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सार — Įीलंका मɅ अक्टूबर से िदसंबर (ओ.एन.डी) के दौरान सबसे अिधक वषार् होती है, लेिकन िवƳसनीय ऋतुिनƵ 

पूवार्नमुान प्रणाली अभी तक पिरचािलत नहीं हुई है। यहां हमने अक्टूबर, नवàबर, िदसंबर मɅ Įीलंका की  1979-2012 के दौरान            

1 और 2 महीने के अग्रकाल के दौरान हुई वषार् का पूवार्नुमान करने के िलए बहु रैिखक समाĮयण मॉडलɉ का िनमार्ण िकया है। Įीलंका 
की अक्टूबर, नवàबर, िदसंबर की वषार् और वैिƳक समुद्र सतह तापमान (एस.एस.टी.) िवसंगितयɉ के बीच संबंधɉ की जांच करने के 

िलए सह-संबंध िवƲेषण का उपयोग िकया गया। आंिशक Ǿप से सबसे कम वगर् समाĮयण िविध के माÚयम से दो अलग-अलग लीड 

समय परतीन èवतंत्र अनुमानɉ की पहचान की गई, िजसमɅ दिक्षणी अटलांिटक एस.एस.टी. प्रविृƣ, दिक्षणी प्रशांत एस.एस.टी. प्रविृƣ 

और पिƱमी प्रशांत और समुद्री महाद्वीप एस.एस.टी. प्रविृƣ शािमल हɇ। तीन-वषर् के पुनः स×यापन से यह िनçकषर् िनकलता है िक कई 

रैिखक प्रितगमन मॉडल क्रमशः 1 और 2 महीने के लीड समय के िलए 0.69 और 0.68 के सहसंबधं गुणांक कौशल पर अक्टूबर, 

नवàबर, िदसंबर की वषार् का पूवार्नमुान लगा सकते हɇ। इन तीनɉ पूवर्सूचकɉ से जुड़ी भौितक प्रिक्रयाओं से Įीलंका की अक्टूबर, 

नवàबर, िदसंबर की वषार् मɅ विृद्ध मɅ योगदान का पता चलता है। 
 
ABSTRACT. Sri Lanka receives most rainfall during October to December (OND). Here we construct multiple 

linear regression models to forecast the OND Sri Lankan rainfall during 1979-2012 for lead times of 1 and 2 months. 
Correlation analysis was used to examine the relationship between Sri Lankan OND rainfall and global sea surface 
temperature (SST) anomalies. Three independent predictors were identified through partial least square regression 
method which includes the southern Atlantic SST tendency, southern Pacific SST tendency and western Pacific and 
Maritime Continent SST tendency at two different lead times. Three-year-out cross validation concludes that the multiple 
linear regression models can produce forecast the OND rainfall forecast at correlation coefficient skill of 0.69 and 0.68 
for the 1 and 2 month lead times respectively. The physical processes associated with these three predictors show that 
they contribute to increase in OND rainfall of Sri Lanka. 

 

Key words – Multiple-regression models, Seasonal forecast, OND Sri Lankan rainfall. 
 

 

1.  Introduction 
 

Sri Lanka receives the major portion of its annual 
rainfall during October to December (OND) (Zubair and 
Ropelewski, 2006). This primary rainy and agricultural 
season is locally known as “Maha” period. In addition to 
agricultural productivity, hydropower planning, water 
resource management and disaster preparedness of Sri 
Lanka are strongly influenced by the OND seasonal 
rainfall. During the season, the rainfall rate is intense 
[approximately 150 ~ 200 mm month-1; Figs. 1(a&b)], 
which often causes floods and landslides (Zubair et al., 
2006). Therefore, prediction of the seasonal rainfall during 

OND is important, yet one of the most challenging tasks 
in Sri Lanka. Although interannual relationships of 
seasonal rainfall with leading climate modes, such as the 
El Niño Southern Oscillation (ENSO) and the Indian 
Ocean Dipole (IOD), have been examined (Zubair and 
Ropelewski, 2006; Zubair et al., 2003). The main 
objective of this study is hence to construct a statistical 
model, which will be a valuable tool to reduce disaster 
risk and economic losses in Sri Lanka. 
 

