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Statistical prediction of Sri Lankan rainfall during October to December
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ABSTRACT. Sri Lanka receives most rainfall during October to December (OND). Here we construct multiple
linear regression models to forecast the OND Sri Lankan rainfall during 1979-2012 for lead times of 1 and 2 months.
Correlation analysis was used to examine the relationship between Sri Lankan OND rainfall and global sea surface
temperature (SST) anomalies. Three independent predictors were identified through partial least square regression
method which includes the southern Atlantic SST tendency, southern Pacific SST tendency and western Pacific and
Maritime Continent SST tendency at two different lead times. Three-year-out cross validation concludes that the multiple
linear regression models can produce forecast the OND rainfall forecast at correlation coefficient skill of 0.69 and 0.68
for the 1 and 2 month lead times respectively. The physical processes associated with these three predictors show that
they contribute to increase in OND rainfall of Sri Lanka.

Key words — Multiple-regression models, Seasonal forecast, OND Sri Lankan rainfall.

Sri Lanka receives the major portion of its annual
rainfall during October to December (OND) (Zubair and
Ropelewski, 2006). This primary rainy and agricultural
season is locally known as “Maha” period. In addition to
agricultural productivity, hydropower planning, water
resource management and disaster preparedness of Sri
Lanka are strongly influenced by the OND seasonal
rainfall. During the season, the rainfall rate is intense
[approximately 150 ~ 200 mm month™; Figs. 1(a&b)],
which often causes floods and landslides (Zubair et al.,
2006). Therefore, prediction of the seasonal rainfall during

OND is important, yet one of the most challenging tasks
in Sri Lanka. Although interannual relationships of
seasonal rainfall with leading climate modes, such as the
El Niflo Southern Oscillation (ENSO) and the Indian
Ocean Dipole (IOD), have been examined (Zubair and
Ropelewski, 2006; Zubair et al., 2003). The main
objective of this study is hence to construct a statistical
model, which will be a valuable tool to reduce disaster
risk and economic losses in Sri Lanka.

The rainfall during the OND season can be attributed
to multiple meteorological phenomena, such as the
formation of tropical cyclones and depressions in the Bay
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Figs. 1(a&b). (a) Climatological OND 850 hPa winds (ms™) and mean rainfall (mm day™) are shown. The red box
indicates the domain of Sri Lanka used in this study (5° N to 10° N and 79° E to 82° E) and (b) Monthly
climatology of rainfall amount averaged over Sri Lanka region for the period 1979-2012 are shown

of Bengal, southward passage of the Inter-Tropical
Convergence Zone (ITCZ), the easterly waves, the
orographic rainfall and coastal convergence (Zubair et al.,
2003). Climatologically, during June to September, the
low-level winds over the south Asia blow from south
west. Beginning late September, the south westerly wind
weakens, allowing Arabian Sea and Bay of Bengal to
warm. The warmed north Indian Ocean creates
widespread deep convections and heavy thunderstorms. In
October and November, warmest temperatures and lowest
pressures are observed in the Bay of Bengal, which is
favourable for the formation of low-pressure areas over
the Bay of Bengal. In fact, the largest number of tropical
cyclones has occurred in the northern Indian Ocean during
OND (Singh and Sontakke, 1999). In December to
February, the center of heating then moves to the
Maritime Continent-northern Australian region. The
heating over the oceans and cooling over Siberian-
Mongolian region facilitate low level north-easterlies over
the Bay of Bengal (Prasanna and Yasunari, 2008). During
this season, moist, north-easterlies are established over the
Bay of Bengal, providing favorable conditions for heavy
precipitation over Sri Lanka.

Charney and Shukla (1981) have demonstrated that
tropical interannual variability is largely determined by
slowly varying boundary conditions such as sea surface
temperature (SST). There are seasonal rainfall forecast
models that are based on predictability of SST. For
example, Yim (2015) predict “Meiyu” (May-June) rainfall
in Taiwan using three predictors of the 2-m air
temperature and SST. Their prediction models were
developed based on the physical understanding of lead-lag
relationship between their predictors and the Meiyu

rainfall. Similarly, Lee and Seo (2013) develop an SST-
based statistical model to forecast Changma (mid-June to
end of July) precipitation over South Korea for a lead time
of a month. Their model has recently revisited by Kim
(2017), who improved the forecast skill by utilizing
additional predictors based on oceanic, land & atmospheric
interactions. For South Asia, Sahai (2003) finds that
the SST can be a good predictor for Indian summer
monsoon rainfall. As having demonstrated by these
studies, it has also been reported that for Sri Lanka, the
ocean is an important modulator of moisture transport and
hence rainfall (Zubair et al., 2003; Prasanna & Yasunari,
2008).

