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ABSTRACT, A model has been designed to study the surface boundary layer of a tropical storm. The
numerical method consists of solving a two peint  boundary value problem for two systems of simultaneous
non-linear differential equations by finite differences. A Stoke's stream function suitable to represent the flow
both in interior and exterior regions of a tropical storm boundary layer has been developed. The advantage of
the method is that the boundary layer of the tropical storm can be studied starting from the outer region to the
centre of the storm without neglecting non-linear terms. In addition, there is no nced for assumptions on the
vertical profiles for tangential and radial velocities, The method is stable and converges within a few iterations.
The flow above the friction layer is represented by a steady axisyrametric vortex in gradient balance. To investi-
gate the effect of turbulence on boundary layer characteristics, turbulence has been represented by four different
variations of the eddy coefficient of viscosity with no slip boundary conditions. Computations have been per-
formed taking 40-grid points in the vertical direction. It is observed that, if the eddy coefficient of viscosity is
assumed to vary with the superimposed flow above the boundary layer, the solutions compare favourably well
with observations. The solution also shows an outflow from theinner core of the boundary layer whichis necessary
for creation of an eye of the storm.
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1. Introduction

Observational data cn tropical storm are still frag-
mentary  because their tormation and subsequent
motion are over tiopical oceans, wherz few observations
exist. Although the large scalc featurss of a tropical
storm are now well known, only the relatively dominant
tangential flow is well documented. In case studies,
there is no sufficient data density to allow an accurate
determination of other parameters; as such, several
aspects of tropical storm remain speculative. One of the
uncertainties, is the distribution of radial motion in the
storm inflow layer near (he boundary. Aircraft obser-
vations of the radial velocity are 1elatively less accurate
because this component has small magnituds. More-
over, the data have been limited to a few flight levels
during an individual storm period, wh'ch cannot pro-
duce an accurate profile of radial winds around a single
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storm. The vertical variation of radial motion in the
inflow layer also cannot be measured. Though the
vertical velocity at the top of the bourdary layer is
very small in compariscn with the radial and tangential
velocities, it is very significant for the growth and mainte-
nance of a storm.

It is reasonable to suppose that the bounrdary layer
plays an important tole in determining the distri-
bution and lccation of maximum upward motion.
Surface friction causes convergence in an area of posi-
tive vorticity, and thereby organizes cumulus c< nvection
which leads to the development of tropical storm as
suggested by Ooyama (1964). In addition, suriace fiic-
tion is important for determining the horizontal scale
of the convective area, and in producing the eye and the
eyewall as observed in tropical storms.
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Fig. 1. 'l]’angemial velocity profile at the top of the boundary
ayer

Lency and Rogers (1960) solved the boundary layer
equations numerically considering rigid body rotation;
but this is not a realistic model for tropical storm winds.
Smith (1968) investigated some of the features ol tropi-
cal storm surface boundary layer by using a momentum
integral method. The flow above the friction layer was
specified by a suitable pressure profile in gradient ba-
lance, and the vertical profiles of tangentialand radial
velocities were taken as those al geostrophic radius
Leslie and Smith (1970) extended thz werk of Smith
(1968) fer turbulence represented by different coefficients
of eddy viscosity using the same method only m the
region outside the maximum tangential velocity. Carrier
et al. (1971) have pointed out that the momentum inte-
gral technique is not accurate enough to predict the
vertical velocity at the top of the boundary layer, which
is extremely small but a significant quantity.

In our study, the flow above the boundary layer will
be represented by a steady inviscid circular vortex with
zero radial flow and tangential velocity V. (R), where, R
is the radial distance frocm the axis of symmetry as shown
in Fig. 1. In the absence of horizontal surface boundary,
a vortex of this kind can support an atbitrary radial
distribution of vertical velocity. But, in the presence
of such a boundary, and V,, specified, the upward
velocity component (W) is determined uniquely by the
boundary layer flow. In this study the dynamics of the
boundary layer determined by this external flow are
governed by the Navier-Stokes equations of motion.
The maximum velocities achieved either in or near the
bourdary layer are such that the density changes within
the boundary layer have negligible effect on the dynamics.
At a large distance (about 1000 km or so) from the centre
of the storm, the flow can be assumed nearly geostrophic,
and at this radius the boundary layer approximates to
an Ekman type of laycr; but the flow in the core region
is nearly like a rigid body rotation. So in this region,
boundary layer equatiors admit separable solution.
Keeping in view of these two types of solutions, a
method has been developed in this study to find out the
boundary layer solutions numerically at different radial
distances, starting from the geostrophic radius to the
centre of the storm.

