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सार – इस शोध पत्र में केरल राज्य के वर्ाा वाले क्षेत्रों की पहचान केरल के चौदह जिलों में 2004 से 2016 (156 

महीने) के दौरान हुई माससक वर्ाा समय श्रृंखला की ववशेर्ताओृं के आधार पर की गई है क्षेत्रीय वर्ाा के पटैनो का 
ननधाारण करने के सलए नॉन हहराररकल समहू ववशेलर्ण िसेै K क्लस्टररृंग अलॉगररथ्म के असिप्राय वाले का प्रयोग 
ववसिन्न लगै और वर्ाा के चार समूह समय श्रृंखला मॉडलों के आधार पर पाए गए आॉटोकोररलेशन सहसृंबृंध पर ककया 
गया। समय श्रृंखला मॉ ॉ़डसलग के पररणामों से केरल में माससक वर्ाा के स्थाननक पटैनों में अत्यधधक पररवतान शीलता का 
पता चला।  

 

 ABSTRACT.  In this study, rainfall regions of Kerala State were identified based on the properties of monthly 

rainfall time series of fourteen districts of Kerala from 2004 to 2016 (156 months). To determine regional rainfall pattern, 

a non hierarchical cluster analysis, i.e., K means Clustering Algorithm, was applied on autocorrelation coefficients at 
different lags and four rainfall groups were found based on the time series models. The results of the time series modeling 

showed a high variation of temporal pattern of the monthly rainfall over Kerala.  
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1.  Introduction 

 

 Nature has bestowed Kerala with abundant rainfall. 

The average annual rainfall of the State is about 3000 mm, 

which is about three times the average for the whole of 

India. Even though the state does not suffer large inter 

annual variations in annual or seasonal rainfall, there is 

large spatial variation in the rainfall distribution. A 

thorough investigation on the rainfall characteristics both 

on spatial and temporal scales with emphasis on the 

influence of geography is needed. 

 

 Linda (2001) applied a number of statistical 

techniques to assess the appropriateness of the rainfall 

districts of Western Australia with agglomerative 

hierarchical method and classified South West into six 

largely non overlapping regions.  

 

 Hierarchical methods like average method and Ward 

method were applied by Saed Soltani et al. (2006) to 

classify 28 capitals of the provinces of Iran to eight 

clusters which cover more than 95% of rainfall variance 

over Iran. 

 
2.  Materials and method 

 

 The present study is confined to the Kerala State, 

having fourteen districts namely Kasargod, Kannur, 

Kozhikkode, Wayanad, Malappuram, Palakkad,              

Thrissur, Ernakulam, Idukki, Kottayam, Alappuzha, 

Pathanamthitta, Kollam and Thiruvananthapuram. The 

secondary data was collected from the Regional 

Meteorological Centre, Thiruvananthapuram for monthly 

(156 months) rainfall for each district covering the years 

2004 - 2016. 

 

 Multivariate techniques are common methods for 

classifying meteorological data such as rainfall. Principal 

components and cluster techniques were used in this study 

to classify the districts based on the rainfall by using 

autocorrelation coefficients up to a certain lag. 

 

 2.1. Autocorrelation   

 

 It is defined as correlation between the members of 

the series of observations ordered in time or space. 

Autocorrelation function (ACF) at lag k, denoted by ρ(k) is 

defined as: 
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TABLE 1  

 

Autocorrelation coefficients matrix X (14 × 12) 

 

Lags 1 2 3 4 5 6 7 8 9 10 11 12 

KGD .57 .20 -.11 -.35 -.48 -.52 -.45 -.31 -.09 .21 .54 .77 

KNR .58 .17 -.10 -.32 -.48 -.54 -.45 -.29 -.09 .18 .51 .72 

CLT .55 .16 -.05 -.27 -.48 -.55 -.44 -.26 -.02 .17 .49 .70 

WYD .53 .20 -.07 -.30 -.46 -.49 -.42 -.27 -.04 .17 .47 .61 

MLP .56 .22 -.04 -.27 -.49 -.57 -.47 -.24 -.03 .20 .50 .68 

PKD .55 .23 -.03 -.29 -.51 -.58 -.48 -.25 -.02 .20 .49 .64 

TCR .60 .24 -.03 -.30 -.53 -.62 -.53 -.26 -.03 .24 .53 .69 

EKM .57 .23 -.03 -.31 -.51 -.61 -.50 -.23 -.02 .24 .49 .62 

IDK .60 .33 -.02 -.32 -.51 -.58 -.51 -.28 -.03 .26 .53 .66 

KTM .57 .24 -.02 -.28 -.49 -.60 -.49 -.22 -.01 .24 .48 .63 

ALP .55 .18 -.05 -.28 -.46 -.57 -.47 -.20 -.04 .21 .50 .60 

PTM .50 .21 -.04 -.26 -.43 -.51 -.46 -.21 -.05 .20 0.43 .56 

KLM .51 .14 -.06 -.26 -.39 -.49 -.43 -.18 -.04 .14 .44 .55 

TVM .42 .00 -.24 -.22 -.16 -.13 -.12 -.12 -.12 .01 .33 .40 

 

