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Some dynamical aspects of meso-scale rainfall events
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ABSTRACT. In recent years, physical initialization has emerged as a powerful tool to improve initial state of dynamical
maodel during assimilation phase. This improved initial state at high resolution global spectral model is able to provide a tropical
meso-scale coverage. In this paper, model out-put is used to study some dynamical aspects of meso-scale rainfall events. Major
findings of this study are : (/) Meso-scale rainfall event carries a distinct dynamic structure in vertical profiles of divergence
and vertical upward motion, (ii) Meso-scale event exhibits a large diurnal variation in these vertical profiles and (iii) Vertical
motion field of meso-scale organisation appears to play a significant role in tropical storm formation.
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1. Introduction

In absence of meso-scale network it is difficult to study
the dynamics of life cycle of meso-scale rainfall events.
Recent study (Krishnamurti er al. 1995, Yap 1992) shows
that physical initialization performed in a high resolution
dynamical model is able to capture meso-scale rainfall
events providing a tropical meso-scale coverage. This sug-
gests, in absence of meso-scale data one may rely on physi-
cal initialization for interesting evolution of dynamics of
meso-scale rainfall events.

Physical initialization refers to the use of reverse algo-
rithms consistent with the physics of dynamical model dur-
ing assimilation phase which can provide a modification of
initial state via incorporation of tropical “rain-rates” as
input. The observed rain rates are obtained from a mix of
surface and space- based system. The space-based rainfall
measures are derived from outgoing long wave radiation and
from the microwave radiometer-based algorithm (Olson et
al. 1990, Krishnamurti er al. 1993).

(1)

The foot print of this satellite radiometer is of the order
of 50 km. The transform grid resolution of the global model
at the resolution T 213 (horizontal resolution of 213 waves
using triangular truncation) closely matches the foot print of
this satellite foot print data.

The computational areas of physical initialization proc-
ess include: (i) calculation of surface flux of moisture fol-
lowing Yanai technique (Yanai et al. 1973);(ii) use of
reverse similarity theory to obtain the humidity variable at
the top of the constant flux layer consistent with the moisture
flux; (iif) use of reverse cumulus parametrization algorithm
to obtain vertical restructuring of the moisture variable
consistent with the observed rain rates; (iv) a further restruc-
turing of the moisture variable in the upper troposphere
using a bisection method that minimizes the difference
between satellite based and model based out going long
wave radiation and finally (v) a Newtonian relaxation
method is used during the period between -24 to 00 hours
of forecast when the model is spun up to accept, as closely
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Figs.1(a-c). Meso-scale rainfall events on 22 Augusi 1200 UTC.
1¢) [ndian Ocean

as possible, the observed rain rates and modified humidity
field.

The details of the above process are presented by Kristi-
namurti et al. (1991).

Physical initialization algorithms are incorporated in
the global spectral model of resolution T 213. In this paper,

model output is used to study some dynamical features of

meso-scale rainfall events. This work is an extension of the
previously obtained results presented by Krishnamurti ef al
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1997 for initalised field over (a) north central India, (b) New Guinea and

(1995), Roy Bhowmik (1994). The outline ol the global
spectral model used in this study is presented by Krishna-
murti er al. (1995).

2. Summary of past work

In recent papers (Krishnamurti) ef al. 1995, Roy Bhow-
mik (1994) potential of physical initialization from the use
of high resolution (T 213) global spectral model was inves-
tigated. The study established that physical initiafization at
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Fig.2. Family of meso-scale rainfall events (mm/6 hrs) at 00-06 hours and 06-12 hours superimposed is flow field at 900 hPa

resolution T 213 (transform grid separation of 50 km in
tropics) is able to reproduce the observed rain-rate over the
transform grid square and modifies vertical structure of
humidity and heating field locally providing more realistic
initial field. The correlation between the model derived
initialized field and satellite raingauge based observed field
of 24 hours rainfall total (mm/day) at 1200 UTC of 22
August 1992 over the entire global tropics is of the order of
0.85. This compares with corresponding number 0.3 for
model that do not include physical initialization. This pro-
cedure improves the nowcasting skill and one day forecast
skill. There were roughly 47 meso-scale rainfall elements
over the entire global tropics revealed following physical
initialization on 22 August 1992 at 1200 UTC. Precipitation