There 1s ro unique method to determine the furbulent
flow. Tt is still impossible to analyse different kinds of
turbulent flow with the aid of the same hypothesis con-
cerning the turbulent friction. Tn this study a few ex-
pressions for the coefficients of kinematic eddy viscosity
based cn different hypotheses have been tested and their

results discussed.

2. The basic equations

For simplicity. we will assume a steady stafte. The
model is interded to represent a mature and slowly mov-
ing storm. We will employ cylinderical cc-ordinate
R. 8, Z: where, R is the radial distance from the origin,
@ is the azimuth and Z is the height above the mean sea
level. The model is further simplified by neglecting deri-

vatives with respect to the azimuth distance (—Rl?e).This
. . C

implies an axisymmetric storm. Data indicate that these
derivatives are usuvally small compared to derivatives
with respect to the radial distance. In the frame work
of boundary layer theory, it is assumed that the same
pressure gradient acts in viscous layer near the surface,
i.e., the radial pressure gradient is constant with height
in the boundary laver. In view of the fact that obser-
vations indicate virtually ro hcrizontal gradjent of
temperature in lower layer of tropical storm (Frank
1977 and others), the assumption regarding constancy
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inflow layer. Under the assumpticns, the boundary layer
eguaticns for turbulent flow in a rotating frame of
reference with a variable eddy coefficients of viscosity
arc

with height appears to be fairly realistic for the
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2R UR) + 5 (WR) = 0 (3)

where, U. V' and W are the velocity components in
the radial, tangential and vertical directions, and *f*
is the Coriclis parameter (5 107%/sec). According to
the assumptions, the pressure gradient term in Eqn. (1)
has been replaced by the prescribed tangential velocity
field V., (R)at the top of the friction layer X, and K.
are eddy coefficients of viscosity in the radial and verti-
cal directions.

2. 1. Bourdary conditions

We will assume a no slip condition at the surface.
Thisimplies :

u V=W=0; Z=20 (4a)

and V="V, U=0;Z=o0, ie., inthe fice atmosphere
where, friction is negligible. (4b)
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We assume that the tangential velocity component ¥V
has the form : V=V, G (r, ) 5(a)

where, G is a function of non-dimensional radial and
vertical distances, r and .

The radial and vertical velocity components (U and
W) may be expressed by a Stoke’s stream function
¥, whichistakenas :

¥ =Z, RV, (1-+Vu/Rf) F(r, n) (5b)

where, F is a function of r and 7; Z, is a scaling factor
for the vertical distance Z, which is being defined shortly.

Using the equation of continuity (3), U and W may
be expressed by

oF

U = Vg (1+V,/Rf) an (5¢)
dVe, Ve , 2Vg Vg,
W=—2z ('dﬁ TR TR 'dR')F
Zy oF
— err(l‘l“Vgr/Rf) gf (Sd)

Boundary conditions on G and F, which are consistent
with the Eqn. (4) are defined in secticn 2.2.

The term (1--V,/Rf) in (5b) is unity plus a local
Rossby number. The Stoke’s stream function (¥)
has been assumed in such way that at a large distance
from the stcrm’s centre the term ¥V, /Rf is negligible
and the boundary layer equations approximate to an
Ekman layer formulation. In the core region, if the super-
imposed flow is in rigid body rotation, the boundary
llagr;r equations admit separable solutions (Schlichting

8).

2.2. Scalingofthe variablzs

Following scalings are used to make the equations
non-dimensional :

Z, = '\/(Kf*/j) K. = K:* k(r, 'I)

Z =29 U = Rofu
R=Rr V = Rofv
K* = RPf Vg = Rofvg,
K, = K*h(r, n) W = Zfw (6)

where, = (5x107%/sec) is the Coriolis parameter;
Ro=50 km (radius of maximvm tangential velocity of
a typical stotm); K.* is a characteristic value cf
vertical eddy coefficient of viscosity, which is taken to
be 50m?/sec; K,* = (1.25x10°m?/sec) is a characteristic

value of radial eddy coefficient of viscosity which has
been defined in terms of R. and f; n and r are non-
dimensional vertical and radial distances; u, v, w and
v,y are non-dimensional radial, tangertial, vertical
and super-imposed gradient wind velocity components;
k (r, m) and h (r, 7) are non-dimensional vertical and
radial components of eddy coefficients of viscosity.