Motivated by these previous studies, we examine the
lead-lag relationships between Sri Lankan OND rainfall
and SSTs and construct statistical prediction models to
predict the OND rainfall. To do so, our study aims first to
identify the predictors by examining the relationship
between the global sea surface temperature anomaly
(SSTA) tendencies and the Sri Lankan OND rainfall. In
addition, we investigate the physical and dynamical
processes associated with the predictors and develop
multiple regression models to predict OND rainfall at 1-
and 2-month lead times.

The remainder of the study is organized as follows.
Section 2 describes the data and methodology. Section 3
discusses the relationship between the Sri Lankan OND
rainfall and global SSTA, the statistical forecast model
& related physical and dynamical processes which explain
the link between the predictors and Sri Lankan OND
rainfall. Summary and the conclusions are provided in
section 4.
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2. Data and methodology
2.1. Data

For precipitation, we use the monthly Global
Precipitation Climatology Project (GPCP) Version 2.2
(Huffman et al., 1997) at the spatial resolution of 2.5°
latitude by 2.5° longitude. The monthly SSTs are obtained
from the Version 1.1 of Hadley Centre Global Ice and Sea
Surface Temperature dataset (HadISST1) provided by the
United Kingdom Meteorological Office (UKMO) (Rayner
et al., 2003). The SST dataset is originally at the 1.0° latitude
by 1.0° longitude resolution but is regridded to the 2.5° by
2.5° resolution of the GPCP. For monthly zonal wind and
meridional wind (at what level?), the ERA-Interim dataset
produced by European Centre for Medium-Range Weather
Forecasts (ECMWF) (Dee et al.,, 2011) is used. The
ERA-Interim is downloaded at a native horizontal
resolution of ~ 60 km but is also interpolated to the 2.5° by
2.5° resolution.

2.2. Methodology

Two multiple regression models are constructed to
predict the OND rainfall anomalies over Sri Lanka.
Setting up the Sri Lanka rainfall index (SLRI) as the
predict and is the first step to build the prediction model.
The SLRI is defined as the normalized time series of OND
rainfall anomaly averaged over Sri Lanka region (79° E to
82° E and 5° N to 10° N) for the period of 1979-2012. The
index will be presented in Section 3.

To provide stable and effective prediction at seasonal
time scale, SST is often chosen as one of slowly varying
boundary conditions (Lau et al., 2000; Park et al., 2015;
Yim et al., 2013). Most of the statistical seasonal prediction
models use lead-lag relationships between SSTA tendency
and predict and (Yim et al., 2015; Lee and Seo, 2013; Kim
et al.,, 2017, Yim et al.,, 2013). We use the Pearson
correlation coefficients, r, to identify the relationships
between the Sri Lankan OND rainfall and SSTA tendency.
The predictors are selected when the correlation coefficient
exceeds the 95% significance level. Estimation of the
statistical significance is based on a t-test that uses the t-

statistic, t=r4/(n —2)/‘1 —r? ) In this equation, the

number of seasons is used as the degree of freedom (n).

To find the lead-lag linkage between the predictors
and the predict and, the correlation coefficients between
the SLRI and tendency of SSTAs were calculated at 1-
and 2-month lead times. We first define the 1-month lead
time as the difference between August minus June. This
forecast model uses the predictors which have information
before and during August and then the 1-month lead time

is defined as the difference between July minus May,
which includes the information during and before July.