The rainfall during the OND season can be attributed 
to multiple meteorological phenomena, such as the 
formation of tropical cyclones and depressions in the Bay 
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2. Data and methodology 
 

2.1. Data 
  

For precipitation, we use the monthly Global 
Precipitation Climatology Project (GPCP) Version 2.2 
(Huffman et al., 1997) at the spatial resolution of 2.5° 
latitude by 2.5° longitude. The monthly SSTs are obtained 
from the Version 1.1 of Hadley Centre Global Ice and Sea 
Surface Temperature dataset (HadISST1) provided by the 
United Kingdom Meteorological Office (UKMO) (Rayner 
et al., 2003). The SST dataset is originally at the 1.0° latitude 
by 1.0° longitude resolution but is regridded to the 2.5° by 
2.5° resolution of the GPCP. For monthly zonal wind and 
meridional wind (at what level?), the ERA-Interim dataset 
produced by European Centre for Medium-Range Weather 
Forecasts (ECMWF) (Dee et al., 2011) is used. The       
ERA-Interim is downloaded at a native horizontal 
resolution of ~ 60 km but is also interpolated to the 2.5° by 
2.5° resolution. 
 

2.2. Methodology 
  

Two multiple regression models are constructed to 
predict the OND rainfall anomalies over Sri Lanka. 
Setting up the Sri Lanka rainfall index (SLRI) as the 
predict and is the first step to build the prediction model. 
The SLRI is defined as the normalized time series of OND 
rainfall anomaly averaged over Sri Lanka region (79° E to 
82° E and 5° N to 10° N) for the period of 1979-2012. The 
index will be presented in Section 3.  
 

To provide stable and effective prediction at seasonal 
time scale, SST is often chosen as one of slowly varying 
boundary conditions (Lau et al., 2000; Park et al., 2015; 
Yim et al., 2013). Most of the statistical seasonal prediction 
models use lead-lag relationships between SSTA tendency 
and predict and (Yim et al., 2015; Lee and Seo, 2013; Kim 
et al., 2017; Yim et al., 2013). We use the Pearson 
correlation coefficients, 𝑟, to identify the relationships 
between the Sri Lankan OND rainfall and SSTA tendency. 
The predictors are selected when the correlation coefficient 
exceeds the 95% significance level. Estimation of the 
statistical significance is based on a t-test that uses the   t-

statistic,    21/2 rnrt  . In this equation, the 

number of seasons is used as the degree of freedom (n).  
 
To find the lead-lag linkage between the predictors 

and the predict and, the correlation coefficients between 
the SLRI and tendency of SSTAs were calculated at 1- 
and 2-month lead times. We first define the 1-month lead 
time as the difference between August minus June. This 
forecast model uses the predictors which have information 
before and during August and then the 1-month lead time 

is defined as the difference between July minus May, 
which includes the information during and before July. 

 
To make sure the predictors are independent from 

each other, the partial least square regression (PLSR) 
method, e.g., Black (2017) is employed as follows: 
 
(i) Grid by grid correlation coefficients between the 
global SSTAs and SLRI are calculated to obtain the first 
correlation map, 
 
(ii) Statistically significant regions at 95% confidence 
level are selected as predictors. Based on the significance 
test, the first predictor field is identified [show a table 
giving a list of selected predictors (time period of derived 
predictor) along with correlation coefficients with 
significant level], 
 
(iii) Area-weighted predictor field is normalized by 
subtracting its mean and dividing it by its standard deviation, 
 
(iv) First partial regression is obtained by using 
conventional least squares fitting and regressing the 
SSTAs against the first predictor, 
 
(v) First partial regression is linearly removed from both 
the predictor field and all SSTA field. The residual 
predictor field became as the new predictor and the 
residual SSTA field became as the new predictor field and 
 
(vi) The residual SSTA field is used to find the second 
predictor. 

 
Steps 1-5 are repeated to obtain the other predictors. 

