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A numerical model for flood routing

S. N. KATHURIA
L Meteorological Office, New De@hi
(Received 5 June 1980)

ABSTRACT. The paper presents an attempt to develop a numerical model for flood routing.
This has been done for the river Yamuna. Using an implicit difference scheme, we present results te
* show that the model predicts the discharge and time of arrival of the peak flood with reasonable accuracy,

1. Introduction

Modern management of water resources re-
quires good techniques for flood forecasting.
Such techniques may be classified in two broad
categories, namely, (/) hydrologic methods and
(ii) hydraulic models. ‘

Hydrological routing employs an equation for
the mass balance of water and a relationship to des-
cribe the storage of the system. Onthe other hand,
hydraulic routing is based on the equations of
fluid mechanics, namely, an equation for the con-
servation of momentum which is coupled with
the equation of continuity. Numerical solutions
of these equations are now possible with computer
facilities in India. As the equations are non-
linear, analytical solutions are not possible.

The partial differential equations which are
used in this area can be often conveniently solved
by finding the characteristics of the system.
Numerical integration is then possible along the
characteristic equations. On some occasions,
however, it is convenient to use finite difference
without resorting to characteristics.

An explicit method for integration was first
used by Isaacson et al. (1956). It was soon realised
that this method had one major difficulty. This
was the stability condition, ¢cA#/ Ax<<1 which im-
posed severe restrictions on the increments of

" time and space. Here we have represented the

phase speed by c, the increment in time by At and
the increment in space by Ax. C

Implicit finite difference schemes permit us
to use larger time increments. This has been
applied for flood routing by several authors

(523)

(Baltzer and Lai 1968; Amein 1968; Amein and
Fang 1970). ‘ :

In this paper, the equations of unsteady flow
were solved by an implicit finite difference scheme.
The resulting difference equations were solved
by Newton-Raphson iteration, This was applied
to the river Yamuna. As the data that were avail-
able to us were scanty, the model was calibrated
with the data available for an earlier flood (1974).
Using this method of calibration, we solved the
equations to predict the flood for a subsequent
year (1977). The length of the river was taken to be -
00 km between Kalanaur at the upstream and
the Mawi at the downstream point. The course
of the river is shown in Fig. 1. A flood of
96 hours duration was selected for routing. Ini-
tially, the flow rate was assumed to be the same,
that is, the base flow was the same at each section.
The full reach was divided into four sections
each at an interval of 30 km from the other.

The discharge and time of arrival at downstream
was predicted with an accuracy of 10 per cent.
Inspite of the limitations of scanty geometric
data, the method proved to be fast, accurate and
useful for routing the flood in Yamuna. -

2. Symbols

The following symbols have been used :

A : Cross-section area (m?) of the channel
X : Distance (m) downstream along the channel
't : Time (sec)

y : Vertical depth of flow (m)
Q : Flow rate (cumecs)

g : Lateral inflow (cumecs)
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Fig. 1. Base map of Yamuna river upto Delhi

Z :bottom elevation (m)

g : acceleration due to gravity (m sec™2)
S, : channel bottom slope

St : frictional slope

We define the frictional slope by )
Sy = n2 Q2 B4/3] A10/3 @2.1)
where 7 is Man’ning’s roughness coefficient and

B is the wetted perimeter of the flowing stream.
We have '

; B=%+5b 2.2
where b represents the width of ‘the flowing
stream (m). ‘

The cross-sectional area (4) of the moving

stream is taken to be the same for the whole
river. It.is

4 = a,+ a3 2.3)
where a,, a,, a, are constants depending on the

geometry of the river. They are pre-determined

at every section,
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Fig. 2. The grid in the (x, ¢) plane

3. Basic equations A

We represent the conservation of mass and

momentum (Stoker 1957, Chow 1959) by

24 390
%% %(Qz/A)+ 94 g.w(y—]—z)—!—gASfxO (3.2)

. The above equations are supplemented by one
Initial condition and two boundary conditions.

The inijtial conditions are the specified values
of y and Q at x=0 (upstream) and t=0, that is,
before the rise of the river stage. The boundary
conditions are :

(i) The values of y as a functior. of time at
the upstream end and

(if) the rating curveat downstream end.

Eqns. (3.1) and (3.2) are represented by finite
differences by grids in the x-r plane. This is
shown in Fig. 2. Each discrete grid point  is
designated by a double subscript (i, j) where i is
the x-position and j is the time level. '

Let us define the following space (i) and time
(j) increments for any dependent variable F

5 F — A—;[Fm -~»F,'] (3.3)
1 |
8 ~ E[F,-H—F,-] (3.4)

The above expressions represent forward diff-
erences of Fin space (i) and time (j). We repre-
sent the average values of the forward differen=
ces by

BT 3| Byt 6T | e

§; =1 [ (8 P)iss + (8 F).;] (3+6)
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Fig. 3. Upstream boundary condition showing the growth of depth () with time (z)

@— denote observed data

A similar expression follows for the average
value of F, namely,

ﬁ:i[p(«:,j)-;-ﬁ’(ig,j‘)'—klf‘ (6,5 +1) +

+F(z’+1,j+1)] (8.7

With the above notation, the finite difference
analogues of (3.1), (3.2) with the help of (3.3)—
(3.7) are

§:iQ+84—qi=0

S0+ 8o (@) + 9|3 Gy + ) +

(3.8)

+9(A% §n) =0, (3.9)

Eqns. (3.8) and (3.9) form a set of two non-
linear equations for y and the discharge Q at
(i, 7+1) and (i-+1, j+1). The values of y and Q at
(i, 7)and (i+1, j) are known by the initial condition
or by the previous time step. For N grid points,
~ this forms a set of 2(N-1) equations. These
equations are supplemented by two boundary
conditions.” Closed system of 2 N linear equations
is thus obtained which we solve by the Newton’s
iteration. e -

The computation proceeds by advancing the
solutions stepwise in an upstream direction. The
solution of the set of equations will provide
yalues of y; and Qjat the Kth iteration. The

procedure can be repeated to achieve the required
accuracy for the depth and discharge. The values
of the variables thus obtained are at (j+1)th
time step, which can be advanced to further time
steps.