Using (6) and omitting common factors, Eqrs. (1)
and (2) reduce to the following non-dimensienal form
with variable coefficients :

o*F a*F oF aF )\
G ogp T gy Tl T (Bq)
o°F . ., o°F
+ aa’)Féﬁ'i_“s"‘l-O +G +0663-1—07'a’;5;
oF *F  o°F oF\ _
i ""(ar ot @rom en) =0 )

G , GoF | FoG  oF

8*G
R A T T

; 2G oF 8G  oF 8G
+b66‘a"blar +bu(ar a.,l_"'a,q ar)
o°G
“+ by or? =0 (8)

where, the coefficients a,, . . . ., a3 and [b,, .®.
bo, are functions of one or more of the variables :

d'lg_'. and ‘_Iiv?-.'

ok
f k (r! n)! h (r: ’?)1 Ver, 5:] (r" n)’ d" dr?

The boundaiy conditions consistent with those of
4(a)and 4(b)are :

=0 : G=0; F=0;F =0 (9a)

7=00: G=1 F =0 (9b)

where, prime (*) denotes partial differentiation with res-
pect to 7.

3. Numerical procedure

Eqns. (7) and (8) are non-linear. The boundary condi-
tions for FandG,areto be applied at =0, and y = o0
(large 7). Thesolutions have naturaloscillation making
it difficult to obtain an initial guess for the finite differ-
ence method. Even for a single differential equation
of second order, the two points problem can be trouble-
some. If the problem is not well behaved, it is usually
very difficult or even worthless to apply shooting method
(Milne 1970). A finite difference method does have a
chance for convergence, as it tends to keep a firm hold
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on the entire solutions at once. Considering this, a
finite difference method has been used to solve the si-
multaneous non-linear equations.

We introduce a grid of N intervals of equal step size by
choosing N points from = "7 to 7=/, 9N in the vertical.
The initial conditions at =0 and %=oa0 (N th point)
are introduced directly in the finite difference equations.
The non-linear Eqns, (7) and (8) are replaced by linearis-
ed finite difference equations for, i=1,........ (N-1),
giving 2N-2 equations, for 2N-1 unknowns [since, G(N)
=1.0]. An extra equation is obtained by taking the deri-
vative of (7) with respect to %, at =0, and replaced
with finite difference as below :

eF(r,0) . BF(0)  FF(r.0)
Cq 3721 1 Ca 31’33 T C3 a:q‘._.
eG (r. 0
4 LR, (10)
n

where, ¢;=a, (0): ¢,=2a, (0) ; ¢;=us (0) —ay ()

Eqns. (7), (8) and (10) represent a complete set for the
solution of the problem, giving 2N-1 equations for
2N-1 unknowns.

3.1. Linearization

If, F be a dependent variable, and F be assumed to be
an approximate guess, or a previous step solution, we
may set F=Fe¢, where e Ib the correction required
to produce the correct solution F. We need not only e,

but also €’ €", €’ and €, in order to form the new
quantities, F'—=F’ €', F"=F"--€¢" and so on.

The terms like FG’, are lincarized by putting.
FG'=(F1€) (G0 )~FG —eG - & F(neglectinges’)

=FG' -+ FG'—FG' (1)
3.2. Finite differences

The differentials, are replaced by following finite.
difference scheme :

@i = (@is — 8Di_y + 8B, — B;)/12s

D = (-P;_s + 169Q,_, -30D; | 16D, - D;,)/12*
D" = (P, 1+ 2B, - 20, ., - D)2

D7 = (P — 4P,y + 6P, — 4D, - 0;:,)/5*  (12)

where, @ is any variable, *i" is the grid point and "5 is
the grid length.

When the finite difference scheme is applied on the
lower boundary, i.e., =0, the values of the variables
at two grid points below the boundary are required.

