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An analytical model for mountain wave in stratified atmosphere
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ABSTRACT., An analytical, two-dimensional computer model has been developed for real time prediction of
mountain wave due to Pirpanjal mountains over Kashmir valley. Simulation of the L? profile has been made with realistic,
non-zero values at higher levels and exponentially decreasing values at lower levels. Unlike Doos (1961), present solution has
no restriction on the value of wave number (k). Validity of the model has been tested with the satellite observed waves in

seven cases and actual aircraft report in one case.
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1. Introduction

The problem of airflow over mountainous regions has
been studied intensively for the past several years by using
linear and nonlinear models. Lyre (1943) and Queney
(1948) probably, provided the starting point for these inves-
tigations. They obtained some observed features of airflow
over mountains in a simple two-dimensional, single layer
model. Scorer (1949) used an atmosphere stratified in two
layers. Although this representation of atmosphere is rather
simplified, the results were illuminating and gave rise to
extensive studies of two or more layer models. Scorer's
model represented constant L* (Scorer's parameter) profile
in the two layers with discontinuity at the interface. Since
then a number of attempts were made to simulate the actual
atmospheric profile more realistically.

Although linearized theory of internal gravity waves
due to orography is strictly applicable to shallow mountains
and small amplitude waves only, it has been widely used to
study large variety of mountain shapes and atmospheric

profiles, to obtain a fairly good idea of airflow pattern (Doos
1961, Vergeiner 1971, Klemp and Lilly 1975). Philips and
Brown (1983) has recently carried out experimental valida-
tion of the waves predicted by the linearized theory and
actual aircraft observations. They found that linearized the-
ory is good enough in predicting the wave-length. Ampli-
tude of the wave, however, was noticed to be slightly more
than what was predicted by the linearized model. Over
Indian region Sarker (1965) studied the waves generated due
to Western Ghats.

Over Jammu & Kashmir region, Pirpanjal ranges, hav-
ing near north-south orientation form a favourable barrier
for the generally prevailing westerly winds in this region.

Earlier attempts to simulate the Scorer’s profile as a
continuous model may be broadly classified into two cate-
gories - an exponentially decreasing single layer model
(Foldvik and Palm 1959, Sarker 1965) and a multilayer
exponential model with appropriate matching conditions for
vertical velocity and its vertical gradient (Danielson and
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Bleck 1970, Palm and Foldvik 1960). Although the later
approach is quite close to reality, the relevant expressions
become increasingly cumbersome with increasing number
of layers. While the former approach is simpler, exponen-
tially decreasing £ profile not only restricts its applicabi-
lity to limited number of cases but also does not represent
true atmospheric conditions at higher levels. Doos (1961)
attempted to study the realistic profile with constant non-
zero values (say 12, at higher levels but neglected the
contribution to the Fourier integral for values of wavenum-
bers less than L,,. This paper illustrates a method to solve
the lee-wave equation with similar stratification but for the
entire wavelength spectrum for airflow over the Pirpanjal
ranges.

2. Formulation of the problem and solution

Assuming that the mountain is shallow, wave ampli-
tude is small and the airflow is inviscid and laminar, the
governing equation for the vertical component of the velo-
city, under Boussinesq approximation, can be expressed as
(Scorer 1949)
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Boundary Conditions

() Along the mountain [z = E(x)] the continuity of the
normal component of velocity leads to

w d&
T El v (3a)

(i) For large values of z, we will take the more realistic
radiation condition implying the upward propagation of
energy as z—yoo

w o< exp (iVz). V = a constant (3b)

To represent the stratification of the atmosphere, we
consider a single layer profile given by

L2=12,+12 e®% <o (4)

Here, L., , L, and o are determined by fitting in the
observed atmospheric data. Applying Fourier transform to
Eqn. (1), we obtain

W + (L2 - k)W =0 (5)

where,

Wk = T [ weoes

and w (x,2) =I w (k,2) ek dk
0

Substituting Eqn.(4) in Eqn.(5) we get,

We + (LL + L2e® - kDw = 0 (6)
Eqn.(6) can be reduced to the more familiar form
dw  1dw vi o _
— +t—— + (1-—= =0 7
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2, %%
and

) 202 - ¥ .

V=i e ip(say) (8)

The solution of Eqn.(7) satisfying the radiation condi-
tion is (cf. Appendix I)

w = AJ—V (P-) (9)

Where, A is an arbitrary function of the wavenumber k.
The mountain profile is taken in the form

B Ha2 i bCZ djz
E(x) = ) ¥ dx[cz + IZJ +ﬁ + (x-36.0)2

(10)

which represents an analytical expression for the actual
ground profile between Peshawar (34.01°N/71.35°E) and
Srinagar (34.05°N/74.58°E) across Pirpanjal mountains.
Values of the parameters are computed by fitting in Eqn.(10)
with the actual topography (Fig.1) by using the method of
least square (employing Marquardt numerical technigue-
Kuestner and Joe 1973) and are given as

H=1.9; a=28.6019796; b= 39.353073;
¢=49.038303; d=1.8835262; f=178.43532;
(11

The mountain profile Eqn.(10) comprises of linear
combination of bell-shaped functions (symmetrical with
respect to the vertical axis) and its gradient function (asym-
metrical with respect to the vertical axis). Addition of two
or more of these types of functions would be a convenient
analytical tool to formulate complicated ground profile into
a simple mathematical model.