This procedure is terminated when there are no further 
significant predictor fields. We limit the number of 
predictors up to 3 so as to avoid the over fitting problem 
(Lee and Seo, 2013; Kim et al., 2017) 

 
2.3. Cross-validation 
 
The regression coefficients remain stable when using 

a cross validation method, which is widely used in climate 
prediction. That is, to examine the performance of the model, 
we employ two cross validation approaches. The first 
validation approach is following Blockeel & Struyf (2002), 
who suggest that 50%--70% data can be used to construct 
the regression model and the remaining data can be used 
to validate the model. For this approach, we divide the 
entire 34-year data into two subsets as the training period 
and the validation period. For the training period, first 21 
years data (1979-1999) are used to obtain the regression 
coefficients for the model. The remaining 13 years data 
(2000-2012) are then used to make the independent forecast. 
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Figs. 2(a&b). Correlation coefficient maps between the SSTA and SLRI are shown at (a) 1- and (b) 2-month lead times, 

respectively. The boxes indicate the regions of the three predictors. Black crosses mark the areas that are 
statistically significant at the 95% confidence level 

 
 
 

The second approach is based on the three years out 
cross validation method (Yim et al., 2013). For this 
approach, we develop the model all years, but excluding 
the three years centered at the year that the prediction and 
hence the validation is performed. The procedure is 
repeated by taking 3-year out around each predicted year. 
That is, this leave-three-years-out cross validation 
involves using 3 observations as the validation set and the 
remaining observations as the training set. 

 
3. Results and discussion 

 
3.1. Selection of the best predictors 

 
To investigate the monthly rainfall evolution, 

monthly climatology of the Sri Lankan rainfall is 

computed by averaging the rainfall amount over the 
domain (79° E to 82° E and 5° N to 10° N; red                     
box in Fig. 1(a) during the period of 1979-2012                   
[Fig. 1(b)]. Bimodality is apparent in the mean                  
annual cycle of the rainfall with a primary peak from 
October to December and a subsidiary peak from                 
April to June. The rainfall amount gradually increases 
from September and attains the highest rainfall from 
October to November. The OND mean low-level winds at 
850 hPa [vectors in Fig. 1(a)] show cyclonic circulations 
and easterly / northeasterly trade winds over Bay of 
Bengal. The formation of the low-level                       
cyclonic circulation to the east of Sri Lanka and                       
the moist northeasterly winds blowing across                       
Sri Lanka  are favorable for heavy rainfall over the island. 
The    OND    mean   precipitation   is   centered   near  the 
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TABLE 1 
 

Definitions and the domains of the predictors selected for the 
prediction of Sri Lanka OND rainfall respectively  

at 1- and 2-month lead times 
 

Predictor Meaning 
August minus 

June          
(1-month lead) 

July minus 
May          

(2-month lead)

WP & MC 
Western pacific and 
maritime continent 

SST tendency 

0-12S 

105E-165E 

05S-20S 

95E-130E 

SP 
Southern Pacific 

SST tendency 
20S-45S 

115W-140W 

07S-25S 

110W-170W 

SA 
Southern Atlantic 

SST tendency 
20S-45S 

05E-15W 

20S-45S 

03E-28W 

 
 

TABLE 2 
 

Correlation coefficients between the SLRI and 
predictorsrespectively at 1- and 2-month lead times 

 

Predictor 
August minus June 

(1-month lead) 
July minus May       
(2-month lead) 

WP &MC -0.40* -0.40* 

SP -0.47** -0.40* 

SA 0.32 0.37* 

* Significance correlation at 95% confidence level, 
** Significance correlation at 99% confidence level. 

 
 

TABLE 3 
 

Temporal correlation coefficients for the prediction                    
respectively at 1- and 2-month lead times 

 

Lead time 

Correlations 

Training period 
(1979-1999) 

Validation period 
(2000-2012) 

Cross validation 
(1979-2012) 

1-month lead 0.69** 0.65** 0.69** 

2-month lead 0.68** 0.71** 0.68** 

** Significance correlation at 99% confidence level. 

 
 
Maritime Continent and decreases toward Sri Lanka 
[shading in Fig. 1(a)]. 

