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ABSTRACT. On this work, contrast between two analytical and numerical solutions of the advection-diffusion
equation has been completed. We use the method of separation of variables, Hankel transform and Adomian numerical
method. Also, Fourier rework, and square complement methods has been used to clear up the combination. The existing
version is validated with the information sets acquired at the Egyptian Atomic Energy Authority test of radioactive
lodine-135 (I"*) at Inshas in unstable conditions. On this model the wind speed and vertical eddy diffusivity are taken as
characteristic of vertical height in the techniques and crosswind eddy diffusivity as function in wind speed. These values
of predicted and numerical concentrations are comparing with the observed data graphically and statistically.

Key words — Advection-Diffusion equation, Separation of Variables and Hankel Transform, Square complement

Method.

1. Introduction

An analytical solution of the advection-diffusion
equation is obtained using strong assumptions about the
eddy diffusivity coefficients and wind speed profiles.
They are assumed as constant throughout the whole
Atmospheric Boundary Layer (ABL) or follow a power
law (van Ulden, 1978; Pasqual and Smith, 1983; Seinfeld,
1986; Tirabassi et al., 1986; Sharan et al., 1996). Moriera
et al., (2005) presented a solution of the advection-
diffusion equation based on the Laplace transform
considering the ABL as a multilayer system.

Essa et al. (2011) have given outline of two types of
eddy diffusivities by analytically in two-dimensional
model. Marrouf et al. (2015) presented the changes in
advection diffusion equation by influence of eddy
diffusivity; Essa et al. (2020) evaluated the advection-

diffusion equation with variable vertical eddy diffusivity
and wind speed using Hankel transform.

The Adomian decomposition method (ADM) has
been applied and deterministic problems in many
interesting mathematics and physics areas (Adomian,
1994). Adomain gave a review of the decomposition
method in (Adomain, 1988). Wazwaz (2001) found the
numerical solution of sixth order boundary value problem
by ADM, El-Sayed and Abdel-Aziz (2003) compared
between Adomian decomposition method and wavelet-
Galerkin  method for solving integral-differential
equations.

In this paper, comparing between two analytical
solutions and numerical solution of the advection-
diffusion equation has been done using the method of
Separation of variables, Hankel Transform, Fourier
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transform and square complement and Adomian
decompositions method have been used to solve the
integration. In this model the wind speed and vertical eddy
diffusivity are treated as function of vertical height in the
two methods and discretized into N sub-interval layers in
numerical method. The proposed concentrations are
validated with the concentrations data sets obtained from
Egyptian Atomic Energy Authority experiment of
radioactive lodine-135 (1**) in unstable conditions.

2. The first mathematical model

The Diffusion equation in three dimensions is

! aC(x, y,z)zi{k aC(x, y,z)}
ox oy’ oy
L0 |:kz aC(x, y,z)}

E oz

(1)

Where, C(x, y, z) is the concentration of pollutants
(g/m*) or (Ba/m®), k, and k, are the eddy diffusivities in
crosswind and vertical direction respectively, u is the wind
speed (m/s), x is downwind distance (m).

By taking crosswind integration with respect to y
from - to o, one gets diffusion equation in two
dimensions as follows:

i) .

y oc,(xz) o

oX =5 oz

where, Cy(x, z) is the crosswind integrated
concentration of pollutants. Eqn. (2) is solved under the
boundary conditions as follows:

(@) The condition of null flux is applied at the
mixing height.

oc
k, —=0atz=nh(2a
1, (29)

()" The condition of deposition flux is applied on the
ground surface

kZaa—C:de(x,z)atz:O (2a)'
z

(b) The mass continuity is used.

uC,(0,z)=Qs(z - h)at x =0 (2b)

where, h is the heightof the atmospheric boundary
layer (ABL) (m), “Q” is the emission rate (g/s) or (BQ)
and ¢ is a Dirac delta function.

(c) The crosswind integrated concentration tends to
zero as z tends to oo.
Cy(x,z2) >0 asz—o (2¢0)
(d) The crosswind integrated concentration vanishes
at the mixing height.
Cy(x,2=0 asz=h (2¢)
Assuming the wind speed u and the vertical eddy

diffusivity k, are taken as power law in vertical distance
“z” as follows:

u=oz’ ©))
k, =7"(4)
k, :%zp @y

where, a, B and y are constants, n and p depending
on stability conditions (Irwin 1979). Then Eqgn. (2) can be
written as:

0°C,(x,z) ‘oz

01 0C,(x,2) P oCy(x,z)
oz’ oz ox

n

7
®)

ZZ—n

Multiplying Eqgn.