_ Putting the boundary conditions of Fand G, at n=0,
first equation of motion (7) reduces to :

k
= (r,O) F'(r,0) —1 =0 (13)

| QI

k(r, OF" (r, 0) -+

L= }]

Expanding F in the neighbourhood of #»=0 (at
n==_/.pand —2 " y) by a Taylor series and putting the
boundary condition of F, the values of F”* (r, 0) and F"*’
(r, 0) can be obtained in terms of Fy, Fs, F_y, F-p, and /.
Replacing the differentials in (13) with these finite
differences, we get :

F_y = ca Fi- cca
F_, —cb Fycch (14)

where, ¢a, cea, cb, cch are functions of k (r, 0).

fk(r, 0) and s (= _.9).
on

_ Putting the boundary conditions of Fand G, at 4 =0
in second equation of motion (8), we get :

G"(r, 0) - pG' (r,0) =0

k
n

where, p = (r, 0)/k (r. 0)

) o

In the neighbourhood of =0, G has a solution of the
form :

G 1.0 — e—ry

Expanding the exponent at n=-} /\n (=--s); and
n==42/n(==2s);and since| ps' > 1.0; after, simpli-

fication, we get :
Gy = —Gy + p%s? - pisif12 +.... .. (15a)

G_y = Gy + 4p2s® +4p8si3 .. ... .. (15b)

I

Beyond the upper boundary (i=N), the values of F
and G are also required at the point i=N--1. Using
boundary conditions, these can be taken as :

Fyi., = — 10Fy/3 + 6Fy_y — 2Fx_y + Fyx_3/3
G.\“] = 1.0 “6)
Finally, applying linearization method (11), finite diff-
erence scheme (12) and relations, (14), (15) and (16):

Egns. (7) and (8) can be expressed by the following
difference form at the grid point */* :
OFi_s + aiFi_y + BiF; -+ viFisy — 8iFiss

+ &G = X a7

eFis + gifiy + Fi + cfFitq + diFite
miG_y + PiGioy + 4G + 1Giy
+ 0iGiy = i (18)

*
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for, i=1, 2, 3............ N-1. Similarly. Eqn. (10)
reduces to :

f'b‘Fl + f‘bng JL‘ ('h;;(}‘| T ('bl(l‘z — ('b'—, (lg)
where the coeflicients 6, %, B, v, 8, £i, €, & I, et my,
Pis @i Tis M5, (i=1, N-1): cby. cby, cby, cby; and right hand
side A, #; (i=1. N-1) and cb, are functions of one or
more of the following variables:

ry Ve, k(r, n), h(r, ), F(r, n) and G(r, M)

Egns. (17), (18) and (19) have 2N-1 equations for 2N 1
unknowns (Fy, Fo, Fyoooooooovot Fy: Gy, G, Gj....
Gy_,); which are solved ateach step by a direct method
using double precision arithmetic. In our numerical cal-

culations, N—40; so, 79 equations are solved at a time.

At geostrophic radius (large r), first step initial values
of Fand G are taken from the known Ekman layer solu-
tions, i.e.,

F =[en'v? (cosn/y2 + sin 5/y/2) — 1]/v/2,

and G = | — e nly/2(cos 5/ 2)

At successive steps (at same r), F and G are taken
from previous step solutions. The process is repeated
until the variations of F and G at consecutive steps at
each point of » become negligible. At the next smaller
value of r, the initial guesses for F and G are taken from
the previous step solutions and the same process is
repeated until the solutions converge. Repeating the
process, solutions up to the nearest point of storm’s
centre are obtained.

4. Numerical experiment

We feel that a more quantitative description of the
structure of turbulence is needed for a satisfactory
formulation of the inflow layer. This could be achieved
after more observations hecome available, but in absence
of sufficient data, it is better to test different semi-empiri-
cal hypothesis and compare with available informations.

One of the objectives of this study is to investigate
how the turbulent structure could be represented in
the boundary layer. The following different formulations
of the eddy coefficient of viscosity for turbulent flow
are tested and compared with available informations.