 
 To select the predictors for the 1-month lead time, 
the correlation coefficients between the SLRI and August 
minus June SSTA tendencies are calculated [Fig. 2(a), 
Table 1]. The correlation pattern shows some regions 
being significantly correlated with the SLRI. When there 
are many potential predictors while their physical 
relationships  with  the predict and  are  not well defined, a  

 
Figs. 3(a&b). Seasonal rainfall predictions are made using the 

multiple regression models at (a) 1-month and          
(b) 2-month lead times. The observation, i.e., SLRI is 
shown in black. The three-year-outcross-validated 
prediction is shown in blue. The cross validation is 
performed by taking 3-year out around the predicted 
year. Independent prediction for the validation period 
(2000-2012) is shown in red. The model for the 
independent prediction is built using the data of the 
training period (1979-1999) 

 
 
few of them should be selected based on statistical 
methods to avoid collinearity (Sahai et al., 2003). This 
procedure begins with the construction of simple linear 
regression models for each potential predictor variable. 
The predictor field, which has the maximum correlation 
coefficient with the minimum root mean square error 
(RMSE), is selected as the first predictor field (Sahai       
et al., 2003; Del Sole and Shukla, 2002). Based on this 
condition, an area over the southern Atlantic SSTA 
tendency (SA) is selected as the first predictor field [box 
near the date line in Fig. 2(a)]. The southern Atlantic 
SSTA tendency field is indexed through, first, area 
averaging and, then, normalization. The index will be 
referred to SA hereafter (Table 1). The first partial 
regression coefficient is obtained by regressing the SA 
against the SLRI and the value is 0.292 [Eqn. (1)]. 
 
 The second predictor is obtained via the correlation 
coefficients between the SLRI and the residual SSTA 
field, where the residual is defined by linearly removing 
the SA from the SSTA field. Through this procedure, the 
southern Pacific area [box near 140° W in Fig. 2(a)] is 
chosen as the second predictor field. Similarly, for the SA, 
the southern Pacific SSTA tendency (hereafter SP,       
Table 1) is area averaged and normalized, before it            
is   regressed  against the SLRI to obtain the second partial  
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Figs. 4(a-f). Regressed OND precipitation anomalies (mm day-1) against the reversed WP & MC time series (top row), 

reversed SP time series (middle row) and SA time series (bottom row) are shown at (left column) the 1- and 
(right column) 2-month lead times 

 
 

regression coefficient [i.e., -0.357 in Eqn. (1)]. By 
repeating the same process, the western Pacific and 
Maritime Continent region (box between 105° E-165° E) 
is selected as the third predictor (hereafter WP & MC,          
Table 1). Note that the three predictors are constructed to 
ensure independence from each other and hence their 
inter-correlations between the predictors are negligible. 

 
The same procedure is repeated for the 2-month lead 

time, where the SSTA tendency of the 2-month lead time 
is defined as July minus May. We note that despite the 
different lead times, significant correlations of the SSTA 

tendencies with SLRI are found over similar regions  
[Figs. 2(b)]. The exact locations of the three predictors for 
each lead time are listed in Table 1. We also note that all 
the variables are normalized so that the regression 
coefficients in the statistical model represent the relative 
weighting among the predictors (Lee and Seo, 2013; Kim 
et al., 2017). 

 
The correlation coefficients between the SLRI and 

the predictors are summarized in Table 2. The correlation 
coefficients between the SLRI and normalized SA        
index  are  0.32 and 0.37 at the 1- and 2-month lead times,
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Figs. 5(a&b). Regressed OND SSTAs (°C) against the reversed WP & MC time series at (a) the 1- and (b) 2-month              

lead times 
 
 

respectively. After the SA signal is linearly removed from 
the SLRI, the correlation coefficients between the residual 
time series of the SLRI and the normalized SP index are    
-0.47 and -0.40 at the 1- and 2-month lead times, 
respectively. Lastly, we linearly remove the SP from the 
residual time series and compute its correlation 
coefficients with normalized WP & MC index, which     
are -0.40 and -0.40 at the 1- and 2-month lead times, 
respectively. The values that exceed the 95% confidence 
level are marked by asterisks (Table 2). 

 
3.2. Prediction skills of PLSR forecasts 
 
Having established the three predictors for each 1- 

and 2-month lead time, multiple linear regression models 
are constructed. First, the model is built for the training 
period, i.e., 1979-1999. The equation (1) represents the 
multiple regression equation for the prediction of Sri 
Lankan OND rainfall at 1-month lead time.  