 
 

   
 

 
         

 

   
 

 

 Let the matrix X (m × k) consist of autocorrelation 

coefficients at lags k = 1, ..., 12 of m districts. K = 12 was 

chosen as the autocorrelation; coefficients of higher lags 

were not significant or they had similar seasonal 

fluctuations as the first k = 12. This means a matrix of 14 

rows of districts and 12 columns of autocorrelation 

coefficients of rainfall series. As the variables must not be 

correlated with each other, PCA was carried out and thus 

data dimension was reduced. 

 

 2.2. Principal component analysis 

 

 The general objective is data dimensionality 

reduction. Principal Components (PCs) are special kinds 

of transformations that transform the original vector of  X 

variables to a new vector of Z variables which are 

mutually independent and each of the Z variables are 

linear combinations of the original vector of X variables. 

The first PC captures as much of the variation in the 

original data as possible. The second component captures 

the maximum variation that is uncorrelated with the first 

component and so on.  

 

 Here we had X = 12 variables, i.e., 12 

autocorrelation coefficients for each district which are 

correlated. Using the scree plot of PC number vs Eigen 

value, the required number of uncorrelated PCs was 

obtained and the corresponding Eigen vectors by using 

SAS 9.3. Later, the PC scores for each district were 

obtained, thus forming the data for cluster analysis. 

 2.3. Cluster analysis 

 

 Cluster analysis procedures are used for classifying 

the objects on the basis of their observational vectors into 

homogeneous groups, referred as clusters. Here objects 

are classified on the basis of similarities between them.  

  

 Let the new matrix be X΄(m × p) where m is the 

number of districts and p is the number of PCs selected. 

Hence, the objects to be classified are represented by 

districts and variables by PC scores. The similarity is 

measured in the form of inter object distances. A 

commonly used similarity measure is the Euclidean 

distance (d²rs) which is written as follows. 

 

               
 

 

   

 

 

 where, the r
th

 and s
th

 rows of the data matrix X΄ was 

denoted by (xr1, xr2,...,xrk) and (xs1,xs2,...,xsk) respectively. 

In the present study, a non hierarchical method of 

clustering namely, k means clustering algorithm, was 

followed in SAS 9.3.  

 

 2.4. K means clustering 

 

 k means clustering aims to partition n objects 

into k clusters in which each object belongs to 

the cluster with the nearest mean, serving as a prototype of 

the cluster. This method of clustering was chosen because 

of its iterative procedure. The optimum number of clusters 

to  be   formed  was  decided  by  the  Elbow  method  in  r  

https://en.wikipedia.org/wiki/Partition_of_a_set
https://en.wikipedia.org/wiki/Cluster_(statistics)
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Prototype
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Fig. 1. Scree plot of Eigen values vs principal components 

 

 

 
Fig. 2. Optimum number of clusters by Elbow method 

 

 
language. k means clustering algorithm consisted of three 

major steps. 

 

(i)  The items were partitioned into k initial clusters 

 

(ii)  Proceeded through the list of items to the clusters, 

whose centroid was nearest, i.e., distance was usually 

computed using distance with either standardised or non 

standardised observations. Recalculated the centroid for  

the cluster receiving the new item and for the cluster 

loosing the item. 

 

(iii)  Step 2 was repeated until no more reassignment took 

place.  

3. Results and discussion 

 

 Each time series was subjected to autocorrelation 

such that the autocorrelation coefficients for each district 

at lag = 1, 2, ..., 12 could be obtained. Hence, the               

X (14 × 12) matrix was made as given in Table 1. 

 

 The X matrix was used for carrying out Principal 

Component  Analysis  in  SAS  9.3  and  12  Eigen  values 

TABLE 2  

 

Output of PCA 

 

PC Eigen value 
Percentage 
variation 

Cumulative 
percentage variation 

PC1 9.5323 79.44 79.44 

PC2 1.7667 14.72 94.16 

PC3 0.2904 2.42 96.58 

PC4 0.1622 1.35 97.93 

PC5 0.0909 0.76 98.69 

PC6 0.0855 0.71 99.40 

PC7 0.0305 0.25 99.66 

PC8 0.0174 0.15 99.80 

PC9 0.0161 0.13 99.94 

PC10 0.0062 0.05 99.99 

PC11 0.0011 0.01 100.0 

PC12 0.0000 0.00 100.0 

 
TABLE 3  

 

