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ABSTRACT. The dimensions of attractors of daily maximum temperature (during March-May) recorded by the two
observatories of Madras, viz, Nungambakkam and Meenambakkam are estimated from phase space trajectories by the method
of deterministic chaos. The dimensions provide the basic information on the minimum number of parameters required to
understand the complex dynamical system and also the upperbound (degrees of freedom) of such parameters that are sufficient
to model the system. The fractal dimension for the weather event, viz, maximum temperature over Madras is between 3.5 and
3.9 suggesting 4 parameters are necessary to model the system and a maximum of 19 parameters are sufficient.
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1. Introduction

The minimum number of independent variables, re-
quired to understand the dynamics underlying complex sys-
tems, is being obtained by the theory of deterministic chaos,
a science which has been developed during the last two
decades. Such studies were made for Indian monsoon rain-
fall (Satyan 1988, Sujit Basu and Andharia 1992) and earth-
quake sequence (Battacharya et al. 1995).

A system whose status changes with time is known as
dynamical system. The dissipative dynamical system
(which loses energy due to friction) always approaches a
limiting or asymptotic state over time which is the main
focus of the theory of deterministic chaos. The concepts of
the theory of chaos are excellently described elsewhere
(Kaye 1993, Gleick 1987 and Chatterjee and Yilmaz 1992).
A complex dynamical system whose instantaneous status at
different points of time is represented in phase space ulti-
mately converge to a set called an attractor. The dimension
of the attractor (need not be an integer) is far less than that
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of the phase space. The fractals, a concept from pure geome-
try, exhibit self-similarity at levels of transformation is an
another attracting area of chaos and they may have non-in-
teger dimension which is called the fractal dimension of
chaotic attractor (Mandelbrot 1977).

Forecasting maximum temperature over Madras poses
problem to the forecaster in view of the modifying effects
like time of onset, intensity and the extent of sea breeze
circulation, strength of continental airmass advection etc.
The sea breeze effect over Madras is more pronounced and
clearly identified during the pre- monsoon season (March-
May) and south-west monsoon season (June- September)
due to reversal of zonal flow. However, the same cannot be
easily identified as such during the other seasons as there is
considerable amount of complexity and uncertainty in iden-
tifying the onset and maintenance of sea breeze circulation
since the zonal flow being unilateral during these periods
(Atkinson 1981). In this study we propose to find out the
fractal dimension of chaotic attractor for daily maximum
temperature over Madras for the pre-monsoon season.
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Fig.l.  Geographical locations of meteorological observations of
Chennai

2. Theoretical background

A simple deterministic dynamical system of n vari-
ables; xi; X4, ¥3: s Xy, is characterized by a set of n
differential equations

X = fi (X1 X X3 ey Xy i=123..n (D

(the superscript *." denotes the time derivative).

The instantaneous description of the system is repre-
sented by the vector points [xy (1), x2 (1), X3 (D).eee. Xy (D]
at any given time £. The simple time evolution model may
look as follows:

i=f,, (x (1)) in continuous time
X, +1=f w(x,) in discrete time (2)

where © is some fixed parameter such as the driving
force of the system and 1 is the time shift.

Let us consider x; as a vector [xy(r)....... Xn(1)] 1n Eu-

clidian space R" and a function f,;:R" into R" . If x is observed
..%

at some initial time, say, t =0, then

%, =foo OF & (Fos Ciif iy )V ) F 5 () (3)

Let U = {possible states of the system having positive
volume (Lebesgue measure)}.

The volume will be compressed due to loss of energy
and the set U converges asymptotically to a compact set A
if the system is dissipative. A is called an attracting set (also

called attractor) if f i, (A) = A for any ¢ and for every open
set VO A, wehavef§, (U)c V. The union of inverse images

(f{l, )" (U) for all 1 is called the basin of attractor of A. The
attractors may be a single stable point or periodic with fixed
period (e.g. circle) or quasi periodic (e.g., torus) or aperiodic

(chaotic). The chaotic attractors can not be obtained by
bounded deformations and diffeomorphisms (invertible and
continuously differentiable transformation) and does not
have any regular shape and that is why they are called
strange attractors (Chatterjee and Yilmaz 1992).

