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सार — इस अध्ययन में न्यजूीलैंड, ऑस्ट्रेललया, सोलोमन द्वीप, ननकारागुआ, इंडोनेलिया और पापआु न्य ूगुइनी में आए 
छह भूकंपों के जी पी एस (GPS) आधाररत टी ई सी (TEC) डेटा का ववश्लेषण ककया गया है। ये भूकंप वषष 2016 के दौरान 
दनुनया भर में लभन्न-लभन्न अतंराल पर अलग-अलग स्ट्थानों पर आए हैं। इस अध्ययन में उपयोग ककए गए टी ई सी (TEC) 
डेटा को आई जी एस (IGS)  स्ट्टेिनों से ररनेक्स (RINEX) फॉमेट में प्राप्त ककया गया है। उच्चतम टी ई सी (TEC) डेटा में 
वदृ्धध भूकंप आने से 1-30 ददन पहले देखी गई है।     

  

 

ABSTRACT. The present study reports the analysis of GPS based TEC for six earthquakes at New Zealand, 

Australia, Solomon Island, Nicaragua, Indonesia and Papua New Guinea. The considered earthquakes are at different 
intervals of time and different locations across the globe during the year 2016. The TEC data used in the study are 

obtained from IGS stations in RINEX format. Enhancement in peak TEC data are found 1-30 days prior to the 

earthquake. 
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1.  Introduction 

 

 The ionosphere of the Earth is a significant part of 

the global electric circuit. It is a subject to study 

disturbances related mainly with geomagnetic and solar 

activity. It also varies with different processes like, dust 

storms, radioactive pollutions, earthquakes, volcanic 

eruptions, thunderstorms, etc. The Earth’s upper 

atmosphere absorbs solar radiation, which results in 

ionosphere heating, dissociation and ionization. Therefore, 

the total electron content (TEC) of the ionosphere is 

mainly controlled by the intensities of solar 

electromagnetic radiation. In periods of increasing solar 

activity, solar radiation variations over the short timescale 

(e.g., months, seasons) are intensive, rapid and nonlinear. 

For ionospheric data analysis, the solar radiation 

background in a signal is just like noise, which often 

increases difficulties in further processing, as the 

background always blurs the analytical signal. It is 

difficult or even impossible to analyze a signal with a 

strong background.  To monitor simultaneously a large 

area of the ionosphere, the GPS is an ideal Tool. The GPS 

system consists of 24 satellites, evenly distributed in six 

orbital planes around the globe. Each satellite               

transmits two frequencies of signals f1 = 1575.42 MHz  

and f2 = 1227.60 MHz. The total electron content               

(TEC) is the total number of electrons along the vertical 

path between the satellite and the ground in 1 m
2                      

cross section column; TEC is measured in TEC units                 

(1 TECU = 10
16

 el/m
2
). Many researchers have reported 

that large seismic activities can be revealed through the 

unexpected variation in GPS based TEC of ionosphere 

(Parrot, 1995; Hayakawa and Molchanov, 2002; Pulinets 

et al., 2003; Pulinets and Ouznov, 2006; Afraimovich               

et al., 2004; Liu et al., 2004; Karia and Pathak, 2011; Kim 

et al., 2012; Yadav et al., 2016).   

 

 Pulinets et al. (2007) have proposed the structure of 

Lithosphere-Atmosphere- Ionosphere Coupling model 

(LAIC) which permitted a common conception of 

different kinds of specific variations of geochemical, 

atmospheric, electromagnetic and ionospheric parameters 

observed before strong earthquakes. They add that air 

ionization by radon takes place over the large territories 

and has a strong effect on the following processes in the 

atmospheric boundary layer: (i) formation of the large ion 

clusters due to water molecules attachment to ions;                 

(ii) latent heat release; (iii) changing of boundary layer 

electric conductivity; (iv) upward convective flux, 

generation of anomalous electric field; (v) air temperature
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TABLE 1 

 

Details of earthquake and IGS station 

 