10-20mm

[ s-10mm

and flow fields of several of these elements were illustrated
and results were compared with the results of corresponding
control experiments. Study revealed that physical initializa-
tion is able to recover better reasonable structure of these
elements even over data void areas. Meso-scale history
during the landfall of hurricane Andrew (22-24 Augusl
1992) was examined.

Experiment was repeated at lower resolutions T 170 and
T 106. 48 hours predicted fields of sea level pressure, 850
hPa geopotential height, temperature and winds at resolu-
tion T 213 clearly demonstrated the intensification of this
hurricane, as was noted from observation. Thermal field at
850 hPa showed formation of warm-core, The amplitude of
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Figs.3(a & b). Vertical profile of (a) Divergence (x 10" sec”) and
(b) Omega (x 10" hPasec’')

warm core was roughly 7°C. A reasonable pressure fall from
1013 hPa to 968 hPa and build up of winds (max. wind 62
ms ') was attained at 48 hours of forecast. The maximum
observed surface wind was 60 to 70 ms ! Six hourly pre-
cipitation field between 24 to 30 hours of forecast was
compared with radar image from weather service radar. It

was observed that model at resolution T 213 could discern
the eye and outer rain bands of Andrew quite similar to that
of radar image. These interesting results prompted author to
take up the present study.

3. Data and method

In the present study out-put data from the global spec-
tral model of resolution T 213 is used to study some dynami-
cal aspects of meso-scale rainfall events. In order to illustrate
the dynamic structure of meso-scale rainfall events three
meso-scale rainfall events as revealed in 00-03 hours fore-
cast on 22 August 1992 at 1200 UTC are considered. Meso-
scale rainfall events selected are: (i) a monsoon low pressure
area over north India at around latitude 24° N and longitude
77° E, Fig.1(a); (ii) at the tip of New Guinea around latitude
3.5 ° S and longitude 141.5° E, a region of nearly equatorial
eddy, Fig.1(b) and (iii) over Indian ocean at around latitude
5° S and longitude 97 ° E in association with confluence of
northerly wind, Fig.1(c). Initialised flow field at 900 hPa
and super- imposed rainfall amount (mm per 3 hours) of
these meso-scale elements are presented in Figs.1(a-c).

Diurnal changes of the vertical profile of few meso-
scale rainfall events over western Pacific are examined using
results of six hourly forecast based on improved initial state
from physical initialization for the area between latitude 5°
N to 15° N and longitude 135° E to 160° E. The forecast
carried out at global spectral model of resolution T 213. The
initial state (i.e., t=0) for prediction experiment was selected
on 22 August 1992 at 1200 UTC (i.e., 7 pm in local time ).
Physical initialization was carried out between -24 and 00
hours commencing on 21 August 1992 at 1200 UTC.

Fig.2 illustrates predicted precipitation and wind field
at 900 hPa at 00-06 hours and 06-12 hours. Dark shading
indicates rainfall 2 20 mm/6 hours and other shadings indi-
cate rainfall amount 10 to 20 mm and 5 to 10 mm per 6 hours
respectively. It is noticed that Fig. 2 is characterised by a
family of active meso-scale rainfall events. From this family
3 events marked as A, B and C respectively are selected.
Events A and C are long lasting, appeared as systems in
casterlies and later on became tropical depression Polly
centered around latitude 17.4° N and longitude 136.9° E at
1200 UTC of 25 August and tropical depression Omar
centered around latitude 9.2° N and longitude 153.2° E at
0600 UTC of 24 August respectively. The event B was short
lived and disappeared in 12 to 18 hours.
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Figs.4(a-c). Horizontal field of divergence (0.1 x 10* sec'lj at 900 hPa for (a) monsoon low, (b) the event near New Guinea and (c) the event over the
Indian Ocean
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Figs.5(a & b). Horizontal field of vorticity (0.1 x 10 sec") at 900 hPa for (a) monsoon low and (b) the event near
New Guinea
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Figs.6(a & b). Six hourly changes in vertical profile of element ‘A’ during
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Figs.9(a-d). Six hourly omega isopleths (0.1 x 10" hPa scc") at 900 hPa