To make sure the predictors are independent from
each other, the partial least square regression (PLSR)
method, e.9., Black (2017) is employed as follows:

(i) Grid by grid correlation coefficients between the
global SSTAs and SLRI are calculated to obtain the first
correlation map,

(ii) Statistically significant regions at 95% confidence
level are selected as predictors. Based on the significance
test, the first predictor field is identified [show a table
giving a list of selected predictors (time period of derived
predictor) along with correlation coefficients with
significant level],

(iii) Area-weighted predictor field is normalized by
subtracting its mean and dividing it by its standard deviation,

(iv) First partial regression is obtained by using
conventional least squares fitting and regressing the
SSTAs against the first predictor,

(v) First partial regression is linearly removed from both
the predictor field and all SSTA field. The residual
predictor field became as the new predictor and the
residual SSTA field became as the new predictor field and

(vi) The residual SSTA field is used to find the second
predictor.

Steps 1-5 are repeated to obtain the other predictors.
This procedure is terminated when there are no further
significant predictor fields. We limit the number of
predictors up to 3 so as to avoid the over fitting problem
(Lee and Seo, 2013; Kim et al., 2017)

2.3. Cross-validation

The regression coefficients remain stable when using
a cross validation method, which is widely used in climate
prediction. That is, to examine the performance of the model,
we employ two cross validation approaches. The first
validation approach is following Blockeel & Struyf (2002),
who suggest that 50%--70% data can be used to construct
the regression model and the remaining data can be used
to validate the model. For this approach, we divide the
entire 34-year data into two subsets as the training period
and the validation period. For the training period, first 21
years data (1979-1999) are used to obtain the regression
coefficients for the model. The remaining 13 years data
(2000-2012) are then used to make the independent forecast.
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Figs. 2(a&b). Correlation coefficient maps between the SSTA and SLRI are shown at (a) 1- and (b) 2-month lead times,
respectively. The boxes indicate the regions of the three predictors. Black crosses mark the areas that are
statistically significant at the 95% confidence level

The second approach is based on the three years out
cross validation method (Yim et al., 2013). For this
approach, we develop the model all years, but excluding
the three years centered at the year that the prediction and
hence the validation is performed. The procedure is
repeated by taking 3-year out around each predicted year.
That is, this leave-three-years-out cross validation
involves using 3 observations as the validation set and the
remaining observations as the training set.

3. Results and discussion
3.1. Selection of the best predictors

To investigate the monthly rainfall evolution,
monthly climatology of the Sri Lankan rainfall is

computed by averaging the rainfall amount over the
domain (79° E to 82° E and 5° N to 10° N; red
box in Fig. 1(a) during the period of 1979-2012
[Fig. 1(b)]. Bimodality is apparent in the mean
annual cycle of the rainfall with a primary peak from
October to December and a subsidiary peak from
April to June. The rainfall amount gradually increases
from September and attains the highest rainfall from
October to November. The OND mean low-level winds at
850 hPa [vectors in Fig. 1(a)] show cyclonic circulations
and easterly / northeasterly trade winds over Bay of
Bengal. The formation of  the low-level
cyclonic circulation to the east of Sri Lanka and
the moist northeasterly winds blowing across
Sri Lanka are favorable for heavy rainfall over the island.
The OND mean precipitation is centered near the
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TABLE 1

Definitions and the domains of the predictors selected for the
prediction of Sri Lanka OND rainfall respectively
at 1- and 2-month lead times

August minus  July minus
Predictor Meaning June May
(1-month lead) (2-month lead)

Western pacific and 0-12S 055-20S
WP & MC  maritime continent
SST tendency 105E-165E 95E-130E
Southern Pacific 20S-45S 07S-258
SP
SST tendency 115W-140W  110W-170W
Southern Atlantic 20S-45S 20S-458
SA
SST tendency 05E-15W 03E-28W
TABLE 2

Correlation coefficients between the SLRI and
predictorsrespectively at 1- and 2-month lead times

Pgnr Mgl iy e
WP &MC -0.40* -0.40*

SP -0.47%* -0.40*

SA 0.32 0.37*

* Significance correlation at 95% confidence level,
** Significance correlation at 99% confidence level.

TABLE 3

Temporal correlation coefficients for the prediction
respectively at 1- and 2-month lead times

Correlations
Lead time Training period  Validation period Cross validation
(1979-1999) (2000-2012)  (1979-2012)
1-month lead 0.69** 0.65** 0.69**
2-month lead 0.68%* 0.71%* 0.68%*

** Significance correlation at 99% confidence level.

Maritime Continent and decreases toward Sri Lanka
[shading in Fig. 1(a)].