4. Results for the Yamuna

This method was applied to route the flood
in Yamuna. Fig. 1 depicts the base map of
Yamuna river upto Delhi. From the map we
find that there is no major tributory downstream
of Kalanaur. As the present study does not in-
clude the effect of discharge from tributaries,
we apply the model to the 90 km stretch from
Kalanaur to Mawi. '

The upstream boundary condition is given by
the hydrograph at Kalanaur. The downstream
boundary condition is controlled by the rating
curve of Mawi, which is approximated by

Q=a+ By @.1)

where the constants «, 8 and y are determined
from the rating curve.

The computations for depth and discharge
were carried out for a 3-hour time interval.
From the stability condition, we find that space
increment should be more than the distance
travelled by flood wave in a single time increment
(3-hour), that is, 21 km. Therefore, the channel
reach was divided into four segments each of
30 km length.
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Fig. 4. Discharge hydrographs
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(A) Observed and (B) Computed at Kalanaur
(O) Observed and (D) Computed at Mawi
(—denote observed data
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Fig. 5. Corrected upstream boundary condition
. showing growth of depth with time.

(®—denote observed data

soooy
!

7 A~

%4000} / AN
J PN
©

§3ooo-

3

2

o

2000

nooco‘ 2 24 36 48 60 72 - 84 96
TIME (hr) et

Fig, 6. Discharge hydrographs using corrected upstream
boundary condition

(A) Observed and (B) Computed at Kalanaur -

. (C) Observed and (D) Computed at Mawi:
®—denote observed data
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.The channel cross-section area (4) was ex-
pressed as a function of the channel depth(y) by
equation (2.3). The constants were determined
by fitting the data of 4 and y at a section. The
channel top width, (B) is g4/9y. The wetted
perimeter was equal to the top width. Manning’s
roughness coefficient was estimated to be 0.03.

The data were scanty. For the initial condition,
the model requires the depth, discharge and velo-
city at all the four segments in the reach. But,
the data were available only at upstream and down-
stream sections. The values of these parameters
at 30 km and 60km ssgments were computed
by calibrating the model with the observed flood
peak on an earlier occasion in 1974,

The upstream boundary condition requires
an estimate of the growth. of depth with time at
an interval of 3 hours. But, the data were avail-

able only at an interval of 24 hours. To overcome

this difficulty, the data were interpolated at intervals
of 3 hours. This was achieved by Lagrange’s
interpolation. The upstream boundary condition
is shown in Fig. 3.

After calibrating the model with the 1974
flood peak, the 1977 flood peak and time lag at
the downstream section was forecast. The initial
time corresponds to 3 August 1977 at 0830IST.
- The initial upstream discharge was 1131
cumecs, with an initial depth of 1.71 m.

The convergence of the discharge computation
‘was obtained with an error of 1 cumec, and for
depth with an error of 0.01 m. The above con-
vergence was achieved with 4 iterations. The
computer time for forecasting flood for 4 days
was about 3 minutes. The results of the compu-
tation are depicted in Fig. 4. The observed dis-
charge hydrographs at upstream and down-
stream sections are shown as curves (A) and (C).
The curves (B) and (D) are the corresponding
computed hydrographs.

From Figs. 3 and 4(A), we find that the observed
depths do not agree with discharge data. The
 difference between the two may be attributed to
discrepancies in the observed depth data. The
depth hydrograph was corrected so that it agrees
better in amplitude with the discharge hydrograph.
The data on discharges were more reliable than
the observation of depth. Hence, it was consi-
dered more reasonable to apply small corrections
to the observed values of depth, so that both
the depth and discharge hydrographs were in
reasonable agreement. The corrected depth hy-
- drograph, which was the upstream boundary
- condition, is shown in Fig. 5. Using this as a

boundary condition, the flood hydrographs were
computed again. They are depicted in Fig. 6.
It is seen from this figure that the agreement
between the computed and observed hydrographs
is much better. o L

5. Summary and conclusions

As we can see from Fig. 6, the observed and
computed discharge hydrographs are in good
agreement. The computed discharge and time
lag at the downstream section are approximately
10 per cent less than the observed values.

It may be noted that in the present study we
find that the assumption of taking the slope at
a section as being equal to the gradient of eleva-
tion with distance is not valid. One must take
the actual slope into consideration for forecast-
ing the time lag otherwise, the results will not be
satisfactory.

It is worthwhile to mention that there is a singu-
lar point upstream of Mawi (Fig. 1). The pre-
sent study is valid for a rectangular channel.
Consequently, the model was calibrated after
removing the singular point. The calibration of
the model showed that the speed of flow decreases
to 1/3 rd of its original speed after crossing the
singular point.

The present study can be extended to include
the effect of tributaries and contribution of runoff
due to rainfall and flood forecast may be done
with better accuracy.

It may be concluded that the implicit technique
of flood routing may be applied to Indian rivers
and flood can be forecasted with reasonable
accuracy. However, better accuracy may be
attained, if at least data before and after the
singular points are also available besides at up-
stream and downstream sections.
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