S. No. Epicentre and magnitude of earthquake Date Location of IGS Station 

1. Gisborne, New Zealand (37.35 S, 179.14 E) M-7.0 1 Sep 2016 Wellington, WGTN (41.32 S, 174.80 E) 

2. Macquarie Island, Australia (54.6136 S, 158.71 E) M-6.1 8 Sep 2016 Macquarie Island, MAC1 (54.99 S, 158.54 E) 

3. Auki, Solomon Islands (8.67 S, 160.55 E) M-6.2 10 Jun 2016 Solomon Islands, SOLO   (9.43 S, 159.95 E) 

4. Puerto Morazan, Nicaragua (12.83 N, 86.96 W) M-6.1 10 Jun 2016 Managua, Nicaragua, MANA   (12.14 N, 86.24 W) 

5. Pamanukan, Indonesia (4.8626 S, 108.1627 E) M 6.5 19 Oct 2016 Cibinong, BAKO   (6.4900 S, 106.8500 E) 

6. Kandrian, Papua New Guinea (6.0033 S, 148.8830 E) M 6.3 17 Oct 2016 Papua New Guinea LAE1   (6.6733 S, 146.9920E) 

 

 

 
TABLE 2 

 

 Summary of the data and results obtained for all the earthquakes considered 

 

S. No. Epicentre and magnitude of earthquake Date Enhancement in TEC prior to EQ 

1. Gisborne, New Zealand (37.35 S, 179.14 E) M-7.0 1 Sep 2016 1, 24 and 28 days (Fig. 1) 

2. Macquarie Island, Australia (54.6136 S, 158.71 E) M-6.1 8 Sep 2016 4,5 and 24 days (Fig. 2) 

3. Auki, Solomon Islands (8.67 S, 160.55 E) M-6.2 10 Jun 2016 4,18, 19,20 and 24 days (Fig. 3) 

4. Puerto Morazan, Nicaragua (12.83 N, 86.96 W) M-6.1 10 Jun 2016 18, 20, 23 and 24 days (Fig.4) 

5. Pamanukan, Indonesia (4.8626 S, 108.1627 E  M-6.5 19 Oct 2016 8, 11, 16 , 17, 20 ,21 and 24 days (Fig. 5) 

6. Kandrian, Papua New Guinea (6.0033 S, 148.8830 E) M-6.8 17 Oct 2016 6,9, 10 , 14 , 15 ,18, 19 and 21 (Fig. 6) 

 

 

 

increase and drop of relative humidity and (vi) specific 

shape clouds formation. Variations of atmospheric 

electricity stimulated by the ionization process induce 

variations in the ionosphere through the global electric 

circuit. The simultaneous co-existence of several 

processes manifesting this coupling explains the variety of 

observed phenomena and enhances the reliability of 

detecting the future seismogenic signals. Hence these 

phenomena contribute the effect on TEC of upper 

atmosphere. One more hypothesis has been proposed by 

Hayakawa (2004). They suggested the mechanism of 

coupling between the lithospheric activity and ionosphere 

to be distributed in three channels, first chemical channel; 

second acoustic channel and third electromagnetic 

channel. As for the chemical channel, the geochemical 

quantities (such as surface temperature, radon emanation 

etc.) induce the perturbation in the conductivity of the 

atmosphere leading to the ionospheric modification 

through the atmospheric electric field.  

 

 The present paper reports the analysis of   GPS based 

TEC for six earthquakes at New Zealand, Australia, 

Solomon Island, Nicaragua, Indonesia and Papua New 

Guinea. The selected   IGS stations have been selected 

within the range of 200 km from the epicentre location. 

 

2.  Data analysis 

 

 2.1.  Earthquake data 

 

 During the past decade, dozens of disastrous 

earthquakes occurred in close proximity to an ocean or 

below the seafloor. In this paper, we consider six 

earthquakes at New Zealand, Australia, Solomon Island, 

Nicaragua, Indonesia and Papua New Guinea. The main 

selection criteria include a magnitude of M > 6.0 and near 

or beneath an ocean. Table 1 gives the epicentral locations 

and details of IGS Stations of the selected Earthquakes, 

(http://earthquake.usgs.gov/). 

