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ABSTRACT. Wet-spell analysis is an important part of rainfall analysis. The distribution of the length of wet-spells
provides useful information on the temporal distribution of rainfall. This distribution has traditionally been modelled through
diffmlplubabiﬁtydiﬂimﬁmHueiemfwmhmdeh.mly.m'sm.mm_dmmdimih
tion, truncated negative binomial distribution, and logarithmic series distribution. These comparisons are accomplished with

help of application to five rainguage stations in India.
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Introduction

Analysis of wet spells is an important aspect of rainfall
analysis. Length of a wet spell provides information on
persistence of rainfall. A statistical analysis of wet spells
involves searching for the best statistical model for the
observed wet spell patterns. While this model may differ
from one place to another, it can help identify places which
are similar or different with reference to the temporal distri-
bution of rainfall or, equivalently, wet spells.

In this paper, we discuss four statistical models for wet
spell analysis. These four models are: (1) Cochran’s model,
(2) zero- truncated Poisson distribution, (3) zero-truncated
negative binomial distribution and (4) logarithmic series
distribution. We compare these four models by fitting them
to some rainfall data obtained during the monsoon season in
India. The model that fits best to a particular data set may
be considered to provide the best description of wet spell
patterns at the concerned place.

A wet spell is a run of wet days preceded by a dry day
and followed by a dry day. An observation period can then
be considered to be an alternating sequence of dry and wet
spells. In this paper, our interest is in wet spells only and, as
such, the information on dry spells is ignored. A day is
defined to be (meteorologically) dry if the amount of pre-
cipitation does not exceed 2.5 mm. If the amount of precipi-
tation during a day exceeds 2.5 mm, then that day is defined
to be a wet day (Chowdhury 1981).
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2. Cochran’s formula

Cochran (1938) derived a formula for the probability of
a success run of length ‘7’ in a sequence of ‘m’ independent
Bemoulli trials as follows. Consider a sequence of ‘m’ trials.
There are two distinct ways in which ‘r* consecutive days
are wet. First, the wet spell either starts on the first day or
ends on the last day. In the former case, the first ‘s’ day’s are
wet and the (r + 1)th day is dry. In the latter case, the (m -
r)th day is dry and the last ‘r' days are wet. In the former
case, no information is available on the day preceding the
first day, while in the latter case, no information is available
on the day following the ‘m’-th day. Hence the probability
of this event is p'q + gp” = 2p"q. Second, the wet spell starts
and ends on some intermediate days. The starting day of
such a wet spell then must be one of the days among 2,3,
(m - r). Thus, such a wet spell can occur in (m - r -1) distinct
ways. In each of these possible occurrences, the wet spell is
preceded by a dry day and is followed by a dry day. The
probability of this event, therefore, is (m - r-1) p’q". Adding
the two terms derived above, we obtain the probability of
observing a wet spell of length ‘r’ as

frm=2P"q + (m - r- )p’q? (1)

If we actually count wet spells of different lengths over
a certain period of ‘m’ days, then we would also obtain the
frequencies of actual occurrences of wet spells of length ],
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length 2, and so on. This will give us a table of the following
form.

r 1 3 4

O, O, O, 0, 04

Som Sim Sam Sim Sam .

where, O, is the observed frequency of wet spells of
length ‘r’.

We can now compare the observed and expected fre-
quencies by estimating ‘p’ and substituting the estimated
value in the above formula of f, for r = 1,2, .... . The
goodness of fit can be tested using the standard Chi-square
test. In the following subsection, we discuss the method of
maximum likelihood estimation of the parameter p of Co-
chran’s model.

2.1. Estimation: Method of maximum likelihood
Let P(X = r) =f, for r=1,2,..., k, where
fr=2p"q+(m-r-1)p'¢

The likelihood function is then given by

L= I'I f_l f2 Thatis,

k
L= n [2p'q + (m—r-1)p'g?1° (3)

r=1

The likelihood equation is obtained by differentiating
log- likelihood with respect to the parameter p. Thus we
have

k
dinl s 2p™ g-2p"r(m-r-1)p" g 2m-r-1)p'q
dp 5 2p q+(m-r-1 Yq

C))

If we write the likelihood equation in the form of
fip) =0, then we have

k
o 2Arg-p)yH(m-r-1) q (rg—24)
f(p)-zi pql2+(m-r-1)q] g

r (&)

In order to use the Newton-Raphson method for nu-
merically solving the likelihood equation, we also obtain

(=r-1-rmg—ng+np) (pq + npq ¥2)
(pq +npq /2)?

k
f' (p)=z O,

r=1

_(ra-p+rng¥2-npq) (g-p+nq¥2-npq)

(pq +npq¥2)

where n = m - r - 1. The maximum likelihood estimate
p is then obtained by an iterative procedure.