Fourier transform of Eqn.(10) gives
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Fig.1. Profile of E-W axis of Pirapanjal mountain cross section

E (k)= Hae-alkl + jkpee™! & g1kl +i36n)

(12)
and the boundary condition in Eqn.(3a) takes the form
¥~ wtw | .- (13)
Using Eqn.(13) in Eqn.(9), we obtain

~ ik & (k) U(0)
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Where, u| =0 = Mo
Taking inverse Fourier transform of Eqn.(14) we get,

= ikE(k) U(0)
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According to Coulomb (1936) the zeroes of Ji(l,) are
regarded as real and simple for positive values of the argu-
ment p,. The integral at Eqn.(15) can now be evaluated by
using the method of residues.

Applying Kelvin’s monotony condition, we get,
(i)Forx>o0

Y= R"Io s (o)
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~ In the above, p = s along the positive half of the
imaginary axis and p = 5; along the negative part of the
imaginary axis in the complex k-plane.
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TABLE 1
Date L_‘. Li o k, Computed Observed Remarks
(km) (km'Y km™ ) wavelength wavelength
4 lan 1984 0.1541E-02 21529249 2.4035 0.57097031 11.0 11.0
2.7940077 22
48228662 1.3
1% Jun 1984 0.01696 3108.59 1.957 00,3932 15.9 16.0
2.1516 29
37370 1.6
14 Aug 1985 0.1851 42540 2.0 0.4 l&.i 15.00
1.82 34
22 Aug 1985 0.27317804 0.69348 182 S.0
E+08 2.1181984 29
47226503 13
5 Sep 1985 0.08081 100.00 1.4559 487! 128 12.0
1.0007 6.2
20178 3
14 Sep 1985 0.3581 1312.73%6 192 0.59846839 10.4 11.0
18310 3.4
1.2645703 19
24 Sep 1985 0.0038 54467.25 2489 0.5002 12.3 12.e
19274 32
41882 15
7 Dec 1985 0.1611 2408 8 1.5 04 154 13.00 Aircraft report
1.29 45 wrbulence at 7.5km
- 28 2.2 level
where 5 km). Effect of the Himalayan barrier, therefore, may be
PN = Phakey and Kp, are thersal zeros of Joyp (o) assumed to cause no significant difference on the high level

The vertical velocity wi(x, 2} is given by Eqn.(19) and
Eqn.(17).

3. Comparison of the predicted value with ohserved
data

For the purpose of validation of our results we selected
AVHRR pictures from NOAA satellite of lee-waves over
Kashmir valley, which is situated on the leeward side of
Pirpanjal ranges. This range is about 2900 km long (aligned
in the 340° - 160° direction) and 50 km wide with average
height of 3.6 km. Viewing from the plains of Punjab this is
the first mountain range we encounter in the North/North-
west. Peshawar is situated west of this range at about 260
km from the peak and at 0.36 km amsl. East of Pirpanjal is
Kashmir valley at 1.5 km amsl. This valley is about 70 km
wide. Further east of this valley is the Great Himalayan
ranges.

Fig.1 shows the two-dimensional topography along the
Peshawar- Srinagar axis up to Srinagar only. With this as
the lower boundary, our solution will be valid only up to the
Srinagar valley. Actual aircraft reports indicate that turbu-
lence is normally reported at the height of 6-8 km. This level
is much above the average height of the other ranges in the
region (average height of the Greater Himalayan barrier is

turbulence or wave profiles over Srinagar valley region.
Hence, in this study we have neglected the eifect of the
Greater Himalayan ranges on the lee-waves over the Srina-
gar valley. Wind and temperature distribution representing
the upstream conditions were obtained (rom the upper air
sounding data of Peshawar.

