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सार — मौसम रेडार मɅ अिभनित सुधार और उçणकिटबंधीय वषार् मापन िमशन (TRMM) के वषार् आकलन का 

उपयोग इसकी सटीकता मɅ सुधार के िलए िकया जाता है। यह सुधार आमतौर पर रेडार और उçणकिटबंधीय वषार् मापन 
िमशन दोनɉ के िलए अलग-अलग िकया जाता है। भले ही सुधार अलग-अलग िकए जाते हɇ, लेिकन िवलय के उपयोग से 
इन सुधारɉ के पिरणामɉ मɅ और सुधार िकया जा सकता है। िवलय के तरीकɉ मɅ, संशोिधत èथानीय अिभनित, माÚय के्षत्र 
अिभनित और प्रितबंधीिवलय, मकसार èटे्रट मɅ आसपास के िरमोट सɅिसगं से अनुमानɉ को सही करने के िलए इèतेमाल 
िकए जाने वाले उपयुक्त तरीके हो सकत ेहɇ। इस शोध का उƧेæय रेडार और उçणकिटबंधीय वषार् मापन िमशन के वषार् 
आकलनɉ को सही करना है और उनके संयोजन से अिधक सटीक वषार् का का आकलन करना है। सहसंबंध, वगर् माÚय 
मूल तु्रिट (RMSE) और माÚय िनरपेक्ष त्रिुट (MAE) का उपयोग करके प्रदशर्न कायर्िनçपादन को माÛय िकया जाएगा। प्राƯ 
पिरणाम से पता चलता है िक संशोिधत माÚय के्षत्र अिभनित (Mod_MFB) और èथानीय अिभनित (LB) मुख्यतः RMSE 

और MAE सटीकता बढ़ा सकत ेहɇ, लेिकन सहसंबंध मɅ नहीं। हालांिक, प्रितबंधी िवलय (CM) और संशोिधत LB सहसंबधं 
को बढ़ाकर सटीकता मɅ सुधार कर सकता है और RMSE और MAE मɅ कमी कर सकता है। प्रितबंधी िवलय का 
संशोधन, èथानीय अिभनित संशोधन और िरमोट सɅिसगं का मूल आकलन क्रिमक Ǿप से सवȾƣम तरीकɉ का क्रम है। 
इसके अलावा, तीनɉ डटेा प्रकारɉ को िवलय करना दो प्रकार के डटेा को िवलय करन ेसे बेहतर नहीं है। हालांिक, 3 प्रकार 
के डटेा का संयोजन सटीकता को िèथरता प्रदान करता है। 

 
ABSTRACT. Bias correction in the weather radar and the tropical rainfall measuring mission (TRMM) rainfall 

estimates are used to improve its accuracy. This correction is usually done separately for both radar and TRMM. Even 
though the corrections are done separately, the results of these corrections can be further improved using the merging. 
Among the methods of merging, modified local bias, mean field bias and conditional merging may be suitable methods 
used to correct rainfall estimates from remote sensing surrounding in the Makassar Strait. The aim of this research 
corrects radar and TRMM rainfall estimates, then combining them to obtain more accurate rainfall estimates. The 
performance will be validated using correlation, root mean square error (RMSE) and mean absolute error (MAE). The 
result shows that modified mean field bias (Mod_MFB) and local bias (LB) can increase accuracy, mainly RMSE and 
MAE but not in correlation. However, conditional merging (CM) and modified LB can improve accuracy by increasing 
correlation and decrease RMSE and MAE. The modification of CM, LB modification and original estimation of remote 
sensing successively are the order of the best methods. Moreover, merging three data types is not automatically better 
than merging the two types of data. However, combination 3 types of data offer the stability of accuracy. 

 

Key words – Bias correction, Radar, TRMM, Rainfall, Tropical maritime, Sulawesi. 

 
1.  Introduction 
 

Accurate rainfall estimates are a crucial factor for 
many fields (Goovaerts, 2000; Jia et al., 2011). 
Furthermore, this data is the main input of physical 
models to the forecast process of disaster-related events of 
both meteorological and hydrological fields for effective 
disaster management. At the present time, there are 
various sources of rainfall estimates available for public 
use, especially in developed countries, such as rainfall 