  SLRI = 0.292 (SA) – 0.357 (SP) – 0.411(WP & MC)  
                                                                                (1) 
 
The regression models for the 2-month lead time is 

formulated as (2): 
 
SLRI = 0.446 (SA) – 0.302 (SP) – 0.409(WP & MC)  

(2) 
 

Using the Eqns. (1&2), we perform the seasonal 
rainfall forecasts for the validation period (2000-2012) at 
the two lead times (red lines in Fig. 3). The observed 
SLRI is shown in black lines in Fig. 3. Temporal 
correlation coefficients are computed between the          
SLRI and the prediction models and their statistical 
significance are examined (Table 3). At the 1-month lead 
time, the correlation coefficient reaches 0.69 for the 
training period and it is 0.65 for the validation            
period.  Similarly, at the 2-month lead time the correlation 
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Figs. 6(a-f). Same as Fig. 4, but the regressed OND 850-hPa velocity potential anomalies (106 m2 s-1) are shown 

 
 
coefficient is 0.68 for the training period and is 0.71 for 
the validation period. 

 
To further verify the predictive capability of the 

statistical models, the cross-validation method with three 
years out scheme is used. That is, as explained earlier, the 
model is constructed for each year using the entire time 
series except for the three years centered at the year where 
the prediction is made. As a result, the predicted time 
series (blue lines in Fig. 3) are correlated with the SLRI by 
values of 0.69 and 0.68 at the 1- and 2-month lead times, 
respectively. These values are very similar to those that are 

obtained from Eqns. (1&2). In Fig. 3, one can also notice 
that the blue and red lines are overlapped by each other. 
 

3.3. Processes associated with the predictors 
 
 In this subsection, we attempt to understand the 
physical linkage between the predictors of the Sri Lankan 
OND rainfall. First to verify the large-scale precipitation 
pattern associated with the precipitation anomalies over 
Sri Lanka, we compute the regressed precipitation 
anomalies against the SA, reversed SP and reversed WP & 
MC  indices  for  the  two lead times (Fig. 4). The signs of
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Figs. 7(a&b). Regressed OND SSTAs (°C) against the reversed SP time series are shown at (a) 1- and (b) 2-month lead times 

 
 
the SP and WP & MC are reversed in order to express 
their contribution to the regression models as positive 
values. For all the indices, positive precipitation anomalies 
are apparent over the western equatorial Indian Ocean, as 
well as over Sri Lanka, at 1- and 2- month lead times. 
Negative anomalies are seen at the same time over the 
Maritime Continent and the Bay of Bengal. This suggests 
that a dipole-like precipitation pattern, which is influenced 
by the SSTs over the selected regions, plays an important 
role on Sri Lankan OND rainfall. Therefore, the physical 
linkage can be examined by investigating the processes 
that induce the large-scale dipole pattern of precipitation 
over the Indian Ocean. 

 
Regressed OND SSTAs against the reversed WP & 

MC index similarly illustrates the dipole pattern with the 

warm anomalies over Indian Ocean and cold anomalies 
over the Maritime Continent and western Pacific             
[Fig. 5(a)]. The SSTAs retain their structure throughout 
the lags, contributing to a continuous warming and 
cooling at the corresponding locations [Fig. 5(b)]. The 
widespread warm SSTA scan act as a forcing that favors 
deep convection over Indian Ocean. Also, the SST 
gradient between warm north Indian Ocean and cool 
western Pacific induces easterly winds over the Bay of 
Bengal with favor moisture transport toward Sri Lanka. 
The positive velocity potential anomalies, which are also 
obtained through the regression analysis against the 
reversed WP & MC index, represent large-scale lower 
level convergence over the western Indian Ocean when 
the SSTs over the Maritime Continent and western Pacific 
decreases [top  row in Figs. 6(a&b)]. The velocity potential
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Figs. 8(a&b). Regressed OND SSTAs (°C) against the SA time series are shown at (a) the 1- and (b) 2-month lead times 

 
 

TABLE 4 
 

Correlation coefficients between the SLRI and climate indices 
 

 IOD Niño3.4 Niño3.0 

SLRI 0.39* 0.33 0.32 

* Significance correlation at 95% confidence level. 
 
 
shows a baroclinic structure with a negative anomaly at 
the upper troposphere (not shown), indicating the upper 
level divergence. Over the Maritime Continent and 
western Pacific, the sign for the velocity potential is 
reversed, exhibiting the dipole structure that has 
previously been shown in the large-scale precipitation 

pattern (Fig. 4), as well as the SSTAs (Fig. 5). The strong 
lower-level convergence anomaly over the western Indian 
Ocean and the strong lower-level divergence anomaly 
over the western Pacific are consistent with the strong 
positive and negative SSTAs over the respective regions. 
 