To select the predictors for the 1-month lead time,
the correlation coefficients between the SLRI and August
minus June SSTA tendencies are calculated [Fig. 2(a),
Table 1]. The correlation pattern shows some regions
being significantly correlated with the SLRI. When there
are many potential predictors while their physical
relationships with the predict and are not well defined, a
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Figs. 3(a&b). Seasonal rainfall predictions are made using the
multiple regression models at (a) I-month and
(b) 2-month lead times. The observation, i.e., SLRI is
shown in black. The three-year-outcross-validated
prediction is shown in blue. The cross validation is
performed by taking 3-year out around the predicted
year. Independent prediction for the validation period
(2000-2012) is shown in red. The model for the
independent prediction is built using the data of the
training period (1979-1999)

few of them should be selected based on statistical
methods to avoid collinearity (Sahai et al., 2003). This
procedure begins with the construction of simple linear
regression models for each potential predictor variable.
The predictor field, which has the maximum correlation
coefficient with the minimum root mean square error
(RMSE), is selected as the first predictor field (Sahai
et al., 2003; Del Sole and Shukla, 2002). Based on this
condition, an area over the southern Atlantic SSTA
tendency (SA) is selected as the first predictor field [box
near the date line in Fig. 2(a)]. The southern Atlantic
SSTA tendency field is indexed through, first, area
averaging and, then, normalization. The index will be
referred to SA hereafter (Table 1). The first partial
regression coefficient is obtained by regressing the SA
against the SLRI and the value is 0.292 [Eqn. (1)].

The second predictor is obtained via the correlation
coefficients between the SLRI and the residual SSTA
field, where the residual is defined by linearly removing
the SA from the SSTA field. Through this procedure, the
southern Pacific area [box near 140° W in Fig. 2(a)] is
chosen as the second predictor field. Similarly, for the SA,
the southern Pacific SSTA tendency (hereafter SP,
Table 1) is area averaged and normalized, before it
is regressed against the SLRI to obtain the second partial
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Figs. 4(a-f). Regressed OND precipitation anomalies (mm day™) against the reversed WP & MC time series (top row),
reversed SP time series (middle row) and SA time series (bottom row) are shown at (left column) the 1- and

(right column) 2-month lead times

regression coefficient [i.e., -0.357 in Eqn. (1)]. By
repeating the same process, the western Pacific and
Maritime Continent region (box between 105° E-165° E)
is selected as the third predictor (hereafter WP & MC,
Table 1). Note that the three predictors are constructed to
ensure independence from each other and hence their
inter-correlations between the predictors are negligible.

The same procedure is repeated for the 2-month lead
time, where the SSTA tendency of the 2-month lead time
is defined as July minus May. We note that despite the
different lead times, significant correlations of the SSTA

tendencies with SLRI are found over similar regions
[Figs. 2(b)]. The exact locations of the three predictors for
each lead time are listed in Table 1. We also note that all
the variables are normalized so that the regression
coefficients in the statistical model represent the relative
weighting among the predictors (Lee and Seo, 2013; Kim
etal., 2017).

The correlation coefficients between the SLRI and
the predictors are summarized in Table 2. The correlation
coefficients between the SLRI and normalized SA
index are 0.32 and 0.37 at the 1- and 2-month lead times,
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Figs. 5(a&b).
lead times

respectively. After the SA signal is linearly removed from
the SLRI, the correlation coefficients between the residual
time series of the SLRI and the normalized SP index are
-0.47 and -0.40 at the 1- and 2-month lead times,
respectively. Lastly, we linearly remove the SP from the
residual time series and compute its correlation
coefficients with normalized WP & MC index, which
are -0.40 and -0.40 at the 1- and 2-month lead times,
respectively. The values that exceed the 95% confidence
level are marked by asterisks (Table 2).

3.2. Prediction skills of PLSR forecasts

Having established the three predictors for each 1-
and 2-month lead time, multiple linear regression models
are constructed. First, the model is built for the training
period, i.e., 1979-1999. The equation (1) represents the
multiple regression equation for the prediction of Sri
Lankan OND rainfall at I-month lead time.