 

 2.2.  TEC data 

 

 The RI NEX data obtained from GPS receivers, 

contain  the  C1 (C/A code pseudo range, in meters, on L1 

http://earthquake.usgs.gov/
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Figs. 1(a-c).  VTEC profile of the Wellington, WGTN station; VTEC diurnal profile indicates an enhancement in diurnal VTEC (blue line) 

prior to the earthquake; the star symbol represents the earthquake day. (b) Variation in DST index. The                            

geomagnetic condition is found to be quiet with small variation in DST index.  (c) Variation in solar F-10.7 cm. No major 

variation is seen 

 

 
 

 

 
Figs. 2(a-c).  VTEC profile of the Macquarie Island, Australia MAC1 station; VTEC diurnal profile indicates an enhancement in diurnal 

VTEC (blue line) prior to the earthquake the star symbol represents the earthquake day.  (b) The variation in DST index. The 

geomagnetic condition is found to be quiet with small variation in DST index. (c) Variation of solar F-10.7 cm. No major 
variation is seen 
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Figs. 3(a-c).  VTEC profile of the Solomon Islands SOLO station; VTEC diurnal profile indicates an enhancement in diurnal VTEC                   

(blue line) prior to the earthquake. The star symbol represents the earthquake day (b) The variation of DST index. The 

geomagnetic condition is found to be quiet with small variation in DST index.(c) The variation of solar F-10.7 cm. No major 
variation is seen 

 

 
 

 

 
Figs. 4(a-c).  VTEC profile of the Managua, Nicaragua MANA station; VTEC diurnal profile indicates an enhancement in diurnal VTEC 

(blue line) prior to the earthquake. The star symbol represents the earthquake day. (b) The variation displays DST index, the 

geomagnetic condition is found to quiet with small variation in DST index. (c) The variation in solar F-10.7 cm. No major 

variation is seen 
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Figs. 5(a-c).  VTEC profile of the Cibinong, BAKO station; VTEC diurnal profile indicates an enhancement in diurnal VTEC (blue line) 

prior to the earthquake, the star symbol represents the earthquake day. (b) The variation displays DST index. The               

geomagnetic condition is found to quiet with small variation in DST index. (c) The variation in solar F-10.7 cm. No major 
variation is seen 

 

 
 

 
Figs. 6(a-c).  VTEC profile of the Papua New Guinea LAE1 station; VTEC diurnal profile indicates an enhancement in diurnal VTEC (blue 

line) prior to the earthquake. The star symbol represents the earthquake day. (b) The variation displays DST- index. The 
geomagnetic condition is found to quiet with small variation in DST index. (c) The variation of solar F-10.7 cm. No major 

variation is seen 
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frequency), P2 (P code pseudo range, in meters, on L2 

frequency), L1 (L1 carrier phase, in cycles, on L1 

frequency) and L2 (L2 carrier phase, in cycles, on L2 

frequency) with a time resolution of 30s. 

 

 The Slant Total Electron Content (STEC) estimated, 

from an IGS data set of RINEX format, as,  

 

 
 2 2

1 21 2STEC
2 2 40.3

1 2

p pf f

f f

  
 
  
 

                               (1)  

 

 where, f1 (1227.60 MHz) and f2 (1575.42 MHz) are 

current GPS broadcast frequencies.  

 

 STEC converted into Vertical Total Electron Content 

(VTEC) using a suitable mapping function of different 

Ionosphere Pierce Point (IPP) locations. The mapping 

function S (E) is defined as, 

 

S (E) = (Cosχ
’
),         (2) 

 

VTEC = STEC/S (E),       (3) 

  

 where, 
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                    (4) 

 

 Rx = mean earth radius, 6371 km, χ = elevation 

angle and χ’ is zenith angle and hm = altitude of the                 

IPP = 350 km, is the height of the ionospheric shell above 

the earth’s surface (Rama Rao et al., 2006a). 

 

 The mean ionospheric height of 350 km is                  

used for the determination of IPP locations, which is 

found to be valid for elevation greater than 50º. All TEC 

values for elevation lower than 50º are removed to 

eliminate the low elevation angle effects (such as, 

multipath and tropospheric scattering on the                   

measured TEC values) (Rama Rao et al., 2006b; Karia 

and Pathak, 2011). 

 

 The solar F10.7 cm data have been obtained from the 

National Oceanic and Atmospheric Administration 

(NOAA) data centre. 