4.1.1. Constant K- (Case A)

The simplest way to study the turbulent flow is to
represent it by a constant kinematic eddy coefficient of
viscosity K., as in laminariflow. In this case, it is diffi-
cult to estimate what should be the proper value of
K.. A value of the order of 50m?/sec was suggested
by budget studies of hurricanes by Kasahara (1961) and
Syono (1951), Rosenthal (1962), Smith (1968) and
Haurwitz (1936) used the same value. But, some as-
sume a value as low as 10m?/sec, while other consider a
value in the range of 100-150m?¥/sec. Here, we put
K.=30 m?2/sec, with no variation in the radial or vertical
direction.

2
(=0 ]
Lad

4.1.2. Variable K. (Case B)

Since eddy viscosity is not a property of fluid like
viscosity of Stoke’s law in laminar flow: but
depends upon itsell on the mean flow. It was unlikely
that K. could be regarded as a constant over the whole
extent of the storm. Prandtl hypotheses that lumps of
fluid on the whole preserve their velocity in turbulent
motion, and hence their momentum in the p:incipal
flow direction. According to his hypothesis the coeffi-
cient of kinematic eddy viscosity K. = I*(aV/eZ).
where V is the velocity of mean motion and */" is mix-
ing length, which is unknown. It is known from experi-
menta! evidence that turbulent drag is roughly propor-
tional to the square of velocity and the same result is
obtained from Prandtl's hypothesis, if mixing length
is assumed to be independent of magnitude of the ve-
locity. This consideration leads us to take K. propor-
tional to V,,. So we put K.—=1.25m. ¥, with ro vertical
variation. The choice of constant (1.25m) is to make
the maximum value of K.—50m?/sec, where V, becomes
40m/sec.

4.1.3. Exponential vertical variation of K. (Case C)

Under neutral stability and for moderate wind speed!
(less than about 15m/sec), it is well established obser-
vationally that K.=kv*z in the sub-layer, where <hearing
stress remains constant. The height of this layer ranges
from 50-200 m. In this formula k is Vonkarman’s con-
stant which is approximately 0.4 and v* is friction velo-
city defined in terms of the surface stress 7, by »~
—|7,/p| . Ata larger height, the variation of K. with z is
an open question, but one can say that the veriation is
much slower than in the sub-layer. Moreover, K. can-
not increase indefinitely. Consequently, we put K.—
K-*[1-exp(—kv*z/K.*)], where k=0.4 and v*=.5m/sec.
With this representation, K varies nearly linearly with
height near the surface, and less rapidly with increasing
height. At large height, it will approach to 50m?/sec.
In this case, there is no radial variation of K..

4. 1.4. Radial and vertical variation of K. (Case D)

Here, K. is considered from Prandtl’s mixing length
hypothesis as discussed in Sec 4.1.2, with a constant
mixing length and variation of 2¥/2Z in the boundary
layer. In addition, a constant value is added toit, so
that at the top of the boundary layer, K. does not be-
come very insignificant, where gV /2Z is very small. Thus,
we put K.=25m?/sec-103m? 3V'/¢Z. Anthes (1977) in
his numerical model for hurricane, used such anexpres-
sion for K. from empirical consideration. Here, K.,
will vary both radially and vertically.

4.2, External flow above the boundary layer

The external flow above the boundary layer is assumed
to be axisymmetric and in gradient balance without any
radial flow. In a tropical storm. one does not know the
exact swirl distribution and it need not be the same
for all storms. However, it is sufficient to take a profile
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Fig. 2. Radial profiles of maximum inflow velocity U

which has the general form of those observed in a t-pical
tropical storm. Rosenthal (1962) and Smith (1968)
derived the velocity profile of the external flow by as-
suming a suitable pressure profile in gradient balance.
In this problem the profile has been taken from Mandal’s
(1988) model of a tropical storm from tempeiature
anomaly field. Fig. 1 shows its variation with radial
distance, r. It increases rapidly from zero at the centre
to the maximum value of 40.5m/sec at r=1.4 (R=7)km),
and then decreases gradually with increasing r to about
Sm/sec at r=16.0 (R=800 km). In the core region, the
profile has slightly been modified to represent exact
rigid body rotation up to r=0.9. This enables us to
to compare the behaviour of our solutions with those of
rigid body rotation. In this profile, the relative vorticity
remains constant (136<1075/sec) up to r =0.9. then
decreases slowly ard becomes very small beyond r—3.0.