Computer program was developed for the computation
of L? from actual data. The entire vertical region was
divided into equal intervals of 500 meters each and the data
for missing levels were interpolated linearly. L? values were
computed with centred difference for intermediate levels
and forward and backward difference for the bottom and top
levels respectively. Evaluation of L., |, L, and o values were
done by using the Marduardt method of least square ap-
proximation. This is an extension of Gauss-Newton method
to allow for the convergence with relatively poor starting
guesses for unknown coefficients Lo, L, and o. In general,
the steepest descent procedure also converges for poor start-
ing values, but requires a longer solution time in comparison
to the Marquardt method. An example of L? profile over
Peshawar is shown in Fig.2. Table 1 enlists the dates on
which lee-waves were observed over Kashmir valley. Last
two columns show the observed and the computed wave-
lengths.
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Fig.2. Lz-proﬁ]c over Peshawar at 0000 UTC on 14 August 1985

Computed values reasonably match with the observed
ones in most of the cases. On 7 December 1985 the satellite
observation was corroborated with an aircraft report of
moderate turbulences by one of the aircrafts flying at 7.5 km
level over Kashmir region at about 0600 UTC. Minor vari-
ations in the computed and the observed wavelength on
some of these days may be attributed to the variation of the
atmospheric conditions from the time of upper air sounding
to the time of NOAA satellite pictures. For the sake of

convenience, values of L{: were calculated at 0.5 km amsl
above Peshawar rather than at 0.36 km amsl (which is the
elevation of Peshawar). This s not exnected to materially
affect our computation and sesults. It was found that

,
wavenumber Kp_ is highly sensitive to the values of L., and

L(z, . Hence, achieving the best Fit for [.1 ‘ L_f and o values
with L? values, computed from observed defa, is of great
significance in our study. On 14 August 1985, unfortunately
an easterly wind component was encountered upto 1.5 km
level due to monsoon currents. Hence, pg on this date was
computed at the next higher level, i.e., at 2.0 km to get the
correct resonance wavelength, although the computed value
of w is not expected to be reliable in this case. Very high

L2 value on 23 August 1985 may be attributed to light wind

(not calm) prevailing on this day over Peshawar in lower
levels.

4. Discussion

The solution for the vertical velocity and displacement,
without any restriction on the value of &, is physically
significant. Small wavenumber (0 <k < L) giverise to long
waves commonly known as hydrostatic mountain waves
(2 30 km). (Philips and Brown 1983), Doos (1961), while
attempting to explain the behaviour of the solution in
the domain (0 <k < L.,) neglected the contribution to the
Fourier integral for values of & in this interval since he
considered their contribution to be very small.

We note from Eqns.(16a & b) that the contribution is
proportional to the term ™. For small values of k and x, the
value of the integral cannot be considered small enough 1o
be neglected. It will decay exponentially with horizontal
distance x from the mountain top. Vertical propagation of
these waves, far deeper into the atmosphere, even up to
25-30 km in the stratosphere, has been observed since long,
as lenticular and nacreous (mother of pearl) clouds {Alaka
1958, Queney er al. 1960). Energy propagation to these
heights is well explained by qualitatively applying the ra-
diation condition as shown in the Appendix I. Behaviour of
these long waves in lower levels have been analysed by
various workers (Klemp and Lilly 1975, Smith 1977),
AVHRR pictures selected for the validation purposes. Over
Jammu & Kashmir region, in the present study, indicate only
lee-waves. An experimental case study, however, for ob-
served hydrostatic mountain wave may justify the above
view on small wavenumbers

Lower boundary in Eqn.(10) provides a simple maihe
matical tool for formulating a function for rugged hilly
terrain as in Jammu & Kashmir region. Marquardt's method
of least square approximation not only provides the values
of constants for such functions, but also provides us the best

2 .2 . .
fit valuesof L , L, and & for 1? profile computed from the

observed data. This method of approximation is also useful
for computing the resonant wavelength even in the case
when low level winds are negative within the shallow layers
from the ground as on 14 August 1985.

Appendix I

Application of radiation condition
The general solution of Eqn.(7) for various values of k
is

w=AJLip (W) +BY (W) for k 2 L. (ALL)

w=Clip (W) +DJjp () fork< L. (AL2)
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If k2 L., ip is real and in that case as z — == or i —0,
) 48 i () —- ==. Hence we must drop the second term in

(Al1) to fulfil the radiation condition. When k </ solution
(Al.2) is given in terms of Bessel functions with imaginary
order. Doos (1961), using Boole’s (1844) expansion, erro-
neously applied the rigid bad condition and found that the
solution is identically zero for k < L... He finally neglected
the contribution to the Fourier integral for values of k in the
interval 0 < k < L. Behaviour of Bessel function with
imaginary argument, however, is very little discussed in the
literature. Therefore the following approach is adopted to
determine the behaviour of the function when the argument
tends to zero :

Limit J, (0) = Limit

p— o p—o
B E D W) (u 1
2 - (ip+r+1)L" (2] (ip+1)
1 ,
= Limit i log (W2
Lk (o) 182

= Limit (Constant) e'?10g(W2) (A1.3)

Aspu— 0. log (W2) —-ee, plog (W2) <0 as p —0. This
indicates that J;, (4) represents a downward travelling
wave. Similarly we can show that Jj, (u) represents an
upward travelling wave. Hence in (A.1.2) the second term is
to be dropped. i.e., D = 0. to satisfy the radiation condition.
Thus, for both the cases (when k 2 L., and k < L..), the
uniform solution is

w=ALp W (AL4)

where A is an arbitrary function of k.
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