observation at gauge stations or rainfall product estimation 
by satellite such as the tropical rainfall measuring mission 
(TRMM) and rainfall estimation derived from reflectivity 
of weather radar. Generally, it is accepted that rainfall 
observation at gauge stations is the best accuracy as the 
point observation provides a truth of ground rainfall, but 
the availability of rain gauge data is less available. 
Practically, spatial interpolation is one method to fill in un 
gauge locations (Keblouti et al., 2012; Das et al., 2017, Ly 
et al., 2013). The other method applies rainfall estimates 
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from remote sensing both using radar or satellite to 
estimate rainfall distribution in a certain area (Stout                    
et al., 1968, Battan, 1973; Ramli and Tahir, 2011; Moreau 
et al., 2009; Sebastianelli et al., 2010; Li et al., 2012;              
Xue et al., 2013; Hu et al., 2014; Matrosov et al., 2014; 
Yeo et al, 2015; Kirtsaeng and Chantraket, 2016; 
Montopoli et al., 2017). However, the accuracy of remote 
sensing rainfall estimates is questioned and varies in each 
place (Prasetia et al., 2013; Giarno et al., 2018a). In the 
monsoonal rainfall pattern, rainfall estimates of TRMM 
have better accuracy than local and equatorial rainfall 
patterns. Such as radars, which generally have good 
accuracy in the area around the placed radar, although 
topography distribution and rainfall persistence also 
influence accuracy (Giarno et al., 2018c). 

 
Weather radar or satellite measures indirect 

precipitation at a certain altitude, while a rain gauge is a 
direct measurement of rain quantity observed at a point 
near the ground surface. Thus, inequality of rain quantity 
always exists between the two data sets. There are 
attempts to utilize rain observed at gauge stations to adjust 
or correct rainfall estimates from radar and TRMM. There 
are many methods used in adjustment bias rainfall 
estimates. This ranges from simple to complicated 
processes. Michelson and Koistinen (2000) categorized 
the methods into two groups. The first group is to find a 
different ratio between gauge rainfall and radar rainfall 
estimates or mean field bias (MFB). Although MFB is the 
most efficient method to remove systematic biases, it does 
not account for a local variation of the bias that spatial 
interpolation techniques do (Fulton et al., 1998; Tabary, 
2007; Zhang et al., 2014). The other way is to employ 
statistics and geostatistics methods to find a relation 
between the two sources such as spatial interpolation 
techniques (Chumchean, 2006). 

 
In the tropics, the place where radar data are 

available means that there are two remote sensing rainfall 
estimates because TRMM data is also always available in 
the tropics. Maximizing these two data is by combining 
the estimated rainfall results from both radar and TRMM 
corrections. Combination or often called merging explores 
the strength and the weaknesses of each rainfall 
measurement (Goudenhoofdt and Delobbe, 2009). This 
idea is almost as same as combining predictions in 
Econometrics (Bates and Granger, 1969; Elliott and 
Timmermann, 2005; Giarno, 2014). The development of 
merging techniques on rainfall data was carried out since 
1954 (McKee, 2015). Initially to combine rain gauge and 
radar data which later evolved to combine with satellite 
data. Broadly speaking, the merging radar method can be 
divided into two groups (Wang et al., 2013), namely the 
bias reduction technique and the error minimization 
variance technique (McKee, 2015). The difference 

between these two techniques is the emphasis on what is 
the reduction factor. The bias reduction technique focuses 
on the difference between rain sensing and rain gauge. 
While minimizing error variance focuses on reduction 
using the variance 

 
Included in the class of reduction methods is the 

Mean Bias Correction or MFB (Hitschfeld and Bordan,  
1954), Spatial Adjustment Brandes or BSA (Brandes, 
1975), Local bias correction with ordinary kriging or LB 
(Babish, 2000) and Range dependent bias correction 
(Michelson and Koistinen, 2000). While the technique of 
minimizing error variance includes Bayesian data 
combinations, conditional merging, kriging external drift 
and objective analysis statistics. Among of merging 
methods, the local bias (LB) and mean field bias (MFB) 
are the fastest methods to use in merging techniques 
(Goudenhoofdt and Delobbe, 2009; McKee, 2015; 
Mahavik, 2017). Both of these techniques are fast because 
they only use the ratio of the comparison of estimated 
remote sensing and rainfall observed estimates.  

 
Applying these techniques in the Indonesian 

maritime continent (IMC) are quite difficult to use, 
because rainfall events in this region are very random so 
that modified LB and MFB is required. The result showed 
that the performance of modified merging can increase 
accuracy. While modifying local bias (Mod_LB) is better 
than modifying the mean field bias (Mod_MFB). Among 
modified merging techniques, modified conditional 
merging is The best in rainfall merging in tropical 
maritime (Giarno et al., 2018b). Use classification of the 
ratio can decrease root mean square error (RMSE) and 
mean absolute error (MAE), but Mod_LB is better in a 
reduction of RMSE and MAE than Mod_MFB. 
Comparing both of the methods in improvement of 
accuracy, they are still weaker than conditional merging 
(Mod_CM) (Sinclair and Pegram, 2005; Goudenhoofdt 
and Delobbe, 2009; Giarno et al., 2018b). Moreover, the 
validation showed that CM could shrink value RMSE and 
MAE than original rainfall of remote sensing estimates, 
modified local bias and modified the mean field bias. 
Adding, CM also is the best in correlation evaluation than 
other merging methods.  

