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ABSTRACT. During northern summer, a monsoon stationary wave which maintains as part of its baroclinic structure
three well-defined troughs, one each in the region of the Arabian sea. the Bay of Bengal and South China sea, frequently
interacts with the mid-latitude baroclinic waves which amplify during their eastward passage with profound influence on the
development of the monsoon troughs. The paper discusses the mechanism of this wave-wave interaction as suggested by the
temporal evolution of the thermal and wind fields associated with the waves and reports the findings of a detailed study of a
case of tropical-ridlatitude interaction in which the development of a monsoon trough led to the birth of a westward-propa-

gating monsoon depression over South China.
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1. Introduction

One of the outstanding problems of tropical meteor-
ology is prediction of genesis of monsoon depressions.
Recently, Mak (1987) has reviewed some of the theoretical
studies of flow instability, mostly based on quasi-geostro-
phic theory, which have emphasized the role of barotropic
or baroclinic or combined barotropic-baroclinic instability
as a plausible mechanism for growth of a perturbation of the
scale of a monsoon depression in mean monsoon current.
However, it is still unclear as to what identifiable physical
factors get involved in triggering a monsoon depression in
a given synoptic situation. According to Ramage (1971),
monsoon depressions have a tendency to form on pre-exist-
ing monsoon troughs over the Bay of Bengal and South
China sea. But the reason as to why it should be so has not

(159)

been elucidated. Some recent observational studies (e.g.,
Saha and Chang 1983, Saha and Saha 1993 a&b, 1996) find
that large-amplitude mid-latitude baroclinic waves fre-
quently interact with monsoon depressions with profound
influence on the latter’s intensity and movement through
baroclinic processes. In the present study, we deal with a
case of genesis of a monsoon depression on a monsoon
trough over southern China following the interaction of this
trough with a large-amplitude baroclinic wave in the mid-
latitude westerlies. The interaction led to formation of an
extended trough and its eventual fracture into two segments
in a manner suggested in some classical studies (for areview
of these studies, see Riehl 1954). It is the cut-off tropical
part of the extended trough that eventually concentrated into
a depression. The event occurred during a period of about
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Figs.1(a&b). Zonal-vertical distribution along 20° N of zonal anomaly (deviation from zonal mean) of time-mean (mean of six maptimes) (a) temperature

(°C) and (b) meridional component of the wind(ms'") during June-July 1979, W denotes Warm, C-Cold: N-Northerly and S-Southerly.
Double-shaft arrow shows approximate location of the monsoon trough
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three days commencing 29 June 1979 over a part of China
adjoining the South China sea.

The layout of the paper is as follows:

Data and analysis are stated in section 2. The structure
and properties of wave disturbances in mid-latitudes and
monsoon regions of Asia are briefly reviewed in section 3.
Mechanism of interaction leading to formation of an ex-
tended trough between high and low latitudes and its even-
tual fracture is explained in section 4. Synoptic evidence of
an actual case of such interaction resulting in the genesis of
a westward-propagating monsoon disturbance is presented
in section 5. The findings and conclusions are given in
section 6.

2. Data analysis and computations

Since the event occurred during the Summer Monsoon
Experiment (SMONEX), 1979, when a concerted effort was
made to collect maximum possible data over the Asian
monsoon region, data coverage available for the study may
be said to have been perhaps, the best so far except over the
oceanic region where, as usual, data were sparse. Our data
are obtained from the synoptic maps of the India Meteoro-
logical Department (IMD) at its Headquarters at New Delhi
and consist of daily 0000 and 1200 UTC winds, geopotential
heights and temperatures at Mean Sea Level (MSL) and
pressure surfaces 850, 700, 500, 300, 200, 100 and 50 hPa
over an area bounded by latitudes 5° N and 55° N and
longitudes 35° E and 130° E during the period 28 June
through 3 July. Plotted on maps, these data are analyzed
manually to obtain streamline-isotach, isobaric height and
isothermal fields. From the analyses, values of the different
variables are picked up at 2.5° x 2.5° lat-long grid for further
study and computations. Maps showing satellite-observed
cloud cover at 1200 UTC daily during the period 28 June
through 1 July 1979, were obtained from Krishnamurti et al.
(1979, 1980). Parameters computed include zonal anomaly
(deviation from zonal mean) of temperature and the
meridional component of the wind flow, divergence and
vorticity, vertical motion and horizontal thermal advection,
Vertical velocity was computed from the well-known con-
tinuity equation by using the orographic vertical velocity as
the lower boundary condition and applying a correction to
the computed values so as to reduce the computed vertical
velocity at the top of the domain to zero. Other parameters
were computed using standard methods.