(5) by ,then Eqn. (5)

becomes:

, 0°C,(x, z)+ - ac, (x, Z)_gzz+p—n oc,(x,2)

z
oz? oz y OX

(6)

Changing the independent variable z to s by the
2+p-n
substitutions =z 2

then Eqn. (6) becomes:

y =0
oX

2
526 Cy a
2+p—n

p+n Cy « 2 Y ,aC
5+ S S
s 2+p-n 05 y
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Eqn. (7) can be further, simplified by the substitution

Cy (X, 2) =™y (X, S), where m = 5 1-n -, then one gets.

+p-n

*¥(xs) 1 aw(x,S)_(mjzl,,(x,s)

0s? s 0s
, ®
a2 81//(x,s)_0
y\2+p-n OX

Eqgn. (8) can be solved for vy (x, s), by using
Hankeltransform Essa et al. (2020), which is defined as
follows:

Half(s)]= T(&)= [ 1(s)om(cs)scs

Jn is a Bessel function of first one of order "m" and
the inverse Hankel transform is defined as

00 ~

s [F(E)]- 10)= [ F()n (o)

where, the Bessel differential operator is defined as
follows:

The Hankel transform is given by

Ho[An f(s)]=-E21()

Applying the Hankel transform on Eqn.(8) and

assuming\y(x,s)=0,s:%:o as S— o
2
_af_ 2 ) oylxs)
ﬂm[Amw(X,s)-y[m_nj b ] ®
One gets:
2~
_ g2 _z 2 81,1/(X,§)
él//(x,é)—7£2+p_n] > (10)

Eqn. (10) has the solution,

2
v(xg) = wlxe) exp[_ﬂ“_g—”j Xéz} 1)

Using the boundary condition Eqgn. (2b) then one can
get:

2
w(015)=ﬁ‘{52+“ —h] (12)
as

2+p-n

Applying Hankel transform to Eqgn. (12) we obtain:

Halp(0,5)]=(0,¢)= j: w(0,5)J,(&5)sds

therefore,

2+p—nj

Jn §h( 2

)= Q2+ p- n)h[;n]

w(0.& »

Then Egn. (11) becomes:

2+p—n)

Q(2+p—n)h[_2j I, f:h[ 2

20

2 2
exp[_l[yj X§2:|
[2/

Now assuming the inverse of Hankel transformation
to Eqgn. (13)

v(x &)=

(13)

Ho [0 ] =wlxs)= [ (0 ) ()t

Then, one gets:

ol?

ST

I
X —
P 7(2+ p-n)x
2+p-n
2ash( 2 j

" y(2+ p-n)x

| (14)

where, |, is the modified Bessel function of the first
kind of order m.

2+p-n
By using the inverse substitutions=z 2

(x, s) = s™C, (x, z), wherem = 1-n
2+

and vy

, then the final

solution of Eqgn. (2) is in the form:
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a)e QT [ et e
T 2+ p-nkx A2+ p-nix

5| Ao+ p-nPx

(15)

and then the concentration in three dimensions has been
used as follows:

C,(xy,2)=

Qenz [ afrr)enen)]
J2roy(2+ p-n)x y(2+ p-n)’x

24 p—
| Za(z h)( +g :
(Zi;",n] y(2+p-n)x

Y w
e 20')2, u

(16)

where, o, is the standard deviation in crosswind
X
direction and e Y is the radioactive decay for the
specified nuclide (lodine-135) and v is the decay
coefficient of lodine-135.

3.  The second mathematical model

Now the advection-diffusion equation in two
dimensions Eqgn. (2) will be solved by second
mathematical model, considering the height of ABL (h) is
discretized into N sub-interval layers such that within each
interval, k, and u are taken as average values. Then the
solution of Eqgn. (2) is reduced to the solutions of N
equations of the following type

. oC,(x,2) kaZCy(x,z)
oax

where,

G —— [ ()2

Zi = Zj°m

u; ! rm u; (z)dz

Ziy1 —Ziva

for,zi<z<z,i=1:N

By using separation of variables, assuming the
general solution of Eqgn. (17) in the form:

Cy(x,z,h) =X (x) Z(z, h) (18)

Substituting from Eqn. (18) in Eqgn. (17) and dividing
on X (x) Z (z, h), one can get:

ki d?zZ(z,h)
uZ(z,hy) dz?