 
The correction radar and TRMM rainfall estimates 

have been reduced bias its rainfall estimates. Then, if both 
of the result correction data available in an area, it is 
possible to combine them into new rainfall estimates that 
are expected to have better accuracy, beside maximize 
data availability. Filho (2004) performs this merging, but 
he used data that have the same temporal resolution. This 
scheme cannot be used in Indonesia since the limitation of 
the raw radar data. Rainfall observed data are generally in 
daily, but the radar reflectivity is in every 10 minutes.
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Fig. 1. Rain gauge locations (blue circles) and radar (big circles) in surrounding the Makassar Strait. Sulawesi has more mountains              

(red colour) than Kalimantan, while Kalimantan is dominated by terrain below 1000 meters (green colour) 

 
 
While TRMM data are available every three hours and 
daily. This work starts with corrects rainfall estimates of 
radar and TRMM using rain gauge data, then merges them 
to obtain an improved rainfall prediction. 
 
2. Data and methodology 
 

2.1. Study area and data 
 
 This study locates in the surrounding of the Strait of 
Makassar, where all rain gauges and radars are located in 
Kalimantan Island and Sulawesi Island as Fig. 1. The 
Asian monsoon has an impact in increasing rainfall in this 
region, on the contrary, Australian monsoon less rain in 
this region. Moreover, rainfall is also influenced by water 
distribution. The Java Sea and Sulawesi Sea flank this 
region in the South and North. Also, elevation distribution 
in Kalimantan and Sulawesi is different. Where Sulawesi 
Island is a more complex elevation than Kalimantan that 
tends flatter. Besides monsoon, the other factors that can 
influence to a rainfall event in this region are local 
circulation (Hashiguchi et al., 2013) and global 
phenomena such as Madden-Julian Oscillation (MJO, El 
Niño and the Southern Oscillation (ENSO), Indian Ocean 
Dipole (IOD) (D’Arrigo and Wilson, 2008; Hidayat and 
Kizu, 2010). Consequently results each location has an 
own rainfall pattern and makes the onset and withdrawal 
of rainfall dynamic (Giarno et al., 2012). 

 In this work, we use 3 locations of radar that placed 
in Maros, Banjarmasin and Balikpapan. While rainfall 
observed is obtained by 631 rain gauge locations. Where 
581 locations are used to merge model and 50 sites chosen 
for validating the correction. The existing of independent 
rain gauge is needed to evaluate the performance of the 
remote sensing rainfall estimate because basically 
predictions for estimating rainfall values in places where 
there is no rainfall measurement (Mitra et al., 2013). 
Merging will be done daily and missing rainfall is 
neglected. 
 

2.2. Methodology 
 

The correction method for quantitative precipitation 
estimation (QPE) radar and satellite is basically almost the 
same as the merging method. The simplest and fastest 
these methods are used in this work, there is local bias 
(LB) and mean field bias (MFB) (Mc Kee, 2015). This 
method uses a ratio between rainfall from remote sensing 
and measured rainfall from the rain gauge. As a 
comparison, conditional merging (CM) and its modified is 
added. This method is often called the best method of 
merging (Goudenhoofdt and Delobbe, 2009; Giarno et al., 
2018b). 

 
The mean field bias (MFB) proposed for the 

correction of measurement remote sensing estimates 
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which was originally for radar (Hitschfeld and Bordan, 
1954). This correction removes the bias in radar rainfall 
estimates from Z-R relationship (Borga et al., 2002). 
Since rain gauges observed are assumed the true rainfall, 
then the mean of its accumulations is used to correct 
rainfall, remote sensing estimate by multiplying it by a 
ratio (C) obtained from the comparison of rainfall from 
remote sensing (Ri) and rain gauge (Gi) as Equation (1). 
The single ratio factor applied to the entire radar beam and 
initially, long-term bias correction recommended by 
Hitschfield and Bordan (1954). However, a dynamic 
correction was adopted by Wilson (1979). 
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The local bias merging uses correction factors over 

the entire remote sensing domain which geostatistical 
interpolated such as ordinary kriging to distribute the 
correction factors over the remote sensing domain. Local 
correction (Ci) is obtained as in equation (2). While the 
distribution of correction, uses spatial interpolation and 
kriging is assumed as the most optimal interpolation 
technique (Babish, 2000). But, since the goodness 
interpolation method depends on time and place, in this 
work, it uses inverse distance weighting (IDW) to 
interpolate local correction.  
  