3. Structure and properties of wave disturbances
(a) Mid-latitudes

The mean structure of wave disturbances in the mid-
latitudes, where the thermal wind is uniformly westerly, is
well-known (e.g., Palmen and Newton 1969, Holton 1979).
It consists of a temperature wave made up of a alternate

sectors of cold and warm airmasses associated with a geopo-
tential wave comprised of alternate sectors of lows and
highs. The troughs and ridges of the geopotential wave tilt
westward with height, while the axes of the warmest and the
coldest air tilt eastward with height. Thus, in a developing
wave, a phase difference exists between the two waves
which causes cold advection from the north to the west of
the trough and warm advection from the south to the east.
This causes a baroclinic development of the wave with cold
air sinking in the west and warm air rising in the east, thereby
effecting a direct conversion of available potential energy
into eddy kinetic energy. Though of the Rossby-wave type
which has a westward phase velocity, mid-latitude baro-
clinic waves usually move eastward because of the strong
westerly current in which they are embedded.

(b) Tropics

Over the Asian tropics (south of about 30° N), land-sea
thermal contrasts during the summer maintain an easterly
thermal wind over the region and a stationary wave along
the southern boundary of the continent with low pressure
over the warm land and high pressure over the cool sea, as
identified by zonal anomaly of pressure and temperature. A
zonal-vertical cross-section of this wave in the field of zonal
anomaly of time- mean temperature and the meridional
component of the mean wind along 20° N is shown in Figs.
1(a & b) respectively. According to Saha and Saha (1996),
this stationary wave which has three well-defined troughs
of low pressure, one each over eastern Arabian sea, the Bay
of Bengal and South China sea has a baroclinic structure
characterized by the following:

(i) it has alternate sectors of warm and cold air-
masses as in mid-latitude baroclinic waves;

(if) its troughs and ridges tilt eastward with height in
the lower troposphere where the prevailing wind
is generally westerly and westward with height in
the upper troposphere where the prevailing wind
is easterly; and

(iif) in both the lower and the upper tropospheres, a
phase difference exists between the geopotential
and the temperature fields (e.g., Saha and Chang
1983, Saha and Saha 1996) so that the tempera-
ture wave lags behind the geopotential wave,
looking downstream. The phase difference
causes warm advection from the north to the west
of the trough (ridge) and cold advection from the
south to the east in the lower (upper) tropospheres
and helps to maintain the trough via a west-east
overturning with warm air rising in the west and
cold air sinking in the east. Thus, a monsoon
trough has a baroclinic structure and is main-
tained by a baroclinic process. Likewise, a mon-
soon depression which is a slightly deeper low
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TABLE 1
A comparative statement of time-mean wave parameters of
mid- latitade and tropical depressions (T-Temperature, Phi-

Geopotential, C-Cold, W-Warm)
Parameter Mid-latitude Tropical
depression depression
Latitude belt 30-60 15-30
(Deg.Lat)
Wavelength (km) 3000-5000 1000-2000
Period (days) 5-10 3-5
Amplitude 5-10 1-2
T-field(°C)
Phi-field (gpm) 50-100 (often 200) 20-50
Movement Eastward Westward
direction
Speed(ms™") 5-10 2.5
Thermal wind Westerly Easterly
Zonal vertical tilt Westward Eastward
(Troughs & Ridges) with height (westward) in
lower (upper)
troposphere
Thermal structure C to West, W(C) to west,
W 1o east C(W) to east in
lower (upper)
troposphere
Thermal structure C to West, W(C) 1o west,
W to east C(W) to eastin
lower (upper)
troposphere

pressure system than a monsoon trough has a
baroclinic structure (Saha and Saha 1993b) and
is controlled by the same baroclinic process as in
a monsoon trough. Some salient features of the
time-mean structure and properties of mid-lati-
tude and tropical depressions mentioned above
are summarized in a comparative statement pre-
sented in Table I.