=-\2 (19)

where, A% is a constant of separation. Eqn. (19) is
divided into the following two equations as follows:

X)) (192)

d®Z(z,h 7
dz(ﬁ )=—”; z(z.h) (19b)
n

The solutions of Eqns. (19a, 19b) have the form:

X (x)=c(h)e (20)

Ui

z(z,h>:A1<h>e”zE Ll Vs

(21)

where, ¢ (h), A; (h) and A, (h) are depending on
mixing height (h). Then the solution of Eqn. (18) can be
written as follows:

Cyn(x,2,h)= c(h)Al(h)e/IEXJrM'Z\/E

(22)
—ﬂfx+iﬂ|z\/l;:
+c(h)Ay(hle !
Since 0 < A <o, where, | =0, 1, 2, ...., varies

continuously as integer values, the sum of all these
solutions depends on the integration of A, so the general
solution is as follows:

- “2x+igz ML
O P
(23)
—/1|2><+i/1|z\/E
+ (4, h)Ay (4, hle < ldA
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Also, we can write Egn. (23) in the form
Conlx2.0)= [ 2 )AL (2 1)

oA A e W'Z\Edzl

(24)

Let,
R(2,h)=[c(%, h)A (4, h)+ o= 4, h)Ay (- 4, h)]
such that

R(4,h)=[c(4,h)A(4,h)] if 4 >0
R(4,h)=[c(= 4, h)Ay (= 4,h)] if 4 <0

then, Eqn. (24) becomes

Cplz.h)= " R(a,h)ei'w'zﬁdﬂ. (25)

To find the value of R (A, h) use the Fourier
Transform of 8 (z — h) as follows:

Then, Fourier Transform of & (z - h) is

! [ e (Z_h)\/Ed,u

5(z-h):§

—o0

(26)

By using the boundary condition in Eqgn. (2b) then,
the value of R (%, h) can be written as follows:

Rul,h)=%e“'hsﬁ (27)

Then Eqn. (25) can be written as follows:

o iAx+in (z-h) [M
Cplx,2,h) =2 [ \Edl, (29)

Considering the square compliment method to solve
the above integration Essa et al. (2011), then the solution
of Eqgn. (17) can be written as follows:

7(z—h)2ui
Q e 4k;x (29)

ZUiM

then the concentration in three dimensions will be

Cyn(x,2,h)=

C(x,y,z,h):Le 1)

2y 2x7o\;

where, u; and k; are taken from two equations (3)
and (4) respectively. oyis the standard deviation in y
128
direction and e Y is the radioactive decay for the specified
nuclide, v is radioactive coefficient.

Numerical method

Now the advection-diffusion equation in three
dimensions Eqn. (2) will be solved by second
mathematical model, considering the height of ABL (h) is
discretized into N sub-interval layers such that within each
interval, k;, k, and u are taken as average values. Then the
solution of Eqn. (2) is reduced to the solutions of N
equations of the following type:

2 2
0, oc(x.2) _ K 0 C()z( Z)+ K 0 C()Z( 7) 31)
ox oz oy
where,
1 Znn
k =
" Zni1— Zp Ln n(Z)dZ
1 Zna
up —an u,(z)dz
for,z,<z<z,4,i=1:N
9°C(x,z) _u, aC(x,z) Ky 6%C(x,2)
2 L T 2 (32)
az an ax an ay

Taking A = uy/ kg, and B = kyn/k,, and ky, = Bu,
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Equation (32) can be solved using Adomian
decompositions method as follows:

L,C (x,z) =ALcC (x,z) - BL,C (x, 2)

2 2
where, L, =a—2, L, =iand Ly :6—2
oz X oy

Multiplying both sides of this equation by inverse

y24

C(x,z2)=C, + AL, L,C(x,z)- BL;L,C(x,z) (33)

Assuming that :

=M (x) + zN (X) (34)

where, M and N are unknown function which will be
determined from boundary condition using equation (34)
to get the general solution in the from:

Crur = Af LZ %dzdz— | j: 8;_(32” (35)

Putn=0

c1=A”: a;: dzdz—BJ.j: Z/—C;

cl_A” (a'\" z—dezdz
J'J' (6 M zi]dzdz

2 2 2 3
O PR (N Y- P N
ox oy )2 x oy 3

(36)

Assuming the solution has the form:

w,=>'C,

0

2 2
W, =Co+Cy =M + 2N +| A _g M 2
OX oy- | 2
2 3
L AN _goN 7
X oy? | 3
(37)

By differentiating the equation (37) with respect to

z and multiplying by k, we obtain:

2
K, M N(x)+ 2k, AM g M
oz ox oy?

2 2
(AN _g 2N
2 X oy

Using the boundary condition (8c) at z = 0, we obtain

(38)

oy
Loz

M<x>=§—§N<x> (39)

=k,N(x)=vgM(x)

