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ABSTRACT. The correlation between two series of rainfa'l recorded at two stations which are at short
distance, is usually found significant. This informztion has importznt applicability in the areas of data interpola-
tion, network design, transfer of information in respect of missing data and deriving areal rainfall from point
values. In this paper 70-year (1901-1970) annual rainfall data for about 1500 stations in India have been analysed.
The distribution of correlation coefficient (r) for the stations located within a distance of 40 km were obtained.
Attempt has been made to derive theoretical model of r. For this purpose two distributions, (1) a two parameter
g—distribution and (2) a two parameter bounded distribution, have been chosen as in both cases the variable

ranges from 0 to 1.

Key words — Spatial rainfall correlation. # and bounded distribution, Network design

1. Introduction

The variation of rainfall in space and in time are
well known. However, it is generally expected that a
direct correlation may exist between the rainfall at
stations close to each other and the correlation may
decrease when the distances are large. Attenpts
have been made by various authors in the past to es-
tablish a functional relationship between distance and
rainfall correlation. Upadhyay et a’. (1990) determined
the rainfall correlation structure over the dif-
ferent regions of India for distances up to 600 km and
established that space rainfall correlation decreases
exponentially with distanceand projected practical use
of such an information in the field of rainfall estimation.
network design, rainfall analysis and transfer of rain-
fall information from one station to another including
interpolation. Ramanathan ef al. (1981) used corre-
lation structure for determining optimum network
density. Rodrigues and Mejia (1974) used this
correlation concept for determining error factors in esti-
mating areal rainfall from point rainfall. Hershfield
1965) used space correlation for determining proper
spacing between gauges.
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The present work is a further attempt in the earlier
direction to bring out exclusive behaviour of space
rainfull correlation (r) for short distances (< 40 km)
over plains of India excluding north eastern States.
This study of correlation distribution, where high degree
of positive relationship is observed, will augment in-
formation on transfer of rainfall from one station to
another and interpolation of mis$ipg rainfall data in
spatial series.

2. Data

70-year (1901-1970) annual rainfall data of about
1500 ~ stations distributed over plains of India have
been used for this study. The correlation coefficient
between all pairs of stations within 40 km of distance
were worked out.

3. Behaviour of correlation coefficient at short distances

Suppose there are ‘n” stations. From the ‘s’ annual
rainfall series recorded at these stations, "C, corre-
lations coefficients (r) can be obtained. Also, there
will be »C, values of distances (s) between these pairs
of stitions. Assuming " and s’ as random variables,
a bivariate frequency distribution can be worked out.
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A conditional distribution with “s" lying between 0
and 40 km has been prepared and shown below :
Class () 002 0.2-0.4 04-0.6 0.6-0.8 08-1.0 Toial
Frequency lal 427 1017 1053 288 21948
()

It has been found out that most correlations for such
short distances are positive. It is also a logical deduction
if we consider the scale with which a pressure system
affects over a region. Under this assumption, a few
negative values of *r" obtained during the process of
calculation have been ignored. This keeps the range of
" between 0 and | instead of — 1 and - 1.

The statistical nature of this distribution is summarised
below

Mean 0.56
Standard deviation 0.20
Skewness (4 ) - 034
Kurtosis (B, —3) 0.62

This distribution is unimodal having long tail to-
wards left as apparent from definite and significant nega-
tive value of skewness.

The average value of correlation (0.56) also is highly
significant and is large enough to be applied in practicul
cases. The Kurtosis value (0.62) indicates slight elon-
gated peak although it does not appear to be signifi-
cantly different from normal peak.

4. Statistical modelling of

With a view to enable the distribution for further
algebraic treatment and to enhance its applicability,
it 15 desirable to derive a sampling distribution of cor-
relation coeflicients under ithe conditions described in
section (3). Since the sampling distribution is bounded
between 0 and | the following models have been at-
tempted.

(A) Two parameter g — distribution of Type I.

(B) Two parameter bounded distribution whose pro-
bability distribution function (p.d.f.) is given as :

fr)y=abr=t (1 — iyt (1)

where, a 1, b l and 0 = » |

4.1. Firting of B — distribution Type |
We have considered g — distribution witk p.d.l.
!
Bl =g ™ =y (2)

where, a=>1,b 1 and 0 r<|

The parameters @ and b were chosen so as to satisfy
the following 3 equations

1
a ‘-7 b r (= 0.56) )

ab

(@~ b2la+b—1)" o {=0,0409) 5

, 2b—a) fa—p+1) -
and (a — F ‘!)~/ b =\ Bi(=—0.34) (5

Solving algebraically the following values give best
fit to the above equations
t=2.9 and bF=1.9

Hence the distribution function
. I 19 09
Bir) (2.9, 1.9) [ i (L—ry dr (6)

The following approximations for evaluating in-
complete f—function B (r) is given below as suggested
by Milton er al. (1964) :

B(r)— F(y) (7

o143

where v d —

and w, = (br)', ws = [a (1 — )]’

The procedure 1s applicable it (@ -1 b — 1) (1 —r)
0.8, F (y) is the normal probability function
given as .

The values o F (1) can be obtained from standard
statistical tables.