4.3, Gridsand numerical computations

From the Thermodynamic consideration, Palmen and
Riehl (1957) concluded that the inflow must be restricted
to the lower 3 km of the storm. This conclusion is
consistent with the mean hurricane composite obtained
from a standard data network by Jordan (1952) and
Miller (1958). Anthes (1982) pointed out that the strong-
est inflow occurs within an elevation of about 500m:
although weak infow often occurs at an elevation of
about 3 km or more. The radial wind componert is a
significant component of flow below 1.0 km. Carrier
et al. (1971) with their work beyond the core regon of
storm, have shown that thickness cf inflow layer is of
the order of 1.6 kra with an outflow layer of very weak
radial velocity above it. Frank (1977) in his composite
studies of hurricanes mentioned that there is a cyclonic
maximum between 900 and 800 mb (aPa), at the efi:ctive
top of the friction boundary layer. It is possible that
mid-level inflow results from an upward extension of
frictional convergence by cloud momentum fluxes or
from net entrainment into deep clouds.

Ir. our numerical calculations, we have fixed the upper
boudary of integration at a height of 1.6 km (4=1.6)
wit: equal grid spacing of 40 grid points, which reduces
the zrid length 7 % to 0.04. In radial direction the grid
len; th is variable. From outer region, it is decreased
step by step to the centre of the storm.

Ir tropical storm the ratio of its vertical scale o hori-
zon'al scale is very small; in consequence of it, the hori-
zonial gradients of the stress terms are much smaller
thain the vertical gradients. So, in the present study
the radial coeflicicnt of eddy viscosity will not be consi-
dercd for numerical calculation. It will be corsidered
in the next study.

5. Itesults and discussion

Fig. 2 shows the radial variations of maximum (at a
particular, r) inflow velocity for four cases. These occur
at different heights at different radial distances. In all
cascs, the radial velocity increases with decreasing
racius, slowly at first and then more rapidly as the re-
gion of maximum tangential velocity is approached;
thereafter, it decreases sharply to zero at the centre.
These are characteristic profiles of inflow winds asso-
ciated with a moderate storm. Its highest value shifts
slightly to the centre from the maximum superimposed
velzcity. This shifting may be the result of an inward
turtulent transfer of angular momentum from higher
wind region. In A and B, it has same value of 16.8m/
sec: while it is smallest (15.3m/sec) in D and largest
(20.5m/sec.) in C. Far away from the centre, A has lesser
valte than B; C and D are in betveen them. In B, it is

nezrly one third of the superimposed velocity V,,.

The variation of maximum radial velocity with the
same external flow can probably be explained by com-
paring it with experimental results of laminar flow.
In laminar flow, the boundary layer thickness of ro-
tating fluid on solid surface is proportional to y/(K./Q),
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where 2 is the angular velocity of externai flow (Schli-
chting 1968). With same £, if the value of K.
is smaller, the change of ¥V from zero at the surface,
asymtotically to V,, at higher level, takes place through
smaller depth than with larger K.. But, as in case C,
if K. increases with height, the value of ¥ will remain
appreciably lower than V,, through greater depth than
with constant K.. Thus the radial inflow which is caused
by the deficit of centrifugal force in the rotational
component of velocity, will continue to maintain its
increasing tendency to higher level causing higher value.
Higher maximum value of U in C than in A, may
probably be due to this reason. Lower value in D, can
be argued in a similar way.

The maximum values of U obtained in cases A, B
and D appear to be consistent with those found in other
models and real storm. In Smith's (1968) model with
maximum superimposed velocity of 40m/sec, same sur-
face boundary conditions and with constant K, as in A,
maximum inflow velocity was 15,25 m/sec; while in
Rosenthal’s (1962) model with maximum superimposed
velocity of 46m/sec and different surface boundary condi-
tion, but with same value of K.. maximum inflow velo-
city was slightly more than [4m/sec. Anthes (1982)
has pointed out that for a wind speed of 50m/sec and
typical cross isobaric flow angle of 25 degree, the
radial component would be 21m/sec.