Using the boundary condition (8b) at z = h, we

obtain that:

N y>+h( “;]

(40)

Eqn. (40) becomes:

(—hZBvd—ZkoBh) 52|\2/| . h?Av, LhA [ﬂj
2k, oy 2k, X

+\|:—"M(x,y)=

0

(41)
The final form of Eqn. (41) in the form:
2
oM _AM _pm =0 42)
oy B ox
where, D 2Vg
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TABLE1

Power-law exponent p and n of wind speed and eddy diffusivity
as a function of air stability in urban area

A B C D E F
p 0.15 0.15 0.20 0.25 0.40 0.60
n 0.85 0.85 0.80 0.75 0.60 0.40

TABLE 2

Shows that the values of standard deviation in crosswind
o, through different stabilities

Stability classes Values of g,
A o, = 0.40x%%
B o, = 0.40x°%
C o, = 0.36x"8°
D o, = 0.32x°78

Eqn. (42) is solved by separation method as follows:

2
X _[o-ABy o ag )

dx A

2
Zy—z +A2Y =0 (43b)

Then, the solution of Eqn. (43b) is in the form:

Y (Y) = cscos (Ay) + ¢4 sin (Ay) (44)
. .. 0C .
Taking the COﬂdItIOﬂE =0aty =0, Lywhere, L,is
a large distance in y direction. Then, Eqn. (44) becomes:

ol )

y

Also, the solution of Eqn. (43a) becomes:

D-42 )Bx

X(x)=cse A
Then, the total solution of Eqn. (42) becomes:

D-42 |Bx iz
cos| — |y
A L,

M(x,y)=cee

By applying the condition

uC(x,y,z)=Qds(z)s(y) at x=0, One gets:

y {D—f JBx i
(x, y):Ue cos — |v (45)
y

Substituting equations (39) and (45) in equation (34),
one obtains:

( _ 2)
Vd Q D ﬂA' B |7Z'
C,=|1+5 |=e cos| — |y (46)
k, Ju Ly
Also, equation (46), becomes:

3 2

C, = (BD)(% +‘|:—d%]|v| (x,y) (47)

2v4

where, D=—F——F%——
Bh(2k, +hvy )

Similarity, we get

5k, 4

C, = (BD)2(£+v—dijM (x,y)

7 6
N (@0

9
C,=(BD)| 2+ 2 Im(x,
o~ e0f | o 2 )
The general solution:

0

[D—(i;;/Ly)z]sz+E )
e A u cos['—”}y
Ly
(49)

where, v is the decay factor of isotope 1'** which
equals 2.9%10°s.



912

MAUSAM, 72, 4 (October 2021)

TABLE3

Meteorological data of the nine convective test runs at Inshas site in March and May 2006

RUN 1. Working hours Release rate Wind §gl)eed ) Wind Wfl P-G stability H _Vertical
of the source (Bq) (ms™) Direction(deg) (ms™) class (m) distance (m)
1 48 1028571 4 301.1 2.27 A 600.85 5
2 49 1050000 4 278.7 3.05 A 801.13 10
8 15 42857.14 6 190.2 1.61 B 973 5)
4 22 471428.6 4 197.9 1.23 C 888 5
5 23 492857.1 4 181.5 0.958 A 921 2
6 24 514285.7 4 347.3 13 D 443 8.0
7 28 1007143 4 330.8 151 C 1271 7.5
8 48.7 1043571 4 187.6 1.64 C 1842 7.5
9 48.25 1033929 4 141.7 2.1 A 1642 5.0
TABLE 4

Observed, calculated and numerical concentrations for Run 9 experiments

Test Downwind distance Observed Predicted conc. One Predicted conc. Two ~ Numerical conc. Three
(m) conc.(Bg/m®) Eqn.(16) (Bg/m°) Eqn.(30) (Bg/m°) Eqn.(49) (Bg/m?)
1 100 0.025 0.030 0.010 0.019697
2 98 0.037 0.045 0.011 0.012259
8 136 0.091 0.096 0.045 0.082274
4 135 0.197 0.218 0.163 0.083528
5 106 0.272 0.293 0.196 0.056512
6 186 0.188 0.206 0.128 0.109531
7 165 0.447 0.460 0.322 0.159115
8 154 0.123 0.139 0.094 0.164853
9 106 0.032 0.040 0.016 0.0198
0.6 0.6 .
4 Observed concencentration 4 Predicted conc, Eg. (16)
Predicted concentration Eq. (16) g W Predicted| conc. Eq. (30)
0.5+ — Predicted concentration Eq. (30) 8 05 numerical Conc. Eq. (49) *
# numerical concentration Eq. (49) —
E 04 a 04
i : i "
Q £ 7
2 03 T 03 [ |
;9.. = o
B ' H
RER _-E 0.2 ‘ .
8 g * =
01 'ﬁ 0.1 ‘ ) =
£
,
0 3 — T T T T T 1
100 98 136 135 106 186 165 154 106 0 0.1 0.2 03 04 0.5 0.6
Downwind distance (m) Observed Concentration (Bq/m"3)
Fig.1. The variation of concentration (Bg/m®) for lodine 135 with Fig. 2. Scattering diagram between predicted, Numerical and

downwind distance

observed concentrations (Bg/m®) for lodine-135
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TABLES5