4. Mechanism of interaction

Disturbances of middle and low latitudes which move
zonally in their respective latitudinal belts as stated in

Tableloften do not interact with each other across the sub-
tropical belt which separates them. However, observations
reveal (e.g., Saha and Saha 1993 ab) that a number of
mid-latitude disturbances during their eastward travel am-
plify, extend their influences to lower latitudes and interact
with the monsoon stationary wave, or even a monsoon low
or depression if one happens to be present. The process of
interaction involves both the thermal and the geopotential
fields. In the thermal field, the cold and warm sectors of one
belt interact with the cold and warm sectors of the other
either in the same phase (i.e., cold with cold and warm with

Figs.2(a&b).Schematic showing midlatitude-tropical interaction over Asia
in the fields of temperature and wind. Double-dashed line
denotes the troughline: (a) Lower troposphere (below 500
hPa) and (b) Upper troposphere (500-200 hPa)

warm) or in the opposite phase (i.e., cold with warm and
warm with cold). Since the warm and the cold sectors of the
monsoon stationary wave move away little from their mean
geographical locations during the season, it is the warm and
the cold sectors of a mid-latitude wave which during their
eastward travel interact with those of the monsoon station-
ary wave either in the same phase or the opposite phase.
During an interaction in the opposite phase, that is when the
warm sector of the midlatitude belt interacts with the cold
sector of the tropical belt, the result is usually a weakening
of the monsoon wave, However, an interaction in the same
phase leads to coupling and amplification of the distur-
bances, as shown schematically in Figs.2(a &b) which de-
pict the thermal and wind fields in the lower and the upper
tropospheres respectively.

It may be noted that the structure of the fields in the two
layers is somewhat different, due largely to the difference in
the zonal-vertical tilts of the troughs of the two belts in
relation to the warm and cold airmasses, as stated in Tablel.
An extended trough signifying coupling, therefore, appears
to figure more prominently in the upper troposphere than in
the lower troposphere. During coupling, warm air diverging
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(d) 500hPo 127 Ist JULY 1979
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Figs.Xa-d). 500 hPa Synoptic maps at: (a) 0000 UTC 28 June, (b) 1200 UTC 29 June, (c) 1200 UTC 30 June and (d) 1200 UTC 1 July 1979.

from the mid-latitude warm high appears to converge
strongly into the monsoon trough zone from the west in the
lower troposphere and from the east in the upper tropo-
sphere. The process leads to rapid development of the mon-
soon trough into a low or depression. But since the waves
move in opposite directions, the extended trough soon gets
fractured into two segments which start moving away from
each other. It is the southern segment that under sustained
warm advection from the mid-latitude wave develops into a
monsoon depression.

5. Synoptic evidence

Our analyses of observed data, presented in Figs.3(a-d),
appear to support the mechanism suggested in the preceding
section regarding the genesis of a monsoon depression on a
trough of the monsoon stationary wave over southeastern
China. Fig.3a, which relates to 500 hPa at 0000 UTC on 28
June, shows two large-amplitude code troughs, one along
about 75° E and the other along about 127° E separated by
an intense warm ridge along about 95° E over the mid-lati-
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Fip4, Vertically-integrated thermal advection (uni: W™ ) gt 1200
UTCon | July 1979. Pasitive values indicate cold advection and
negative values warm advection

tudes. A deep depression centered at about 197 N, 89° E Jies
over the Bay of Bengal,

The situation over the South China sca region appears
1o be somewhat complex, in that due to its interaction with
the large amplitude mid-latitude trough in the opposite
phase the monsoon stationary wave here has almost lost its
identity. However, with continued eastward movement of
the mid-latitude wave, the situation changes rapidly during
the next day and, as shown in Fig.3b, which relates to 500
hPa at 1200 UTC on 29 June, an interaction of the monsoon
stationary wave with the mid-latitude wave in the same
phase leads to coupling of the waves so as to form an
extended trough over eastern China. Strong warm advection
Geeurs at this stage from the warm sector of the mid-latitude
disturbance to the west of the monsocon trough and cold
advection from the South China sea to the east of the trough,
causing rapid development of the monsoon trough into a
westward-propagating low or depression, while the mid-
latitude segment of the extended trough, now fractured,
continues its eastward movement. These developments are
well brought out by Fig.3¢ which pertains to 500 hPa at 1200
UTC on 30 June.