 This research implements a modification of LB and 
MFB to the correction of estimated daily rainfall.                   
Ratios on MFB and LB are classified in 20 classes, which 
is the number of classes that can most improve accuracy 
(Giarno et al., 2018b). This idea arises because the 
application of ratio weights on LB and MFB sometimes 
produces irrational weights. Random rainfall and many of 
them have zero value will be problematic if used as a 
divider. Therefore the weight classification is an 
alternative to correct TRMM estimation correction. In this 
study, this method will also be tested on radar rainfall 
estimates. 
  
 In the merging comparison, conditional merging 
(CM) is often considered the best method (Sik et al., 
2007; Goudenhoofdt and Delobbe, 2009; Park et al., 
2017). This method was firstly proposed by Sinclair and 
Pegram (2005). The CM assumes that remote sensing 
rainfall estimates have a true field, but its value is 
unknown, while the rain gauges have an unknown field of 

true values. Combines the strengths of each property as 
follows: 
 

     SSIsZ GG                                                (3) 

 
     SSIsR RR                                                (4) 

 
     SSIsM RG                                               (5) 

 
where,  sZ ,  sR ,  sM  respectively are rainfall 

from a rain gauge, remote sensing and CM result. While 
 sIG ,  sI R  and  sG are rain observed, remote sensing 

interpolation and error of rainfall of remote sensing 
interpolation respectively. 
  
 The original CM interpolate  sIG  and  sI R in 

whole area using kriging technique, but in this work, we 
modified uses IDW interpolation. Moreover, not only in 
modifying CM, but also IDW as interpolation method that 
applied to all things that require interpolation as proposed 
Giarno et al. (2018b). Furthermore, the IDW interpolation 
can be used without worrying get the unsuitable 
variograms model since rain gauge scarcity and numerous 
locations have zero rainfall. As a resulted, this method can 
improve the accuracy in correction TRMM rainfall 
estimate separately. The radar also applied the procedure 
to correct radar rainfall estimation in 3 radar sites. Then, 
both resulted rainfall correction of 2 types remotes sensing 
rainfall estimates is corrected again or merged for new 
rainfall prediction. 
  

Validation uses general statistical parameters of 
evaluating remote sensing rainfall estimates. The Pearson 
coefficient correlation (r) measures the strength and 
direction of rainfall estimates. While how large the 
deviation bias assessed by the root mean square error 
(RMSE) and mean absolute error (MAE). Moreover, the 
evaluation also considers rainfall intensity above moderate 
or more than 20 mm/day at the reference station. Since 
limited radar data, the evaluation matches radar data at all 
three locations and reference stations. If the reference 
stations have rainfall with more than 20 mm/day and exist 
data at least two radar locations. The results, evaluation 
only used 45 days. 
 
3. Result 
 

3.1. The process corrects and merges remote 
sensing rainfall estimates 

 
 First, the rainfall observed from rain gauge is used to 
correct remote sensing product both radar and TRMM 
rainfall  estimates. The  result of radar  correction depends 
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Fig. 2. Rainfall distribution resulted conditional merging Radar-Obs 

 

 

 
Fig. 3. Rainfall distribution resulted in conditional merging                

TRMM-Obs 

 
 
on the radar beam and because there are 3 radars, the 
coverage increased to a wider area. However, in this 
study, the field of interest must be equal to Fig. 1, so the 
presence of rain gauge and radar data indeed influences 
the correction. The farther a location respect to radar and 
rain gauge, it makes the less precise. Therefore, this 
scheme almost corresponding to merging work, so then 
merging terms is often used to replace correction. Thus, it 
obtained new rainfall estimates, rain gauge-radar and rain 
gauge-TRMM. Combining rainfall between radar rainfall 
estimates  and  rain   gauges   observed   will   expand   the 

 
Fig. 4. Rainfall distribution resulted in conditional merging TRMM-

Radar_Rain gauge 

 
 
estimated range of the radar since correction associated 
with the presence of rain gauge and radar data. The radar 
coverage is limited, so the correction cannot be made if 
the distance is far apart from the radar. The merging will 
be strengthened with the existing rain gauge and radar 
data. If both of them measure high precipitation, then 
prediction also high. Conversely, if rainfall radar estimates 
obtain high prediction and rain observed small or no rain, 
merging will reduce estimate or not rain at all as depicted 
in Fig. 2. 
 