Regressed OND SSTAs (°C) against the reversed WP & MC time series at (a) the 1- and (b) 2-month

SLRI = 0.292 (SA) — 0.357 (SP) — 0.411(WP & MC)
(1

The regression models for the 2-month lead time is
formulated as (2):

SLRI = 0.446 (SA) — 0.302 (SP) — 0.409(WP & MC)
(2)

Using the Eqns. (1&2), we perform the seasonal
rainfall forecasts for the validation period (2000-2012) at
the two lead times (red lines in Fig. 3). The observed
SLRI is shown in black lines in Fig. 3. Temporal
correlation coefficients are computed between the
SLRI and the prediction models and their statistical
significance are examined (Table 3). At the 1-month lead
time, the correlation coefficient reaches 0.69 for the
training period and it is 0.65 for the wvalidation
period. Similarly, at the 2-month lead time the correlation
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Figs. 6(a-f). Same as Fig. 4, but the regressed OND 850-hPa velocity potential anomalies (10° m” s') are shown

coefficient is 0.68 for the training period and is 0.71 for
the validation period.

To further verify the predictive capability of the
statistical models, the cross-validation method with three
years out scheme is used. That is, as explained earlier, the
model is constructed for each year using the entire time
series except for the three years centered at the year where
the prediction is made. As a result, the predicted time
series (blue lines in Fig. 3) are correlated with the SLRI by
values of 0.69 and 0.68 at the 1- and 2-month lead times,
respectively. These values are very similar to those that are

obtained from Eqns. (1&2). In Fig. 3, one can also notice
that the blue and red lines are overlapped by each other.

3.3. Processes associated with the predictors

In this subsection, we attempt to understand the
physical linkage between the predictors of the Sri Lankan
OND rainfall. First to verify the large-scale precipitation
pattern associated with the precipitation anomalies over
Sri Lanka, we compute the regressed precipitation
anomalies against the SA, reversed SP and reversed WP &
MC indices for the two lead times (Fig. 4). The signs of
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(a) Regressed SSTA (OND) against SA (Aug-June)

G6ON -
30N -

0 -

303

- L,..--.__._—._. 1;.!?—-'

605 -

180 150W120W S0W 60W 30W 0

30E 60E SO0E 120E 150E 180

60N -

30N -

305 -

605

180 150W120W 90W 60W 30W 0O

30E 60E 90E 120E 150E 180

___ I

|

04 -03 -02 -01

01 02 03 04

Figs. 7(a&b). Regressed OND SSTAs (°C) against the reversed SP time series are shown at (a) 1- and (b) 2-month lead times

the SP and WP & MC are reversed in order to express
their contribution to the regression models as positive
values. For all the indices, positive precipitation anomalies
are apparent over the western equatorial Indian Ocean, as
well as over Sri Lanka, at 1- and 2- month lead times.
Negative anomalies are seen at the same time over the
Maritime Continent and the Bay of Bengal. This suggests
that a dipole-like precipitation pattern, which is influenced
by the SSTs over the selected regions, plays an important
role on Sri Lankan OND rainfall. Therefore, the physical
linkage can be examined by investigating the processes
that induce the large-scale dipole pattern of precipitation
over the Indian Ocean.

Regressed OND SSTAs against the reversed WP &
MC index similarly illustrates the dipole pattern with the

warm anomalies over Indian Ocean and cold anomalies
over the Maritime Continent and western Pacific
[Fig. 5(a)]. The SSTAs retain their structure throughout
the lags, contributing to a continuous warming and
cooling at the corresponding locations [Fig. 5(b)]. The
widespread warm SSTA scan act as a forcing that favors
deep convection over Indian Ocean. Also, the SST
gradient between warm north Indian Ocean and cool
western Pacific induces easterly winds over the Bay of
Bengal with favor moisture transport toward Sri Lanka.
The positive velocity potential anomalies, which are also
obtained through the regression analysis against the
reversed WP & MC index, represent large-scale lower
level convergence over the western Indian Ocean when
the SSTs over the Maritime Continent and western Pacific
decreases [top row in Figs. 6(a&b)]. The velocity potential
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Figs. 8(a&b). Regressed OND SSTAs (°C) against the SA time series are shown at (a) the 1- and (b) 2-month lead times