4. Results and discussion

4.1. Dynamic structure of meso-scale rainfall events

Results of vertical structure of divergence and omaga
(vertical upward motion) over a 4° latitude/longitude
square centered over each of the meso-scale rainfall events
over north India, New Guinea and Indian Ocean are pre-
sented in Figs.3(a & b) respectively.

The divergence profile shows that there is a layer of
convergence which extends up to lower/mid tropospheric
levels with divergence prevailing in the upper troposphere.
For the monsoon low, convergence is maximum at 800 hPa
and magnitude is of order -9x10® per second and maximum
divergence of magnitude 8x10°® per second occurs at 500
hPa.

It is interesting to note that both the meso-scale events
over equatorial zone (that is, the events over Indian Ocean
and New Guinea) exhibit two maxima in divergence profile,
with primary peak at the surface and secondary between 600
and 500 hPa. For the event over Indian Ocean maximum
convergence of order -8x10™® per second .occurs at the

surface, nearing the zero between 700 and 600 hPa and
attains maximum divergence of order 12x 10 per second at
300 hPa. The pattern is similar to that of New Guinea where
maximum convergence of order -20x10™ per second is at
the surface and maximum divergence of order 17x10° per
second at 200 hPa. Convergence extends all the way up to
400 hPa. The corresponding profile of vertical upward mo-
tion shows that for monsoon low the maximum omega of
order -1.5x107 per second occurs at 700 hPa.

For the meso-scale event near New Guinea maximum
omega of order -3.5x10™ per second at 500 hPa and for the
event in Indian Ocean maximum is of order -22x10™ per
second at 400 hPa. Corresponding horizontal field of diver-
gence at 900 hPa are presented in Figs.4(a-c) and vorticity
field in Figs.5(a & b). As the system over Indian Ocean was
in association with the confluence of northerly winds, no
organised field of vorticity is noticed and hence not pre-
sented here. It is observed that for both the meso-scale
rainfall events in equatorial zone, highest rainfall point is
coinciding with the corresponding maximum conver-
gence/vorticity point. But for monsoon low maximum rain-
fall is to the south sector.
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Figs.10(a-d). Six hourly changes in velocity potential field (x

4.2. Diurnal changes in vertical profile of meso-scale
rainfall events

Every six hourly changes in the vertical profiles of
divergence and omega of element A, B and C (in Fig.2)
during 00-24 hours are presented in Figs. 6(a & b), 7(a & b)
and 8(a & b) respectively. It is noticed that for all the cases
there have been well marked enhancement in the omega
profile during 00-06 hours and weakening during 12-18
hours.

For the element A enhancement in the divergence pro-
file occurs during 00-06 hours and for elements B and C
during 00-12 hours, weakening occurs at 12 hours for A and
during 12-18 hours for B and C. This shows that there is a

marked enhancement in the vertical profile during mid night .-

to early morning hours and weakening in the noon to after-
noon hours which is consistent with the general belief that
oceanic intense precipitation shows a maximum in the early
morning hours. This may be because of radiative effect due
to-differential heating over cloudy and cloud free region.