NON-DIMENSIONAL-2
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Fig. 4. Vertical profiles of G, case B

The radial velocity varies with height and radial dis-
tance. Fig. 3 shows the variation of U with height
at different radial distances in B. The profiles away from
the centre are more flat and gradually become steeper
as the radial distance decreases. The variation is steeper
near the surface boundary as would be expected. At
higher levels, it slowly decays to a vanishing value,
The height of maximum value also decreases with dec-
reasing'radial “distance. In the core region, there is a
weak outflow above the inflow region (r=1.3). Com-
posite studies by Shea and Gray (1973) support this.
Extremely low sea level pressure in the centre of a fully
developed storm far exceeds the value that could be
caused by the hydrostatic effect of the temperature
rise in the wall cloud by the release of latent heat of
condensation. The development of the central eye
with its considerably higher temperature is, therefore,
due to other effects. This could be due to the subsi-
dence caused by the radial outflow of air in the lower
level during deepening process. Gray and Shea (1973)
mentioned that very strong horizontal wind shear at
the boundary of the eye and eye wall region induces a
high degree of turbulent mixing and horizontal momen-
tum transfer into the eye where pressure gradient is
small. The winds on the inner edge of the eye, thus
must become supergradient and be accelerated outward
into the wall clouds, inducing sinking of air from higher
levels and warming in the eye. :
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Fig. 5. Vertical motion at the top of the inflow layer

The vertical variation of G. and hence that of I at
different radial distances are shown in Fig. 4. Here
also, the variation is steeper near the surface and tends
asymptotically to unity at higher level. In the upper
part of the core region, the value of G exceeds unity-
As discussed in previous paragraph. this may be due to
horizontal momentum transfer into the eye.

The profiles of vertical velocity W, at the top of the
inflow layer for the four cases A, B, C and D are shown
in Fig. 5. The circumferential velocity distribution in
the boundary layer must transport fluid radially inwarcs-
and the fluid must be supplied by a very slow downward
motion in the exterior region. In all cases, there is a
large region of slowly varying weak downdraft sur-
rounding a small region of updraft around the centre,
The updrafts are strongest close to and slightly inside
of maximum tangential velocity. The downdraft extends
from the edge of the storm. gradually increases with
decreasing radius, then again decreasas and becoraes
an updraft. Up to 125km the updraf. is very small:
but inward of this position, it increases very sharply.
The maximum value of
A, B, C and D are

downdrafis in cases
0.65, —0.25, —0.52 znd
-0.25 cm/sec respectively. In Carrizr er al.  (1971)
work for exterior region (K. — I0m?%/sec) it was
—0.26 cm/sec; while in Smith’'s (1968) mocel
(Kz=50m?/sec), it was —0.50 cm/sec. In A and C. the
maximum upward velocity in the core region remains
nearly constant with decreasing r: while in B and D.afier
attaining highest value it decreases towards the centre,
more sharply in B thanin D. The depth of ihe inflcw
layers in the core region are shown in Fig. 6. In A, the
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Fig, 6. Depth of inflow layver near the core

maximam value of W' is 32.5 em/sec with nearly con-
stant thickness of the inflow layer in the core; the case
C is rearly of the same type, but with lesser values.
In B, the maximum value of W is 34.5 cm/sec. Eoth
W and thickness of the inflow layer gradually decreased
towarc: the centre. In D, the maximum value of IV is
35.2 cm/sec, which is the highest of all cases. The
inflow iayer also decreases towards the centre but less
rapidly than B. The variation of W anc the thickness of
the infow layer in the core region in all cases seeri to
be consistent with the variation of the coefficients of
eddy v scosity.

The motion near a stationary wall, when the fluid at a
large distance above it rotates with constant angular
velocity and constant viscosity are discussed in Schli-
chting (1968). It is found that the vertical velocity com-
ponent, W does not depend upon the radial distance r,
and at all points it is upward.  In this study the angular
velocity of the superimposed flow is rearly constant in
the core region. and in A we have got same type ol
results as above. In Rosenthal’s (1962) model, with same
K. and boundary condition as in A. and maximum
absolutz vorticity {- 650 1073/sec.  the maximum
upward velocity was 22 cm/sec near ihe maximum super-
imposel velocity, V., (46m/sec). In Smith's (1768)
model. it was more than 100cm/sec at ¢ distance of !3km
from ti-e centre with £ =205~ 107%/sec and V -40m/