TABLE 4

Correlation coefficients between the SLRI and climate indices

10D Nifio3.4 Nifi03.0

SLRI 0.39% 0.33 0.32

* Significance correlation at 95% confidence level.

shows a baroclinic structure with a negative anomaly at
the upper troposphere (not shown), indicating the upper
level divergence. Over the Maritime Continent and
western Pacific, the sign for the velocity potential is
reversed, exhibiting the dipole structure that has
previously been shown in the large-scale precipitation

pattern (Fig. 4), as well as the SSTAs (Fig. 5). The strong
lower-level convergence anomaly over the western Indian
Ocean and the strong lower-level divergence anomaly
over the western Pacific are consistent with the strong
positive and negative SSTAs over the respective regions.

Despite its smaller amplitude compare to that for the
WP & MC, the regressed OND SSTAs against the SA and
reversed SP indices show positive anomalies over Indian
Ocean [Figs. 7&8(a&b)]. Similarly, over the Maritime
Continent and western Pacific, negative anomalies can be
seen, which forms again the dipole-like structure. A
positive anomaly can be seen over the western Indian
Ocean in the regressed field of the OND 850 hPa velocity
potential against the reversed SP index [Figs. 6(c&d)]. As
was for the WP & MC, this low-level large-scale
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convergence is vertically associated with an upper-level
divergence (not shown) and horizontally with a low-level
positive velocity potential anomaly over the western
Pacific and Maritime Continent. The similar features are
observed for the SA index [Figs. 6 (e&f)].

4.  Summary and discussion

Sri Lanka receives the highest amount of rainfall
during October to December (OND). Our study aims to
build an empirical model to predict the Sri Lankan OND
rainfall. Through the partial least square regression
approach, three predictors of sea surface temperature
anomaly tendency fields are over the western Pacific and
Maritime Continent, southern Atlantic and southern
Pacific. Using the predictors, multiple linear regression
models have forecasted the Sri Lankan OND rainfall at 1-
and 2- month lead times. The three year out cross
validated prediction skill for the period of 1979-2012
reaches 0.69 and 0.68 at the 1- and 2- month lead times
respectively. Similar skills can be identified by dividing
the entire 34 years into the 21-year calibration periods
(1979-1999) and the 13-year verification period (2000-
2012).

The physical processes associated with the reversed
WP & MC, reversed SP and SA predictors show positive
(negative) SSTAs over the western Indian (western
Pacific) Ocean with a dipole structure at all three lead
times. Low-level convergence and divergence in the warm
western Indian Ocean and the cool western Pacific,
respectively, tend to induce cyclonic circulations to the
east of Sri Lanka and to enhance easterlies in Bay of
Bengal, which are likely to increase precipitation in Sri
Lanka. These results indicate that all three predictors have
a crucial impact on the Sri Lankan OND rainfall.

In this study, the spatial characteristics of Sri Lankan
rainfall is not considered when building a model.
Although the seasonal prediction model relies on large-
scale variability of climate, the local orography of Sri
Lanka and climatological circulation makes the south
western sector receive the highest rainfall. The annual
rainfall of this region exceeds 2500 mm, which separates
it from the other regions by 500-1000 mm per year. We
plan to use higher resolution data to regionally evaluate
our model’s performance.

Our study develops a statistical prediction model of
seasonally averaged precipitation for a targeted domain,
Sri Lanka. As explained above, the predictors of the
model are chosen by investigating linear correlations with
the predictand. This approach has taken in many previous
studies. However, one may instead pursue to find a source
of predictability from well-established tropical climate

modes, such as the El Nifio Southern Oscillation (ENSO)
and the Indian Ocean Dipole (IOD). To explore possibility
of this alternative method, we have checked the
correlations between the OND Sri Lankan rainfall and the
ENSO and IOD indices (Table 4). The correlation with the
IOD is 0.39, which exceeds the 95% confidence level.
This implies that the IOD is closely related to the Sri
Lankan rainfall variability, which seems to be implicated
in the effect of the WP & MC index of the present study.
The correlations with the Niflo3.4 and Nifl03.0 indices are
similarly above 0.3. Therefore, both of the climate modes
may provide good source of skill for seasonal Sri Lankan
rainfall. To do so, however, we feel that one needs to
carefully consider the seasonality of the climate modes, as
well as their interconnections.
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