10° m? sec™!) at 850 hPa showing formation of tropical storm Omar

4.3. Role of meso-scale organisation in the formation
of tropical storm

In tropics, within easterly waves there always exists a
population of meso-convective cloud elements. The prevail-
ing lower tropospheric flow advects these meso-convective
cloud systems. As a consequence the location of such ele-
ments organises along a quasi-circular geometry. A current
hypothesis on tropical storm formation (Holland and Die-
tachmayer 1993, Lander and Holland 1993, Ritche and
Holland 1993) emphasizes a notion on sweeping of vorticity
of meso-convective cloud clusters by the prevailing tropical
flows. In our earlier study (Krishnamurti et al. 1995) this
hypothesis is examined following meso-scale precipating
elements during formation of tropical storm Omar and sche-
metically illustrated how sweeping and coalescing of meso-
scale precipating elements within a tropical wave can
undergo an intensification into a tropical storm.

A clear understanding of the process that leads to for-
mation of meso-scale vortex to meso-scale convection com-
plexes is yet to emerge. The conventional view point is that
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Figs.11(a & b). Six hourly changes in vertical profile of (a) Divergence (x 107 sec™!) and (b) Omega (x 10* hPa sec™)) during 30-48 hours of the

meso-scale element ‘C’

cumulonimbus convection is required to provide the latent
heat release. There is also inadequate knowledge regarding
the relative importance of cumulus convection and meso-
scale ascending motion in the genesis of cyclone. This is
because of absence of observational data over oceanic areas.
Houze (1992) emphasizes that effect of meso-scale vertical
motion is to raise the level of maximum heating. Here the
meso-scale history of vertical ascending motion field during
formation of tropical storm Omar is examined. This storm
formed and moved over western Pacific during the period
24 August through 6 September,1992. The period of our
interest is during formative stage of the tropical strom Omar.
In Figs.9 (a- d) the six hourly predicted omega field at 900
hPa is presented. Here, area without shading indicates as-
cending motion.

A considerable meso-scale activity of ascending mo-
tion field is noted. It was possible to tag these meso-scale
elements by numerical levels and follow them during for-
mation of storm Omar. The starting hour 30 of forecast
corresponds to 23 August at 0600 UTC. During the follc v-
ing 18 hours tropical storm Omar forms from tropical de-
pression. Initially at 30 hour 4 taged meso-scale elements of
vertical upward motion 1,2,3 and 4 are observed. At 36 hour
element 1 moved north-west, element 2 in same location but
more intense and a new element 5 is seen south of the
element 1. At42 hour elements | and 2 are less marked and
element 3 is seen more marked. At 48 hour element 5 moved
further north west, both of elements 4 and 5 further intensi-
fied, all these elements are located along the storm’s circu-
lation centre and the system became more intense.
Corresponding six hourly changes in veloci‘y potential field
at 850 hPa are presented in Figs. |0(a-d).

It appears that meso-scale ascending motion elements
swept by a weak vortex which undergoes a strengthening as

these meso-scale elements organise leading to enhancement
of circulation. It is also observed a strong enhancement in
vertical profile of divergence and omega in Figs.11 (a & b)
of the parent vortex (element ‘C’) during 42 to 48 hours.
This enhancement occurs as these meso-scale elements are
being swept into the storm circulation. This study empha-
sizes the role of meso-scale vertical motion which was more
critical during development of storm Omar.

5. Conclusions

Following conclusions can be drawn from this study:

(1) Meso-scale rainfall event carries a robust picture of
lower- tropospheric convergence and upper tropospheric
divergence. Meso- scale events over the equatorial zone
exhibit two maxima in their vertical profile of convergence,
one at the surface and other between 600 and 500 hPa. For
the monsoon low maximum convergence is at 800 hPa.

(it) For the monsoon low maximum omega (vertical
upward motion) occurs at 700 hPa whereas for the events
over equatorial zone maximum omega occurs between 500
and 400 hPa.

(11f) Meso-scale rainfall events over oceanic areas show
interesting diurnal variation in their vertical profile of diver-
gence and omega. Marked enhancement of vertical structure
occurs during mid-night to early morning hours.

(iv) Vertical motion field of meso-scale organisation
appears to play a significant role in tropical storm formation
following sweeping along a quasi-circular geometry.
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