2.2. Fitting Cochran's model

To illustrate an application of Cochran's formula, we
consider rainfall data at the Osmanabad rainguage station in
India. In this data set, we have 522 rainy days over a period
of 122 days (months of June, July, August, and September)
observed over 10 years. This means that the observed pro-
portion of rainy days in the sample is 522/1220 =
0.42278688.;1‘!1: maximum likelihood estimate of p is ob-
tained to be p = 0.4682775. The following table gives the
observed and expected frequencies of wet spells of different
lengths, along with the chi-square test statistics for testing
the goodness of fit.

r 1 2 3 4 5 —

o, 192 58 23 10 18 -

fm 16386 7611 3535 1642 926 222421
3

3. Zero-truncated Poisson distribution

A discrete random variable X is said to have a Poisson
distribution with parameter A if its probability mass function
is given by

e-l x

f(x)=P[X=x]= o X =0,1,2,.... )

The zero-truncated Poisson distribution is obtained by
discarding the value 0 from the set of possible values of the
Poisson random variable. We note from Eqn. (7) that f0) =
PX=0] =¢™, and hence the probability mass function of
the zero-truncated Poisson distribution becomes

e~ M\x

Jr(n)= xm ), 3,0 (8)

xi(1-e) '

4, Zero-truncated negative binomial distribution

The negative binomial distribution is obtained by in-
verse sampling of independent Bemnoulli trials. The prob-
ability mass function of this distribution is given by

o bl = Py = LK) o0
fix;pk) = P[X=x] = ATE) p* (1-pY, )
x=012,...

We note form Egn. (9) that f0) = p¥, and hence the
probability mass function of the zero-truncated distribution
becomes

r (x+k)p" (1-p)y*
2 Y =l,2,.... lO
fr(x;p. k) AT (125 x (10)
4.1. Estimation: Brass estimators

As estimating equation, Brass (1958) employed p =x,
Ha= s, and fr (1) =ny/n. Estimators of the parameters p and
k follow from these equations. We have
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Pk=fT(1) and (l-pk)=“P'fT“) (ll)
up up
These can be rewritten as
- 1
p=Eu-fra)) ma k22D
15) 1—

On substituting = ¥ , py = 5%, and fr(1) = ny/ n into
these equations, the resulting estimators become

n

pt=—‘5[1 -T] and k* =

P*x *—h(ni/n) (13)

L)

Brass demonstrated that these estimators are consistent,
although they are not unbiased. However, when n is large
the effect of bias is only slight. The efficiency for most
combinations of parameter values is above 90%.

4.2. lllustrative examples

(1) To illustrate the method of estimation of parameters
in the truncated negative binomial distribution, we consider
a sample of chromosome breakage that was originally given
by Sampford (1955). Sample data are as follows:

Number (x) 1 2 3 4 5 6 7 8 9 10 I1 12 13
breaks
Frequency (nx)11 6 4 5 0 1 0 2 | 0 1 0 1

In summary n =32, ny = 11, nx = 110, ¥= 3.4375 and
s=9.9315.

Brass estimates p* = 0.2345 and k" = 0.6040.
Maximum likelihood estimates p = 0.2713, £ = 0.493 .

(2) To illustrate estimation in the truncated negative
binomial distribution, we consider a sample of rainfall data
obtained at Osmanabad. Sample data are as follows:

i1 2 3 4
i 192 58 23 2

In summary n = 301, n) = 192, n¥ = 522, ¥ = 1.73422
and 5% = 1.7500.

Brass estimates p” = 0.35887 and k" = -0.02. Note that
the parameter k is positive, and hence we write its estimated
value as 0.0001, even though the estimated value is out of
range,

Maximum liklihood estimates p = 0.3370581,
k = -0.0760 replaced for the same reason by 0.0001.