Eqgn. (1) can be transformed into a single highly non-
linear differential equation

bR T8 6 % I8 08 L x("-”) (4)

where, x is one of the variables of x|, x3, x3........x, and
all the other variables are eliminated b(y differentiation. The
vector X(1) = [x(1), X'(1), X"(D)uenor X a=l) ()] is treated as
single observation in a dimensional phase space. Since the
meteorological dynamical system variables are observables
(discrete), thevector X(n=[x(r), x(t+1), x(1+27),....,
x(t+(m-1)t] (in the case of discrete time series) is treated as
single observation in an m dimensional phase space and is
chosen in such a way that the data points of the vector X(r)
and X(r+1) are linearly independent. Then the number of
pairs of vector points whose Euclidian distance (7 ;; ) is less
than a prescribed threshold value (/) are found out by,

N—(m-1) N-{m-1)
N{H= Z X B(I—n:,-j) (5)

i=1 J=i+l

where 68(a)=0 if a<0 and 8(a)=1 if a>0 is the Heavyside
function. As there will be a maximum of [N-(m- 1)] vector
points possible with N data points in m dimensional phase
space, the number of distinct pairs of points will be [N-(m-
1)] C5. The value N(/) is normalised by dividing it by [N-
(m-1)] C3. Then

C(H=N (1) / (N=(m=1))C, (6)

is the cumulative distributive function of the correlation
integral. Then C(!)=a.!D (Grassberger and Procaccia 1983)
where a is a constant and the correlation fractal dimension
of the attractor is given by,

D = (log [C (1) / log(D)] (7)

3. Data

Daily maximum temperature of Meenambakkam Air-
port Meteorological Office (herein after called MO) and
Nungambakkam observatory (herein after called ACWC,
Area Cyclone Warning Centre) for the period March-May
of 1971 to 1985 have been used in this study. The geographi-
cal locations of above mentioned observatories are shown
in Fig.1.
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Fig.2. Time series plots of daily maximum temperatures of MO and ACWC Chennai (1 March - 31 May 1985)
Time series plots of daily maximum temperatures of MO and ACWC Chennai (1 March - 31 May 1985)
TABLE 1

Results of spectrum analysis of daily maximum temperature of MO and ACWC Madras during
1 March to 31 May (1971- 1985)

ACWC Madras MO Madras
Year No. of lags Periodicity No. of lags Periodicity
significant (days) significant (days)
1971 Ttob — lwob —
1972 ltod — ltod -
1973 lto5 9.14 lto6 —
1974 lto5 5.82&5.33 1to6 582&533
1975 lto8 3.76 Ito8 3.20
1976 1to5 21.33 & 16.0, 3.76,3.56, lto5 21.33 & 16.0
3.37,2.13 & 2.06
1977 1to8 2.29 1to7 800&7.11
1978 1?7 246237 &2.29 lto6 246237229 & 221
1979 1to3 582 ltod -—
1980 l1to5 — lto5 —
1981 lto6 221,213 & 203 lwob 278
1982 1to3 10.67,9.14 & 8.00 1to3 10.67.9.14 & 8.00
1983 ltwod 221,213 & 2.03 lw3 221
1984 lto5 - lto6 —
1985 1to5 246 & 2.37 s —

4. Methodology and computation

4.1. Time series analysis

The plot of the march of the daily maximum tempera-
ture recorded at MO and ACWC Madras during the hot-

weather season (1 March to 31 May) over a typical year is
shown in Fig.2. It can be seen that the maximum temperature
observed over MO is atleast 1°C higher than that observed
over ACWC indicating the slight variability of weather
parameter over meso V scale (2 to 20km in horizontal scale)
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(m=4 to 24) in respect of MO Chennai (1971-85) for t=1

(Atkinson 1981). The data of each year was subjected to
power spectrum analysis by adapting the method suggested
by Blackman and Tukey, as given in WMO Technical Note
N0.79 (1966). The power spectrum was constructed with a
maximum lag of 31 which is 1/3 of the frequency of the data
of each year, viz., 92. The results of the red noisc spectrum
(Markov type persistence) is summarized in the Table 1. The
year to year variability of strong and the weak periodicities
suggests that the time series is chaotic.