 Despite its smaller amplitude compare to that for the 
WP & MC, the regressed OND SSTAs against the SA and 
reversed SP indices show positive anomalies over Indian 
Ocean [Figs. 7&8(a&b)]. Similarly, over the Maritime 
Continent and western Pacific, negative anomalies can be 
seen, which forms again the dipole-like structure. A 
positive anomaly can be seen over the western Indian 
Ocean in the regressed field of the OND 850 hPa velocity 
potential against the reversed SP index [Figs. 6(c&d)]. As 
was for the WP & MC, this low-level large-scale 
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convergence is vertically associated with an upper-level 
divergence (not shown) and horizontally with a low-level 
positive velocity potential anomaly over the western 
Pacific and Maritime Continent. The similar features are 
observed for the SA index [Figs. 6 (e&f)]. 
 
4. Summary and discussion 
  

Sri Lanka receives the highest amount of rainfall 
during October to December (OND). Our study aims to 
build an empirical model to predict the Sri Lankan OND 
rainfall. Through the partial least square regression 
approach, three predictors of sea surface temperature 
anomaly tendency fields are over the western Pacific and 
Maritime Continent, southern Atlantic and southern 
Pacific. Using the predictors, multiple linear regression 
models have forecasted the Sri Lankan OND rainfall at 1- 
and 2- month lead times. The three year out cross 
validated prediction skill for the period of 1979-2012 
reaches 0.69 and 0.68 at the 1- and 2- month lead times 
respectively. Similar skills can be identified by dividing 
the entire 34 years into the 21-year calibration periods 
(1979-1999) and the 13-year verification period (2000-
2012). 

 
The physical processes associated with the reversed 

WP & MC, reversed SP and SA predictors show positive 
(negative) SSTAs over the western Indian (western 
Pacific) Ocean with a dipole structure at all three lead 
times. Low-level convergence and divergence in the warm 
western Indian Ocean and the cool western Pacific, 
respectively, tend to induce cyclonic circulations to the 
east of Sri Lanka and to enhance easterlies in Bay of 
Bengal, which are likely to increase precipitation in Sri 
Lanka. These results indicate that all three predictors have 
a crucial impact on the Sri Lankan OND rainfall. 
 

In this study, the spatial characteristics of Sri Lankan 
rainfall is not considered when building a model. 
Although the seasonal prediction model relies on large-
scale variability of climate, the local orography of Sri 
Lanka and climatological circulation makes the south 
western sector receive the highest rainfall. The annual 
rainfall of this region exceeds 2500 mm, which separates 
it from the other regions by 500-1000 mm per year. We 
plan to use higher resolution data to regionally evaluate 
our model’s performance. 

 
Our study develops a statistical prediction model of 

seasonally averaged precipitation for a targeted domain, 
Sri Lanka. As explained above, the predictors of the 
model are chosen by investigating linear correlations with 
the predictand. This approach has taken in many previous 
studies. However, one may instead pursue to find a source 
of predictability from well-established tropical climate 

modes, such as the El Niño Southern Oscillation (ENSO) 
and the Indian Ocean Dipole (IOD). To explore possibility 
of this alternative method, we have checked the 
correlations between the OND Sri Lankan rainfall and the 
ENSO and IOD indices (Table 4). The correlation with the 
IOD is 0.39, which exceeds the 95% confidence level. 
This implies that the IOD is closely related to the Sri 
Lankan rainfall variability, which seems to be implicated 
in the effect of the WP & MC index of the present study. 
The correlations with the Niño3.4 and Niño3.0 indices are 
similarly above 0.3. Therefore, both of the climate modes 
may provide good source of skill for seasonal Sri Lankan 
rainfall. To do so, however, we feel that one needs to 
carefully consider the seasonality of the climate modes, as 
well as their interconnections. 
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