Fig.3d which relates to 500 hPa at 1200 UTC on | July
shows continuance of warm and cold advections as on the
preceding day and further longitudinal separation of the
monsoon depression and the mid-latitude trough as they
keep moving in the opposite directions. The monsoon de-
pression continues to move westward but weakens some-

‘e . 3 1, &
Fig.5.  Distnbution of verucal velocaty (unit: 107 hPa s™'y a1 500 hPa at

1200 UTC on I July 1979, Positive denotes downward and
negative upward
what as it negotiates the mountains and hills of central
Myanmar. Two days later, i.e., at 1200 UTC on 3 July, it
appears as a well-marked trough of low pressure across the
Arakan coast of Myanmar (Saha and Shukla 1980).

The results of our computation of vertically-integrated
thermal advection and vertical motion, examples of which for
1200 UTC on | July are presented in Figs. 4 and 5 respectively,
would appear to be consistent with the satellite-observed cloud
cover over southeastern Asia shown in Figs.6(a-d). Deep con-
vecuive clouds appear in areas where there is strong warm
advection and upward motion and clear skies in regions where
there is cold advection and downward motion. These results
would appear to support the hypothesis advanced in the present
study regarding the genesis of a monsoon depression.

6. Findings and concluding remarks

The findings of the present study may be summarized
as follows:

(£) A zonal stationary wave in the geopotential field
with troughs over warm land and ridges over cool
sea, which exists over southern Asia during the
northern summer, interacts frequently with mid-
latitude large-amplitude eastward-propagating
baroclinic disturbances, whenever the latter
move on a track which lies sufficiently equator-
ward of their usual track.
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Figs.6(a-d). Satellite-observed cloud imagery at 1200 UTC on: (a) 28 June, (b) 29 June, () 30 June and (d) 1 July 1979 (From Krishnamurti et al., 1979,

1980).

(if) Since the wave troughs in the two latitudinal belts
are associated with warm and cold sectors, the
interaction is reflected in both the-geopotential
(or wind) and the thermal fields.

(iif) An interaction in the opposite phase, i.e., between
the cold sector of the mid-latitude disturbance
and the warm sector of the monsoon disturbance,
or vice versa, leads to a weakening of the mon-
soon disturbance. An interaction in the same
phase, i.e., between the warm (cold) sector of one
belt and the warm (cold) sector of the other, has
an amplifying and developing effect on the mon-
soon disturbance through enhanced thermal ad-
vection.

(fv) Interaction in the same phase leads to a coupling
of the troughs of the two belts and formation of
an extended trough which later breaks up into two
segments. It is the tropical segment of the frac-

tured trough that develops into a westward-
propagating monsoon low or depression.

(v) The afore-mentioned hypothesis appears to be well
supported by a detailed study of a case of genesis of
a monsoon disturbance over southeastern China.

In conclusion, it may be remarked that though the
present study concentrates on the role of a mid-latitude
disturbance of the northern hemisphere in the genesis of a
monsoon depression, one cannot rule out the possibility of
similar influences coming off and on from mid-latitude
disturbances of the southern hemisphere. In fact, some ob-
servational studies (e.g., Sikka and Gray 1981) have re-
vealed that during eastward passage of large-amplitude
mid-latitude waves over the southern Indian ocean, pulses
of relatively cooler air from the cold sectors of these waves
cross the equator and converge onto the monsoon trough
zones. It is conceivable that an enhancement of cold advec-
tion to the cold sector of a monsoon trough zone from the
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south in tandem with that of warm advection to its warm
sector from the north may lead to rapid cyclogenesis and
formation of a deep depression or a cyclonic storm.
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