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Four statistical models forwet-spell analysis
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I . Inlnlductlon 2. Coch ran's fonnula

Ifwe actually count wet spells of different lengths over
a cenain period of 'm ' days. then we would also obtain the
frequencies of actual occurrences of wet spells of length J,

Cochran (1938) derived a formula for the probabilityof
a success run of length 'r' in a sequence of 'm' independent
Bernoulli trialsas follows.Consider a sequenceof'm' trials.
There are two distinct ways in which ' r' consecutive days
are wet. First, the wet spell either starts on the first day or
ends on thelas. day. In the former case, the first 'r' days are
wet and the (r + I)th day is dry. In the Ianer case, the (m 
r)th day is dry and the last ' r' days are wet. In the former
case. no information is available on the day preceding the
first day, while in the latter case, no information is available
on the day following the 'm '-th day. Hence the probability
of this even. isp'q + qp' = 2p'q. Second. the wet spell starts
and ends on some intermediate days. The starting day of
such a wet spell then must be one of the days among 2,3, .....
(m - r). Thus, such a we. spell can occur in (m - r -I) distinct
ways. In each of these possible occurrences, the wet spell is
preceded by a dry day and is followed by a dry day. The
probability of this event, therefore, is (m - r-I )p'l.Adding
the two terms derived above, we obtain the probability of
observing a wet spell of length 'r ' as

Analysis of wet spells is an importan. aspect of rainfall
analysis. Length of a we. spell provides information on
persistence of rainfall. A statistical analysis of we. spells
involves searching for the best statistical model for the
observed wet spell patterns. While this model may differ
from one place to another. it can help identify places which
are similar or different with reference to the temporal distri
bution of rainfall or, equivalently. wet spells.

In this paper, we discuss four statistical models for wet
spell analysis. These four models are: (1) Cochran's model.
(2) zero- truncated Poisson distribution, (3) zero-truncated
negative binomial distribution and (4) logarithmic series
distribution. We compare these four models by fitting them
10 some rainfall data obtained during the monsoon season in
India. The model thaI fits best .0 a particular data set may
be considered 10 provide the best description of wet spell
patterns al the concerned place.

A wet spell is a run of wet days preceded by a dry day
and followed by a dry day. An observation period can then
beconsidered 10 bean alternating sequence of dry and wet
spells. In this paper, our interest is in wet spells only and. as
such, the information on dry spells is ignored. A day is
defined to be (meteorologically) dry if the amounl of pre
cipitation does no. exceed 2.S mm. If the amount of precipi
tation during a day exceeds 2.S rom. then that day is defined
to bea we. day (Chowdhury 1981).

(493)

/rm = 2p'q + (m : r- 1)p'q2 ( I)
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