When(a - b—1)(1 —r) = 8ihen B(r) = Q( ]_\_:)

where, y* = (¢ + b— 1) (I

I3 =) — (1—r)b—1)

and v 2h

o
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The values of @ (X2/v) can be obtained from the
standard tables.

The results are summarised in Tables | & 2.

TABLE 1
b Wy W, ¥y F(p) Cumulative
frequency
IN.F.(»]
0 0 1.4260 —4.9100 0 0
0.2 0.7243 1.3238  —1.8900 0.02939 87
0.4 0.9126 1.2027 —0.9216 0.17879 527
0.6 1.0446 1.0507 —0.8280 0.46812 1380
0.8 1.1498 0.8340 —0.8699 0,80780 2381
1.0 1,2385 0 —0.3890 0.99950 2948
TABLE 2
Actual frequencies Percentage frequencies
| — e P e e
Class Obs Exp. Obs, Exp.
(r) (0) (E) (0) (E)
0-0.2 161 87 5 3
0.2-0.4 427 440 15 15
0.4-0.6 1017 853 34 29
0.6-0.8 1055 1001 36 34
0.8-1.0 288 567 10 19
Total 2948 2948 100 100

B—distribution generates expected frequencies having
similar statistical features to those of observed. These
expected frequencies alongwith the observed frequencies
are plotted in Fig. 1. However, the X*—test of goodness
ol fit does not show that the difference between the
observed and expected frequencies is insignificant.
When x2—test is applied to percentage frequencies.
the difference is insignificant. (y® calculated=6.6:
¥2-0:=9.5 at 4 degrees of freedom).

4.2, Firting of bounded distribution

For fitting the bounded distribution suggested in
section 4(B), the parameters « and b are estimated using
mode, mean and standard deviation of the sample.
These parameters describe the central tendency. varia-
bility and skewness of population.
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‘a — I\ 3
Mode = (:b- : ,)" —0.63 (9)
|
Mean = bﬁ(.f + 1, b) = 0.56 (10)
a '
2 1 1
Variance = bf ( + l.b) — b? [ﬁ ( + 1, b)J
a a
— 10,0409 (11)

It may be algebraically deduced that ¢=3 and b=3
provide best fit to the above set of equations.

Hence, the probability density function can be ex-
pressed as :

flr)y =921 —r3p

of f(r) = 9t — 215 - r¥) (12)

It can be shown that

f(r)ydr =1 (13)

o

The distribution function

F(r) = »r¥— 3% + 3¢ X

where, 0<< p <1 (14)
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from which expected frequencies can be calculated.
The results are presented in Table 3.

TABLE 3

Cumula- Actual fre-
lative guencies
frequen-
Class (r) F(r) cies Obs Exp
(0O} (E)

Percentage
frequencies

e ke =

0.0-0.2  0.0238 : 2

0.2-0.4 0.1799 53 7 b 16
0.4-0.6 0.5181 53 3 34
0.6-0.8 0.8838 6 36

0.8 1.0 1. 0000 10 12

Total 100 100

These expected frequencies are plotted in Fig. 1.

If we apply x*—test on actual frequencies by pooling
the first and last frequencies with those of adjacent
classes.

x® calculated=10.2 against y*., — 9.2 at 2-degree
of freedom.

This shows that expected frequencies are marginally
different from observed ones at 19, probability level.
However, when y®-test is applied on percentage fre-
quencies, y* - calculated=3.2 as against y*.,,=13.3
showing an insignificant difference.

From Fig. 1 it can be seen that the bounded distri-
bution gives a better fit to the observed distribution of
‘¥’ than the two parameter p—distribution of Type 1.

5. Applications

Once we obtain a probability density function of
correlation coefficient */* we can generate theoretical
frequencies and moments of any order describing com-
pletely statistical behaviour of the correlation pattern.
In the present case the moment about the origin is

given by :

For bounded distribution :
Y] LA
iy = (a ' )

and for p—distribution of Type |

. Bk +ab)
My = 7 Bla. b) (16)

These results will facilitate the application of space
correlation structure in rainfall series in various fields.

Some are provided below :

(a) The information contents regarding population
mean ()

It can be deduced that sampling variance of r com-
puted from "n" set of observations, is given by

>

Vo(r) o—'[1 (n e

n

The information content regarding p is given by

" [1 (n D

(b) Nerwork desien

If we are estimating the areal rainfall using "»" points
of observations in respect of one rainfall event, the
variance ol estimate is reduced to :

1" (P ) "—-( |
n

where. 2* is the population wvariance for point
rainfall process. A network design scheme should aim
at determining the network density ‘n’ for minimum ac-
ceptable variance. The cost of maintaining n —stations
will also come into considerations.

(c) Areal to point raintall ratio

Many researchers (Upadhyay er al. 1990) believe that
Py/P varies with k' root of r k may be
2 or 3 or even more. Therefore.

P _ Yk
7, * (1)

It may be seen that in all the applications indicated
above, r plays 2 critical role. The theoretical model not
only facilitates computation of 7 easily, but also provides
for the sampling variance of , yielding an interval esti-
mate. These interval estimates provide flexible appli-
cations in interpolation, estimation of missing obser-
vations and evaluation of forecast accuracy.
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