4.2. Fractal dimension analysis

As a fairly long time series is required for the determi-
nation of fractal dimension, 1380 daily maximum tempera-
ture data points (15 years data of 92 values each) of MO as
well as ACWC Madras have becen considered inde-
pendently. Since persistence in the daily maximum tempera-
lure is quite common, in order to ensure the linear
independence of the data the series have been subjected to
correlogram analysis for each year to identify the maximum
lag at which the auto correlation co-efficient is insignificant,
For this purpose the method suggested by Alan Pankartz
(1983) has been employed. It was found that the persistency
was seen upto lag 7 for MO as well as for ACWC maximum
temperature series (see Table 1). However, when the anom-

aly series (actual-mean) was considered, persistency was
restricted to lag 4 only. Hence the timeshift (t) has been
restricted to 7 in the case of original series and 4 in the case
of anomaly series.

As there will be long time memory involved between
data points of successive years (since the data points are
separated by 365 days, i.e., between the data set of one year
to that of the next year), the distributive functions are
obtained for each year and composited thereafter for the
entire period (see Fraedrich 1986). Fig.3 shows the typical
graph of log C{(!) against log (/) for t-1 in respect of MO
Madras. The graph has a linear portion (slope) for various
embedding dimension (m) and this slope has been found out
analytically by fitting a linear best fit curve by the method
of least square. The slope thus obtained for each embedding
dimension is called the dimensionality (d). Figs. 4(a & b)
show the gradual increase of dimensionality with the in-
crease of embedding dimension. The asymptotic or saturat-
ing value of dimensionality is the fractal dimension of the
attractor. However, as this sort of observed time series is
expected to contain some environmental noise, perfect as-
ymptotic value of different dimensionalities are not possible
many a time. In order to get the asymptotic value, the pentad
average of the dimensionality (d) for various embedding
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Figs.4(a&b).Graph of dimensionality vs embedding space for (a) MO
Chennai (actual maximum temperature series) and (b) ACWC
Chennai (maximum temperature anomaly series)

+2
dimensions () are computed [ £ d(m+i)/5 for m=4 to 24]

=2
to smooth the values. The slope is then worked out and the
near zero slope (say less than 10 degrees) is identified as the
asymptotic value and the corresponding dimensionality is
the fractal dimension(D). The integer obtained by rounding
off the fractal dimension to the higher side indicates the
minimum number of independent variables necessary to
model the dynamics of the attractor, while the maximum
number of variables that are sufficient to model is that
embedding dimension (m) beyond which the dimensionality
is asymptotic or saturated (Fraedrich 1986). The fractal
dimension of chaotic attractor of maximum temperature
series of MO Madras is 3.9, while that of ACWC Madras is
3.5 suggesting a minimum of 4 independent parameters are
required to understand and model the system. The embed-
ding dimension at which the saturation is reached (i.e.,

where the dimensionality obtained for subsequent embed-
ding dimension is asymptotic) is the upper bound (degrees
of freedom) of parameters required to model the system-in
this case 19.

5. Results and discussion
5.1. Limitations

The theory of chaos has the basic assumption that the
transients have died out and the motion has reached the
attractor. But in many real world problems this assumption
may not be realised. Since the observables may contain the
environmental (statistical) noise which may not be identi-
fied had eliminated in real problems in which case the
advantage of deterministic process over stochastic process
will be lost.

5.2. Scope for future work

As of now, there is no unified procedure to identify the
independent parameters though the lowerbound and upper-
bound of such parameters needed to model are brought out
by the theory of deterministic chaos. Fraedrich (1986) of-
fered physical interpretation for the dimensionality of
weather (fractal dimension of pressure in his study was
3.5-3.9) as cyclones (short period disturbances), troughs of
slow moving waves and an index cycle of these two for-
cings. In a similar way the dimensionality of maximum
temperature could be explained by means of sea breeze
circulation (their extent, strength and intensity), airmass
advection and an interaction of these two disturbances in an
index cycle of reduced or enhanced synoptic activities.
Chatterjee and Yilmaz (1992) suggested that the variables
can be any one of the past observables of the same timeseries
or it could be some other related variable. Based on these
lines, identification of parameters are being carried out to
forecast the maximum temperature over Madras.

6. Conclusion

The minimum number of variables that are necessary
to model the maximum temperature over Madras is 4 and
the maximum (upperbound) number of sufficient variables
is 19.
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