 

 The analysis of each earthquake under study is 

presented in a plot in three sections; the plot presents: (a) 

VTEC profiles for a period of 40 days, (b) Disturbance 

Storm Time (DST) index and (c) solar flux (F-10.7) 

variation of the analysed period with a purpose to refer to 

the geomagnetic and solar condition.  

3.  Results and discussion 

  

 The present paper pays attention to the variation of 

multi-sensor parameter of ionosphere anomalies prior to 

the earthquake using TEC in the detection of earthquake 

precursor. The result of enhancement in TEC, prior to all 

earthquakes is summarized in Table 2. 

 

3.1.  TEC variation 

 

 There is no common opinion among the scientists on 

the physical mechanism that could explain the seismo-

ionosphere coupling.  

 

 Earthquake genesis is found to be very complicated 

and there are no common consensus among scientists to 

understand what causes the genesis of earthquakes 

(Mishra et al., 2008; Mishra, 2012; Mishra, 2014), which 

in turns suggest that increase of stress level within the 

causative source may lead to emanation of gases                    

(e.g., Radon, Helium) from the crustal rocks that might 

have taken as the earthquake precursor but not indicating 

the exact processes involved in it (Mishra, 2012). This 

observation suggest that some other forces related to earth 

and atmospheric interactions could be one of the plausible 

reason for earthquake genesis. 

 

 It is still a subject of discussion and detailed review 

of the proposed physical mechanism may be found in 

Karia and Pathak (2011); Akhoondzadeh and Saradjian 

(2011) and Choi et al. (2012). Enhancement in TEC 

during and after the earthquake has been reported in Devi 

et al. (2004) and Karia and Pathak (2011). It was proposed 

by Parrot (1995) that propagation of the direct wave due 

to compression of rocks close to the earthquake epicentre 

could be more likely related to the piezoelectric and 

turboelectric effect. Rising liquids under the ground would 

lead to the emanation of warm gases, as proposed by 

Hayakawa and Molchanov (2002). Pulinets and 

Boyarchuk (2004) suggested an elaborate mechanism in 

which the radon emission ionizes the near-earth 

atmosphere over the seismic zone. Penetration of 

atmospheric gravity waves (AGW), which are driven by 

the gas water release from the earthquake preparatory 

zone into the ionosphere, was suggested by Hayakawa and 

Molchanov (2002). Convective transportation of charged 

aerosols and their gravitational sedimentation in the 

atmosphere as well as radon and their radioactive element 

emanation in to lower atmosphere over the faults leads to 

increase of the atmospheric radioactivity level during 

earthquake formation. These processes may lead to an 

increase in the electric field up to ten mV/m in the 

ionosphere (Sorokin et al., 2007; Chmyrev et al., 1989). It 

is possible that pre-seismic vertical electric field on the 

ground surface, transformed into an electric field 
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perpendicular to geomagnetic field line, produces a 

perturbation over the F-region ionosphere. Once the F-

region gets perturbed within that zone, it will pre-start to 

propagate along the conducting magnetic field lines and 

spread over wider areas, as discussed by Liu et al. (2006) 

and Pulinets and Boyarchuk (2004). 

 

 In the present report, enhancement in peak TEC was 

observed beyond the standard deviation line (black line) 

prior to  the earthquakes , New Zealand, Australia, 

Soloman Island, Nicaragua, Indonesia and Papua New 

Guinea (Figs. 1-6).  There is an anomalous reduction in 

TEC values which can be explained as follows.  

 

 Depletion and enhancement in density profile may 

be the result of earthquake associated E × B drift when 

electron density may flow into or out of the observing 

station, depending upon the location of the station (Parrot 

and Mogilevsky, 1989). Devi et al. (2001) found that 

enhancement and depletion in TEC variations for a 

number of strong earthquake events indicate that high-

density TEC contours are often associated with 

earthquakes having their epicenters near the equator or 

away from the observational site. They further indicated 

that TEC depletions are often observed when the epicenter 

lies very near to the observational site. 

 

4.  Summary 

 

 The present paper reports the variation in 

ionospheric parameter, TEC, prior to six different 

earthquakes that have occurred across the globe. The TEC 

anomaly is observed from 1 to 30 days prior to all six 

earthquakes. 
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