LITELE

sec at 40 km from centre. In Leslie and Smith’s (1970}
model. with K. =7.8m#/sec, and same V,, profile as in
Smith’s, maximum W was 37 ecm/sec. far inside the core
from 17 .
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It has already been mentioned that Smith (1968)
and Leslie and Smith (1970) used a momentum integral
method. Frank (1977) in compesite studies of hurri-
cane pointed out that the vertical velocity at a radius of
|-degree from the centre and at a height of 950 mb was
about 400 mb/day (x4.5 cm/sec). Gray anc Shea
(1973) computed the vertical motion kinematically
utilising divergence from composite studies above 900
mb. The largest ascending vertical motion was of the
order of 80 cm/sec above 650 mb. It was concentrated in
a narrow zone around the radius of maximum wind.
Just above 900 mb, it was of the order of a few =m/sec.
This pattern supports the view, first menticned by
Wexler (1947) and later emphasised by Hughes (1952)
Simpson (1952) and others, that a large fraciion of
ascending motion often occurs through a relatively
narrow ring near the storm’s centre. A study by Riehl
and Malkus (1961) indicates that the hurricares does
not have a uniform vertical motion pattern; only a
small portion of the inner core is covered by @ strong
updraft. From the results of Malkus et al. (1961),
it was estimated that only 4%, of the inner rain band
area between 10 & 100 km radii had hot towers with
10m/sec updraft near the tower top. Anthes (1982)
pointed out that the vertical velocity at the cloud base is
considerably larger than the mean vertical velocity.
If updraft of a cloud base covers 5% of the area and
there is no subsidence between the clouds, then the cloud
base vertical velocity for a mean value W of 2.7 cm/sec
would be 54 cm/sec. In reality, air is subsiding between
clouds, so that cloud base vertical velocity would be
greater.

The inflow angles at the surface for four cases are
shown in Fig. 7. In all cases, the inflow angle is small at
large radii; it gradually increases with decreasing
radius and becomes maximum outside the region of
maximum velocity, then it decreases rapidly at different
rates. In the central core, it decreases slowly or remains
nearly constant. In case C, itis too large throughout
the entire storm area. In the outer region, the variation
is more in A than in B or D. In the core region, the
rate of decrease with radius is more in B than in A
while in D, it is nearly constant. The maximum inflow
angle in A and B is 34-degree; butin D itis 31 degree.
The variation in different cases may be attributed to
the variation of the eddy coefficient of viscosity near
the surface. The maximum inflow angle in Rosenthal’s
(1962) model was about 33-degree. Frictional conver-
gence enhances the convective heating and this increases
the convergence through modification of the pressure
field. Consequently, one might expect that frictional
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Fig. 7. Surface inflow angle as a function of radius

convergence is relatively large in the inner part ol the
convective arca, except near the storm centre. Inflow
angle in B, appears to be consistent with reality.

6. Conclusions

It is evident from our results that the magnitude
and distribution of induced meridional circulation de-
pends upon the structure of turbulence. In the core
region, if K. is constant both radially and axially, the
upward velocity W does not decrease from its maximum
value towards the centre. This is not consistent with
the existence and favourable for creation of an eye of
a tropical storm. If K increases from surface with height,
but does not vary with radius, both the radial velocity
and inflow angle become too high and in the core region
W does not decrease to the centre. On the other hand,
if the eddy coefficient of viscosity is assumed to vary
with the superimposed flow above the boundary layer,
the solutions compare favourably well with observa-
tions including inflow angle and boundary layer thick-
ness. One of the important results of this study is that it
can simulate the outflow in the core region of boundary
layer which is essential for creation of an eye. Though the
vertical velocity is a very small quantity in comparison
with other components, its magnitude and distribution
is very significant for the growth and maintenance
of tropical storms. Itseems that this model can simul-
ate it well. This model can be used to study the boun.
dary layer of a tropical storm from outer region to the
centre of the storm without neglecting non-linear terms
in equations of motion. Moreover, there is no necessity
of assuming any velocity profile, as required in momen-
tum integral method. Representation of different
kinds of boundary layer flow in the interior and exterior
regions of a storm by a single Stoke’s stream function as
developed in this study seems to be consistent with the
physical process of real storm. Finally, the finite diffei-
ence method applied here, can be used to solve other non-
linear simultancous differential equations.
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On the sea surface, only the no-slip boundary condi-
tions of the variables have been tested. Further studies
are to be made incorporating suitable surface stress
terms.
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