On the other hand, the correction of TRMM only 
depends on the presence of rain gauge data. If there is no 
this equipment, the TRMM is relatively uncorrected. 
Moreover, the range of TRMM rainfall estimation has a 
wider than radar beam. Areas that are not covered by 
radar, it can still be attained by TRMM since its global 
observation. For example, in the northern and southern 
part of Kalimantan Island, where there are no rain gauge 
data and outside the radar range, but rainfall still detects 
using TRMM as depicted in Fig. 3. Moreover, TRMM 
merging has lower maximum values or underestimated 
than radar estimates. If in radar merging, the maximum 
rainfall is 200 mm, but on TRMM merging less than               
100 mm. This means that the original value of the TRMM 
rainfall estimate is not as large as the original radar 
rainfall estimate. Rain gauge observed will correct the 
estimation of TRMM and radar. 

 
Although rainfall observed has been used to correct 

TRMM rain, some places still have gaps. One's place may 
exceed far from a rain gauge, so it is difficult to correct 
because beyond the scope correction. As an example, in
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Figs. 5(a&b). Distribution of correlation Mod_LB in (a) Radar - Obs  and (b) TRMM - Obs 

 
 

North Kalimantan, rainfall appeared in TRMM estimates, 
but using radar is not monitored at all. Interestingly, in the 
southern Kalimantan, the rain spots that only look a little 
on the radar merging, but it present to be stronger in the 
results of merging TRMM. Furthermore, in the central 
part of Sulawesi, there seems to be an increase in rainfall. 
The blending shows that in those places the rainfall was 
observed to be quite significant on TRMM but not on the 
radar. Since the radar range does not reach in Central 
Sulawesi, the possibility of additional rain comes from 
TRMM. In contrast to South Kalimantan, which is still 
tracked by radar, which means that estimates of low 
intensity rainfall are monitored by radar and TRMM. 
 

Simultaneously merging of radar and TRMM can 
correct the lack of merging using only one type of data as 
shown in Fig. 4. The intensity of rainfall in the northern 
part of the Kalimantan Island, which is high on TRMM-
Obs decreases if it is merged using Radar-Obs. In the 
southern part of Kalimantan rainfall is still seen in rainfall, 
which means that indeed there is rain in that place. 

 
3.2. Validation 

 
Evaluation is done by comparing the distribution of 

correlation, root mean square error (RMSE) and mean 
absolute error (MAE) for each method merging and types 

of data. Finally, evaluation is served with all types of data 
and methods. 
 

3.2.1. Modified local bias 
 
 Modification of local bias (Mod_LB) tested on 
combination Radar-Obs (rain gauge) and TRMM-Obs. 
There is a striking difference between the results of radar 
merging and TRMM merging as depicted in Fig. 5(a). 
Mod_LB on radar has the lowest correlation in plain areas 
that separate the Bawakaraeng Mountains and the 
Lompobatang Mountains, Sulawesi. There are many 
correlations below 0.4, even below 0.2 in this location. 
While other locations that have low correlation are on the 
eastern Sulawesi Island close to the Bone Gulf and also 
almost along the coast of Central Sulawesi which borders 
the Makassar Strait. The correlation above 0.6 is found on 
the north of the radar on the coast overlooking the 
Makassar Strait. Contrary with Sulawesi, the low 
correlation is found in the southern part of Kalimantan and 
in the north of the equator. In the south, a place that has a 
low correlation of less than 0.2 close to a place with a high 
correlation of more than 0.6. 
 
 The number low correlation on Mod_LB TRMM-
Obs is less than Mod_LB Radar-Obs as depicted in                 
Fig. 5(b). The low correlation located in the plain areas
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Figs. 6(a&b).  Distribution of RMSE Mod_LB in (a) Radar - Obs   and (b) TRMM - Obs  

 
 
between the Bawakaraeng and the Lompobatang 
Mountains. Generally, its value below 0.2 and close to 
places of correlation 0.4 to 0.6. Locations that its 
correlations above 0.6 are found in the south of the 
Sulawesi Island and the northern Bone Gulf. However, in 
Kalimantan Island, the number of points that correlated 
more than 0.6 was little more than the merging radar. No 
locations that have a correlation higher than 0.8 in the 
results of Mod_LB Radar-Obs in Sulawesi. Conversely, in 
Kalimantan has found that a place with a correlation of 
more than 0.8. Some sites near the Banjarmasin radar have 
correlation of more than 0.8. Moreover, the evaluation of 
Mod_LB of TRMM-obs in Sulawesi depicted that these 
places have abundant places that have a correlation of 
more than 0.8, however striking ones are in Southern 
Sulawesi and the northern part of Bone Bay. While in 
Kalimantan, a high correlation is not as much as Mod_LB 
radar-obs and only found at several locations on the north 
central island and also at several points between 
Balikpapan and Banjarmasin. High correlation in 
Mod_LB radar-obs mostly located in the area adjacent to 
the radar. On the contrary, the Mod_TRMM-obs has a 
high correlation in a place that has a strong monsoonal 
and a local rainfall pattern in Sulawesi. Contrasting to 
Kalimantan Island, where the strong monsoonal rainfall 
patterns have a high correlation, but it is also found low 
correlation in adjacent the places. 

