three 

observatories Kanzalwan, StageII and Gulmarg (Fig. 4) 

representing different geographical and climatic 

conditions of the Jammu and Kashmir (J&K) are 

considered. These observatories represent the climatic 

conditions  of  the  region  and  are also nodal centers for
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Figs. 5(a-f). (a-c) show MM5 model predicted temperature (°C) Vs Observed temperature (°C) and (d-f) show ANN model predicted 

temperature (°C)  Vs Observed temperature (°C)   for validation set corresponding to day 1, day 2 and day 3 over Kanzalwan. The 
black curve shows the deviation of predicted temperature from the observed one 

 

 

 

assessing/disseminating avalanche hazards for the 

respective areas.  

 

 In the present study, six surface weather parameters 

(Table 2) which include maximum temperature, minimum 

temperature, dry bulb temperature, average wind speed, 

pressure change, cloud amount and MM5 output 

(temperature) have been considered as input parameters. 

The data set consists of five years winter data (2003-04 to 

2008) having total of 435-439 data points. Out of which 

300 data points are taken for training the ANN and 135-

139 independent test data points, not included in the 

training set, are considered for validation of the model 

(Table 3). All the parameters are normalized to values 

between 0.1 and 0.9 to ensure that the model has similar 

sensitivity to changes in various parameters.  For any 

variable x with maximum value, xmax and minimum value, 

xmin the normalized value xA is calculated as: 

 

 xA = 0.1 + 0.8 (x - xmin) / (xmax - xmin)                 (9)   

(a) (d) 

(e) 
(b) 

(f) (c) 
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        Figs. 6(a-f). Same as Figs. 5(a-f) except for Gulmarg 

 

 
 Corresponding to six surface parameters and MM5 

model output (temp.) ANN model is trained for three days 

temperature forecast and validated on independent data set 

using back propagation learning algorithm. Time series of 

temperature is analyzed which shows a large variation in 

temperature at all locations. Results are analyzed for all 

stations corresponding to day1, day 2 and day 3 forecasts.  

 

4.  Results and discussion  

 

 For Kanzalwan, there are total 435 data points, out of 

these, training set consists of 300 data points and 135 data 

points are used for validating the results (validation set). 

The standard deviation corresponding to the training set is 

4.97 °C and that of validation set is 4.7 °C. The mean of 

the observed temperature for the validation set is -4.12 °C  

while the mean values of the temperature predicted by 

MM5 model and ANN model are -2.49 °C and -3.75 °C 

respectively. Thus, the mean of the temperature predicted 

by ANN model is close to the observed mean value 

indicating a good prediction by the ANN model.                        

Figs. 5(a-f) depict the comparison of scattered plots 

between MM5 predicted temperature (left column) and 

ANN predicted temperature (right column) with the 

(c) 

(c) (f) 

(e) (b) 

(a) (d) 
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TABLE 4 

 

Number of days with error in different error range for validation set 

 

Station Model Total days 

Number of days with error in different ranges for validation set 

0-1 1-2 2-3 3-4 >4 

Day1 Day2 Day3 Day1 Day2 Day3 Day1 Day2 Day3 Day1 Day2 Day3 Day1 Day2 Day3 

Kanzalwan 
MM5 

135 
23 20 28 24 18 23 22 31 18 19 08 15 47 58 51 

ANN 35 31 14 30 21 24 23 25 25 17 16 24 20 42 48 

Gulmarg 
MM5 

135 
02 04 05 03 12 10 07 09 13 19 14 14 104 96 93 

ANN 52 39 36 34 37 26 29 29 28 15 14 23 05 16 22 

Stage II 
MM5 

139 
18 23 21 19 21 23 28 27 21 17 15 13 57 52 61 

ANN 47 42 40 39 34 34 23 25 19 20 18 16 09 20 30 

 

 

 
observed temperature for day1, day 2 and day 3 over 

Kanzalwan. Figure shows coefficients of determination 

between observed and predicted temperature by MM5 and 

ANN model are 0.36 and 0.73 for training set while                         

for validation set these values are 0.28 and 0.66                        

[Figs. 5(a&d)], which shows improvement in forecast skill 

after downscaling. To check the performance of the 

model, performance parameter (PP) (ratio of mean square 

error and the variance of the observed values) is also 

calculated. For Kanzalwan the value of PP corresponding 

to MM5 model is 0.81 and 0.88 while corresponding to 

ANN model the values of PP are 0.27 and 0.35 for 

training and validation set respectively indicating fairly 

good prediction of temperature by ANN model.  

 

 To explain the results quantitatively, total number of 

days with error in five different error categories (0-1, 1-2, 

2-3, 3-4 and >4 °C) are calculated and provided in Table 4 

for validation data set. For Kanzalwan there are 135 data 

points in the validation set. Within error range of ± 2 °C, 

MM5 predicts 34.81% and ANN model predicts 48.15% 

of total days. Only 20 days are predicted with error greater 

than 4 °C in case of ANN while this figure is 47 for MM5. 

After downscaling number of data points in the acceptable 

error range are increased and thus ANN can be used as an 

effective downscaling technique for operational 

forecasting purpose. 

 

 For day 2 prediction the mean values of the 

temperature predicted by MM5 model and ANN model 

are -3.27 °C and -4.24 °C respectively for validation set. 

The coefficient of determination between observed and 

predicted temperature by MM5 and ANN model is 0.31 

and 0.62 for training set while for validation set these 

values are 0.31 and 0.44 [Figs. 5(b&e)] indicating fairly 

good performance of ANN model for day 2 forecast. The 

values of PP for day 2 corresponding to MM5 model are 

0.82 and 0.86 while corresponding to ANN model these 

values are 0.38 and 0.59 for training and validation set 

respectively. For day 2, values of PP are higher compared 

to day 1. This shows deterioration of model forecast skill 

with increasing time lag. Quantitatively MM5 predicts 

28.15% and ANN model predicts 38.52% of total days 

within error range of ± 2 °C. Number of days predicted 

with error greater than 4 °C by ANN and MM5 model is 

42 and 58 respectively. 