PC scores of each district 

 

District PC1 Score PC2 Score District PC1 Score PC2 Score 

KGD 0.45 -2.54 EKM 0.55 0.51 

KNR 0.23 -1.68 IDK 0.93 -0.08 

CLT 0.11 0.11 KTM 0.41 1.03 

WYD -0.07 -0.31 ALP 0.05 0.56 

MLP 0.29 0.29 PTM -0.34 0.97 

PKD 0.39 0.47 KLM -0.67 0.93 

TCR 0.80 0.09 TVM -3.14 -0.45 

 

 
were obtained. The scree plot showed that the 12 original 

variables could be reduced to 3 variables and it was given 

in Fig. 1.  

 

 The first principal component explained 79.44 per 

cent of total variations; second principal component 

explained 14.72 per cent of total variation. Since the first 

two PCs together explained a total of 94.16 per cent of 

total variations, those two PCs which were linearly 

independent to each other were selected. The total data 

dimensionality was reduced from twelve to two. The 

Eigen values, percentage of total variation explained by 

each PC and cumulative percentage variation explained 

were given in Table 2. The principal component                      

scores of each district corresponding to                               

two PCs were used to form the clusters and                          

shown in Table 3. 

 

 Optimum number of clusters was determined by the 

Elbow method using R language. The plot of Within Sum 

of Squares vs number of clusters obtained by Elbow 

method was given as in Fig. 2 
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TABLE 4  

 

Cluster listing 

 

District Cluster Distance from seed 

Kasargod 1 0.3992 

Kannur 1 0.3992 

Kozhikkode 4 0.3152 

Wayanad 4 0.6945 

Malappuram 4 0.1653 

Palakkad 4 0.3183 

Thrissur 4 0.3737 

Ernakulam 4 0.3785 

Idukki 4 0.5596 

Kottayam 3 0.5716 

Alappuzha 3 0.3669 

Pathanamthitta 3 0.2304 

Kollam 3 0.5358 

Thiruvananthapuram 2 0.0000 

 
TABLE 5  

 

Cluster summary 

 

Cluster Frequency 
RMS Std 

Deviation 

Maximum distance from 

Seed to Observation 

Nearest 

cluster 

1 2 0.3992 0.3992 4 

2 1 - 0.0000 3 

3 4 0.3655 0.5716 4 

4 7 0.3313 0.6945 3 

 
TABLE 6  

 

Distance between cluster centroids 

 

Nearest cluster 1 2 3 4 

1 - 3.8486 2.9884 2.2283 

2 3.8486 - 3.2907 3.6304 

3 2.9884 3.2907 - 0.9202 

4 2.2283 3.6304 0.9202 - 

 

 

 The approach was based on within cluster sum of 

squares. Since the kink was observed at the point 

corresponding to the 4 number of clusters, the optimum 

number of clusters to be formed out of fourteen districts 

was four.  

 Once the number of clusters was decided, K means 

clustering algorithm was followed using SAS 9.3. The 

analysis showed that the convergence criterion was 

satisfied. The cluster was listing obtained as given in 

Table 4. The northernmost districts of the State, namely, 

Kasargod and Kannur were listed under cluster 1 while the 

southernmost district namely, Thiruvananthapuram was 

listed under Cluster 2 alone. Districts namely, Kottayam, 

Alappuzha, Pathanamthitta and Kollam were listed under 

Cluster 3 while, districts namely, Kozhikkode, Wayanad, 

Malappuram, Palakkad, Thrissur, Ernakulam and Idukki 

were listed under Cluster 4. Pseudo F statistic was found to 

be 32.22. Cluster Summary and Distance between cluster 

centroids were given in Tables (5&6). 

 

4.  Summary and conclusions 

 

 Using Autocorrelation coefficients of each time 

series up to twelve lags, Principal Component Analysis 

was carried out and based on the Principal Component 

Scores of each districts for two Principal Components 

which accounted for 94.16% of total variation, the 

districts were grouped into four clusters by following K-

means Clustering Algorithm, a non hierarchical method of 

clustering. This grouped the districts having similar 

monthly rainfall pattern into one cluster through an 

iterative procedure. Kasargod and Kannur districts were 

listed under cluster 1 while Thiruvananthapuram was 

listed under Cluster 2 alone. Kottayam, Alappuzha, 

Pathanamthitta and Kollam were listed under Cluster 3 

while Kozhikkode, Wayanad, Malappuram, Palakkad, 

Thrissur, Ernakulam and Idukki were listed under              

Cluster 4. 

 

 The contents and views expressed in this research 

paper/article are the views of the authors and do not 

necessarily reflect the views of the organizations they 

belong to. 
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