 The value of RMSE in Mod_LB Radar-Obs is the 
highest in the southern part of Sulawesi as depicted in  
Fig. 6(a). Moreover, this condition also found throughout 
the area adjacent to the Makassar Strait from the south to 
the middle of the island. Contrary to Kalimantan Island, 
there are only a few found such as close the Banjarmasin 
radar. While low RMSE values are found around the 
Kalimantan equator. Conversely, with Sulawesi that the 
majority of RMSE values range from 10-20 and are 
evenly distributed. While RMSE distribution in Mod_LB 
TRMM-Obs is better than Mod_LB Radar-Obs as shown 
in Fig. 6(b), where the number of points has a lower 
RMSE. The place with the highest RMSE is located on the 
southwest coast of Sulawesi, which is directly related to 
the Asian monsoon. It is found in low quantities of RMSE 
in Central Sulawesi, especially those adjacent to the 
Makassar Strait. Range RMSE between 0 to 10 is most 
commonly found in Kalimantan and intermittent with 
RMSE 10-20. While in Sulawesi, low RMSE is located in 
the lowlands separating the Lompobatang Mountains from 
the Bawakaraeng Mountains and in Central Sulawesi near 
the City of Palu. 
 
 Most places in Kalimantan have MAE less than 10 
on Mod_LB radar-obs [Fig. 7(a)]. On the other hand, in 
Sulawesi, the MAE has generally been between 10 to 20. 
In this island, the class MAE spreads interspersed with
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Figs. 7(a&b).  Distribution of MAE Mod_LB in (a) Radar - Obs and (b) TRMM - Obs 

 

 

 
Figs. 8(a&b).  Distribution of correlation Mod_CM in (a) Radar - Obs and (b) TRMM - Obs 

 
 

MAE of less than 10 around the lowlands separating the 
Lompobatang and the Bawakaraeng Mountains and also 

surrounding Palu City. Contrary with MAE on the radar, 
in Mod_LB TRMM-obs MAE values are almost all less
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Figs. 9(a&b).  Distribution of RMSE Mod_CM in (a) Radar - Obs and (b) TRMM - Obs 

 
 

 
Figs. 10(a&b).  Distribution of MAE Mod_CM in (a) Radar - Obs and (b) TRMM - Obs 

 
 
than 10 in Kalimantan and Sulawesi as shown in Fig. 7(b). 
Only in the southwest, which is adjacent to southern 

Sulawesi alone is the MAE value rather large, between              
10 and 20. 
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TABLE 1 
 

Comparison correlation, RMSE and MAE of merging  
result in the non independent locations 

 

Methods Correlation RMSE MAE 

Radar 0.121 37.358 22.088 

LB_Rad 0.230 17.529 10.771 

CM_Rad 0.754 9.646 4.809 

TRMM 0.126 20.596 11.009 

LB_TRMM 0.349 15.151 6.148 

CM_TRMM 0.909 6.123 2.810 

LB3_simple 0.331 15.254 8.082 

CM3_simple 0.855 6.926 3.481 

LB3_Mod 0.316 16.385 9.032 

CM3_Mod 0.806 8.244 4.132 

 
 

3.2.2. Modified conditional merging 
 
 The comparison between modified LB (Mod_LB) 
and modified conditional merging (Mod_CM) show that 
Mod_CM improved in correlation, RMSE and MAE 
comparing Mod_LB as depicted in Figs. 5-7 and Figs. 8-10. 
The value of correlation in Mod_CM lies between strong 
and very strong or 0.6-1.0 in the almost entire research 
area. Meanwhile correlation of Mod_LB varies from low 
to very strong as shown in Fig. 8(a). Evaluation Mod_CM 
of TRMM showed almost all places have correlation 
above 0.6, except in some places in the Central Sulawesi 
and only one place in Kalimantan as shown in Fig. 8(b). 
However, in the radar merging, the value of the 
correlation is more variable than merging TRMM. The 
excessive far locations from the radar radome and blocked 
by mountains appear to be a very low correlation in 
Sulawesi. However, mountain effect in Kalimantan is less 
visible since the place is indeed relatively plain and not as 
complex as Sulawesi topography. While using Mod_CM 
Radar-Obs found in several places close to the radar 
turned out to have a low correlation. 
 