 

 Again for day3, the mean values of the temperature 

predicted by MM5 model and ANN model are -3.61 °C 

and -4.70 °C respectively. The coefficient of 

determination between observed and predicted 

temperature by MM5 and ANN model is 0.20 and  0.52 

for training set while for validation set these values are 

0.41 and 0.47 [Figs. 5(c&f)]. Though the values are 

slightly higher for ANN model, the performance of the 

model is not fairly good for day 3. The values of PP 

corresponding to MM5 model are 1 and 0.66 while 

corresponding to ANN model the values are 0.48 and 0.60 

for training and validation set respectively. The                          

values are higher even for ANN model for day 3. MM5 

predicts 37.38% and ANN model predicts 28.15%                           

of total data points within error range of ± 2 °C.                               

Number of days predicted with error greater than 4 °C by 

ANN and MM5 model is 48 and 51 respectively. Thus for 

day 3, corresponding to Kanzalwan, ANN model 

performance is poor in comparison to day 1 and 2. Thus 

skill of the model for temperature forecast over 

Kanzalwan deteriorates for day 3.   

 

 Similar analyses have been done for Gulmarg and 

Stage II. The RMSE is reduced significantly for both the 

stations. After downscaling the predicted temperatures are
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Figs. 7(a-f). Same as Figs. 5(a-f) except for Stage II 

 

 
 

closer to the observed one. Figs. [6(a-f) & 7(a-f)] show the 

scatter plots for MM5 predicted and ANN predicted 

temperature corresponding to day1, day2 and day3 for 

Gulmarg and Stage II stations respectively. 

 

 Root mean square error (RMSE) is calculated to 

verify temperature forecast for both training and 

validation set. For day 1 forecast, RMSE for training set is 

4.48 °C (MM5) and 2.58 °C (ANN) and corresponding to 

validation set is 4.42 °C (MM5) and 2.77 °C (ANN). 

Thus, using ANN model to downscale the temperature 

forecast, RMSE is lowered significantly and also quite 

less than SD, which explains the good performance of the 

ANN model.  

 

 RMSE for training set is 4.27 °C (MM5) and 2.89 °C 

(ANN) and for validation set is 4.68 °C (MM5) and       

3.87 °C (ANN) corresponding to day 2. The lower                           

value of RMSE for ANN model explains fairly                       

good  performance  of  the ANN model for day 2 forecast.

(f) (c) 

(b) 

(a) (d) 

(e) 
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Fig. 8(a). Root mean square error (°C) and standard deviation in y-axis for training data set corresponding to temperature 

forecast for day 1, day 2 and day 3 for all stations under consideration in x-axis   
 

 

 
Fig. 8(b). Same as Fig. 8(a) except for validation data set 

 

 

 

Corresponding to day 3 RMSE for MM5 model is 4.65 °C 

and 4.44 °C for training and validation set while for ANN 

model RMSE is 3.17 °C for training set and 4.20 °C for 

validation set. RMSE is not reduced significantly in case 

of day 3, which shows the performance of model to be not 

good with increasing time lag.  

 

 The computed RMSEs of the ANN model, MM5 and 

observed standard deviation with respect to day 1, day 2 

and day 3 forecast of temperature for all the three stations 

for training data set is given in Fig. 8(a). It is clear that the 

ANN model shows a reduction in RMSE for all the three 

days forecast. RMSEs associated with the ANN model are 

also less than the observed standard deviation, which 

statistically shows that skill of ANN model is acceptable 

as a means for improving the temperature forecast at all 

the three stations of western Himalaya. 

 

 In Fig. 8(b), the computed RMSEs of the 

independent dataset derived from the MM5 are compared 

with the ANN model results. Even with the independent 

data set, the ANN model shows a significant reduction in 

RMSEs for all the stations.  

 

5.  Conclusions 

 

 Temperature is one of the important parameters for 

forecasting avalanche in mountainous terrain since it helps 
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in metamorphic processes which trigger avalanches. 

Forecasting temperature in complex mountain terrain such 

as Himalaya is a complex job. NWP models provide 

forecast over a grid covering a large area depending on the 

resolution of the model. Location specific temperature 

forecast is vital for future assessment of the avalanche in 

addition to the other parameters. In present study, an ANN 

model is developed to downscale three days temperature 

forecast using MM5 model output at three locations in the 

western Himalaya. A non-linear differentiable sigmoid 

transfer function is used in three layer feed forward 

network. Different forecast verification measures are 

applied to check the performance of the model. RMSE 

and skill score are computed for both MM5 and ANN 

models. RMSE is close to 2 °C in case of ANN model, 

though there is a large fluctuation in temperatures over the 

region. Results of the study show that predicted 

temperatures at particular location, after downscaling of 

MM5 model output are closer to observed values and thus 

ANN technique may be very useful for improving the 

NWP model output at a grid of coarse resolution. Though 

forecast skill of the model deteriorates with increasing 

time lag, after downscaling the forecast is improved in all 

the cases. There are some limitations in this technique as 

there is no definite rule to decide the number of hidden 

nodes and value for learning rate and momentum. 

However ANN can be very effective tool for location 

specific temperature forecasting which may be very much 

helpful in assessing likely avalanche danger situation in 

advance. Studies are going on to develop ANN based 

model by using outputs of WRF model, which is now 

being used by several communities in the field of 

meteorology and is supposed to be a robust model with 

good Physics and dynamics involved in it. 
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