Shows that statistical evaluation of present model
in unstable condition

Model NMSE FB COR FAC2
Predicted model 1 0.008 -0.08 1 1.08
Predicted model 2 0.20 0.36 0.99 0.70
Numerical

. 1.36 0.67 0.66 0.50
concentration

4, Results and discussion

The observed data of 1*** isotope concentration was
obtained from dispersion experiments conducted in
unstable condition air samples which was collecting
around the Egyptian Atomic Energy authority, Research
Reactorat Inshas, Cairo, Egypt. The samples were
collected at a height of 0.7m above ground from a stack of
height 43 m. The Reactor site was flat and dominated by
sandy soil with a poor vegetation cover with a roughness
length of 0.6 cm and each run is made through 30 minutes.
The values of power-law exponent ‘p’ and “n” of eddy
diffusivity as a function of air stability are taken from
Hanna et al. (1982) and presented in Table 1. Standard
deviation of crosswind o, is taken from Hanna et al.
(1982) and presented in Table 2. The meteorological data
of 1'*® isotope during the experiments are taken from Essa
and Maha (2007) and presented in Table 3. Eqgns. (16) and
(30) are estimated using two Eqns. 3 & 4 below the plume
center line to compare between two predicted
concentrations which are calculated using Mathematica
program, Adomian numerical method from Eqn. (49) and
observed  concentrations date of I'*®  from
Research Reactorat Inshas, Cairo, Egypt as in Table 4 as
follows:

A comparison between two predicted, numerical
and observed concentrations of radioactive 1 in
unstable condition at Inshas are shown in two Figs. 1
and 2. From these two figures, one finds that the two
predicted concentrations lie inside a factor of two with
observed concentrations data but most numerical
concentration data lie inside a factor of two with the
observed concentration data.

5.  Model evaluation statistics

The statistical method is presented and comparison
between predicted and observed results as offered by
Hanna (1989) is done. The following standard statistical
performance measures and characterizes the agreement
between predictions (C, = Cyeg) and observations
(Co = Cons):

c.-¢,)

osic, ¢, )

Fraction Bias (FB) =

Normalized Mean Square Error

iCp —COF

C,Co

(NMSE) =
Correlation Coefficient (COR)

I RN

O

Factor of Two (FAC2) = 0.5< C—" <20
0
where, o, and o, are the standard deviations of
predicted C,and observed C, concentrations, respectively.
Over bars refer to the average over all measurements. A
perfect model must have the following performance:
NMSE =FB =0 and COR=FAC2 = 1.0.

One can easily see from Table 5, the statistical
technique shows that the proposed model Predicted one is
very well agreement with observed data concentrations
than predicted model two, also, the numerical
concentration is less agreement with observed
concentration according to NMSE and FB are near to
zero, COR and FAC2 are close to one. The predicted
model one is well agreement with observed model
than predicted model two and numerical concentration
model.

6. Conclusions

We have an analytical solution of three-
dimensional atmospheric diffusion equation by the
method of Separation of variables, Hankel transform and
Adomian numerical method to calculate concentration for
lodine-135. In this model the wind speed and vertical
eddy diffusivity are treated as function of vertical height
and the crosswind eddy diffusivity as function in wind
speed. The predicted model one is one to one with
observed concentrations data than predicted model two
and numerical model. Two predicted models are inside a
factor of two with the observed concentration than
numerical model. Also regarding to NMSE and FB are
near to zero, also, COR and FAC2 are close to one.
The predicted one is well agreement with
observed concentration than predicted two and numerical
model.
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	Numerical method
	Assuming the solution has the form:
	Substituting equations (39) and (45) in equation (34), one obtains:
	FAC2
	COR
	FB
	NMSE
	Model
	1.08
	1
	-0.08
	0.008
	Predicted model 1 
	0.70
	0.99
	0.36
	0.20
	Predicted model 2
	Numerical concentration
	0.50
	0.66
	0.67
	1.36