 Application Mod_CM [Fig. 8(a)] produces a 
significant reduction of RMSE when comparing to 
Mod_LB [Fig. 9(a)]. Evaluation showed the distribution 
of RMSE shows that almost areas have RMSE > 20 in 
Mod_LB that decreases when compared to Mod_CM. 
While, in the southern part of Sulawesi Island, which is 
almost region has RMSE > 15 in Mod_LB but decreased 
to 0-10 using Mod_CM. Likewise, variations of RMSE 
that are occasionally large and drastically reduced both        
in Kalimantan and Sulawesi. Based on the value of 
RMSE, Mod_CM TRMM-Obs is more reliable than  
radar-obs. 

TABLE 2 
 

Comparison correlation, RMSE and MAE of merging  
result in the independent locations 

 

Methods Correlation RMSE MAE 

Radar 0.123 34.448 19.956 

LB_Rad 0.180 18.216 12.033 

CM_Rad 0.272 15.502 7.871 

TRMM 0.129 18.622 9.387 

LB_TRMM 0.288 15.516 6.814 

CM_TRMM 0.400 13.819 7.042 

LB3_simple 0.274 15.758 8.909 

CM3_simple 0.360 14.167 7.273 

LB3_Mod 0.252 17.165 10.162 

CM3_Mod 0.343 14.515 7.478 

 
 
 Many places in Kalimantan have 10-20 in RMSE 
when using Radar-Obs compared to TRMM-Obs that has 
RMSE 0-10. Both Mod_CM on merging radar and 
TRMM produce MAE all below 10 as depicted in                 
Figs. 10(a&b). Only in a few points are in the southwest 
of Eastern Sulawesi and the Southern Kalimantan, the 
MAE value has still worth 15. Based on the above 
explanation, Mod_CM is the most reliable for combining 
estimated remote sensing rainfall and rainfall observed.  

 
3.2.3. Merging three types of rainfall data 

 
 Merging that uses 3 types of data while showing the 
best CM accuracy. Validation uses statistical indicators 
such as root mean square error (RMSE), mean absolute 
error (MAE) and correlation to assess the difference in 
accuracy between merging TRMM-Obs, Radar-Obs and 
Radar-TRMM-Obs which results are tabulated in                  
Tables (1&2). It contains the performance of dependent 
locations in the estimation of radar (radar) rainfall and 
merging, using a modification of local bias (LB_Rad) and 
conditional merging (CM_Rad). TRMM rainfall 
estimation and modification are locally biased 
(LB_TRMM) and conditional merging (CM_TRMM). 
Finally merging the radar and TRMM uses a simple 
method or gives 0.5 weights to each rain estimate, namely 
LB3_simple and CM3_simple and uses variance for 
LB3_Mod and CM3_Mod.  
 
 Based on the value of RMSE, MAE and its 
correlation, generally the results of merging are better than 
just using estimates of rainfall remote sensing for both 
radar and TRMM only. Compared to local modifications 
to bias or Mod_LB, modification of conditional merging 
or Mod_CM is better in the locations that are not 
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independent. Parameter values are almost doubled in 
comparison, both RMSE, MAE and correlation compared 
to Mod_LB. But this Mod_LB is still better than the 
original estimation of radar and TRMM satellite.  
 

Performance rainfall estimation in independent 
location shows that Mod_CM on TRMM is more 
effectively than other merging technique, original remote 
sensing rainfall estimates as shown in Table 2. The 
average correlation of Mod_CM on TRMM close to 1, 
which is 0.909. Furthermore, evaluation also obtained 
RMSE below 10 and MAE is less than 5. Moreover, the 
next best merging is CM uses all three types of data, both 
simple (CM3_simple) and using the variance (CM3_Mod) 
with a correlation of 0.855 and 0.806. Comparison these 
two techniques showed that complex methods wasn’t 
always better than simple ones. The simple method 
(CM3_simple) that only uses the same weight for each 
variable has a better correlation, RMSE and MAE than 
complicated such as CM3_Mod. The validation using 
independent locations shows that the value of the 
correlation below 0.5, while most RMSE above 10. No 
location has MAE below 5. Based on the correlation 
value, CM modified RMSE and MAE are still the best 
compared to using the original or biased local estimates. 
However, modified local bias is still better than using the 
original estimation of remote sensing. 
 
4. Discussion 
 

Merging is essentially a correction of remote sensing 
rainfall estimates such as radar and satellites using the 
results of rain gauge observed (McKee, 2015). Of course, 
the results of this correction should be more accurate than 
rainfall estimates from radar or satellites. Normally, 
rainfall from rain gauge is considered the most accurate 
and must be represented rainfall on the surface. The rain 
gauge data are point data, different from remote sensing 
radar and satellite data that describe spatial rain. The 
merging takes advantage of the advantages and 
disadvantages of remote sensing and rain gauge so that 
better results are obtained when compared to using only 
one (Wilson, 1979; Erdin, 2009). The result shows that the 
merging technique has been shown to increase the 
correlation value and reduce RMSE compared to the 
estimation of remote sensing without merging. This has 
led to widespread merging as in India (Mitra et al., 2009), 
South Korea (Sik et al., 2007); China (Xie and Xiong,  
2011); America (Ciach et al., 2007) and Europe 
(Schiemann et al., 2011; Pulkkinen et al., 2014). The use 
of weights in the bias mean field or MFB uses a 
comparison of the amount of rainfall estimated from 
remote sensing compared to the amount of rain gauge 
rainfall. Although this method can improve the accuracy 
of rain remote sensing estimates (Sik et al., 2007; Delobbe 

et al., 2008; McKee, 2015), the decline is globally on 
average, not spatially described. Local merging can 
correct this deficiency by calculating the weights in each 
location. The use of weights in each location to merge 
daily rainfall, especially in the maritime continent, such as 
in the Makassar Strait, produces a disproportionate 
weight. For this reason, modification is needed to make 
the weight more proportional by making a grouping of 
weights. The evaluation results show that this method can 
increase the correlation value and reduce the root mean 
square error (RMSE) and mean absolute error (MAE). 
 

Using CM in many researches preferable than LB 
and MFB, although all could improve accuracy rainfall 
estimation of remote sensing estimates (Sik et al., 2007; 
Goudenhoofdt and Delobbe, 2009; Park et al., 2017). This 
technique can also call kriging with radar-based error 
correction (KRE) that proposed remote sensing rainfall 
estimates such as radar or TRMM have an estimate 
unknown a true or true field. Instead, rain gauge produces 
unknown fields of the correct value. Fundamentally, CM 
combines both corrections so that the correction of the 
rain gauge is included in the estimated remote sensing 
calculation. However, the problem in CM in this research 
area is the interpolation used. Although the standard on 
CM uses kriging interpolation, but modelling variogram 
has a big difficulty in the rain event which has a lot of 0 
rainfall accumulation. Interpolation estimates using values 
around a point with a certain weight so that the result of 0 
in rainfall interpolations makes no rainfall. Therefore, the 
interpolation will be good if at each point have a value 
above 0, such as monthly or annual rainfall. However, in 
the daily rain event since random, especially in this study 
area there are many whose values are 0 even though the 
place is close and in the rainy season. Therefore in this 
work, the merging results were changed to a certain extent 
according to the percentage of daily rain in the region. The 
evaluation showed that modified CM the valuable 
merging, which can most increasing in correlation and 
decrease MAE and RMSE. The order of the best models 
in this work is the modification of CM, LB modification 
and original rainfall estimation of remote sensing. 
 

Merging which combines three different types of 
data is still very rare. Different from Filho (2004) that 
merged by combining the rain gauge first and then the 
merging results were reset with estimates of satellite rain. 
This research proposed an alternative to merging three 
types of data by simultaneously merging rain gauges and 
radar (TRMM) - Radar. Moreover, the second result of 
merging is turned back into one new rainfall estimate. The 
evaluation shows that merging these three data types is not 
automatically better than merging the two types of data. 
Even though merging these three data types is not always 
better than merging TRMM-Obs, but this merging offers 
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stability. Merging is the same as the combination of time 
series forecasting. The ups and downs of the two models 
when combined should always be around the predicted 
variables, so the merging of the 2 models does offer 
improvements in accuracy and predictive stability 
(Giarno, 2014). 
 
5. Conclusions 
 

Modified mean field bias (Mod_MFB) and local bias 
(LB) are proven to increase accuracy, mainly in reducing 
root mean square error (RMSE) and mean absolute error 
(MAE). But, increasing correlation is rather difficult using 
both methods. However, conditional merging (CM) and 
modified LB with 20 classes besides can increase the 
value of the correlation, also can decrease RMSE and 
MAE. The modified LB can be considered as the best 
method for stabilization of MAE, while CM is the best 
method to decrease RMSE and MAE. The order of the 
best merging among methods in this study is the 
modification of CM, LB modification and original 
estimation of remote sensing. Moreover, merging three 
data types is not automatically better than merging the two 
types of data. However, merging offers the stability of 
accuracy. 
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