0 192 S8 23 28 Samplevalue  Table value

Ey 18822 6039 2583 26.56 X’ =056 X =384
I

Ey 18348 60.83 26.88 2981 x =119 X =384
I

Note: Ey denotes the expected frequency obtained by
using the Brass estimates, while E4 denotes the expected
frequency obtained by using the maximum likelihood esti-
mates of the parameteres.

5. Logarithmic series distribution

The random variable X has a logarithmic series distri-
butions if its probability mass function is given by (see, for
instance, Patil 1962, Patil and Wani 1963).

f(x)=a%, x=1,2, .., ;0<6<1 (14)
where o = s
“In(1-9)

The individual probabilities are terms in the series
expansion of -1 In (1-8).

For a logarithmic series distribution with parameter 6,
we have

[o13)

E(X)_(I—B) (15)
af

V(X)= T (1 - ) (16)

Patil (1962) has tabulated values of E(X) for values of
0 in the interval (0, 1).

Table 1 gives the values of ¥ for different values of 6 as
tabulated by Patil (1962).

5.1. Estimation: Method of maximum likelihood

Let x;, x5, ....x, be a random sample from the logarith-
mic series distribution with parameter 6. The likelihood
function is then given by
L BCEL) x)

n

i=1 Xj

L(6)=Tc] (17)

Differentiating the log-likelihood and equating the de-
rivative to zero, we have the following likelihood equation

b
(1-6)

x=

(18)
Note that this equation coincides with that derived from
the method of moments.
5.2. Application to publication data

The following data gives the distribution of 1534
biologists according to the number of research paper to
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TABLE 1
Means of I%urlt.hmic series distribution for 8 = .01 (.01).99
I 00 ol 02 03 04 05 06 07 08 09
00 - 10050 1.0102 1.0154 1.0207 1.0261 1.0316 1.0372 1.0429 1.0487
10 1.0546 L0606 10667 1.0730 1.0704 1.0858 1.0925 1.0992 1.1061 11132
20 1.1204 11277 11352 1.1429 11507 1.1587 1.1669 1.1752 1.1838 1.1926
30 12016 12108 12202 1.2299 1.2398 1.2500 1.2604 12711 1.2821 1.2934
40 1.3051 13170 1.3294 13421 1.3551 1.3687 1.3825 1.3968 14116 1.4269
50 1.4427 14591  1.4760 1.4935 15117 1.5306 1.5503 1.5706 15919 1.6140
60 1.6370 16611  1.6862 1.7126 17401 17690 1.7994 1.8313 1.8650 1.9005
70 1.9380 19778 20200 2.0649 21128 2.1640 22189 2.2779 23416 2.3800
80 2.4853 25670 2.6566 27553 2.8648 29870  3.1244 32802 34587 3.6656
%0 3.9087 41991 46716 4.9960 5.5686 6.3424 7.4560 9.2208 12.5255 21.4976
their credit. In the review of Applied Entonology, Vol. 24, 6 =0.875. (20)

1936.

No. of paper 1 2 3 - 5
per author
(xi)
No. of
authors

Sfixi)
Mean of sample is X = 1.55085, and so 6 = 0.5602.

6 7 8 9 1011

1062 263 120 S0 22 7 6 2 0 1 1

After obtaining 8 we can compute the theoretical fre-
quencies and compare them with the observed frequencies.
The result of a Chi-square test of goodness of fit applied to
this data is given below.

i P E; 0;

1 068198  1046.5 1062
2 0.19102  293.03 263
3 0.07130  109.44 120
4 0.02997 4598 50
5 0.01343 20.61 22
6 0.01230 18.44 17

Chi-square calculated = 4.88

Chi-square tabulated = 11.10

Note: In the above table, P; denotes the probability of
the value i, E;, denotes the expected frequency under the
fitted logarithmic series distribution, and O; denotes the
observed frequency of i in the data.

Since the calculated value of the Chi-square test statistic
is insignificant, we may accept Ho , that is, we may conclude
that the logarithmic series distribution may adequately de-
scribe the observed data,

5.3. Application to chromosome breakage data

We can find several nature example of the logrithmic
series dafa in the literature. We consider a sample of chro-
mosome breakage that was originally given by Sampford
(1955). Sample data are as follows:

Number 1 2 3 4 S5 6 7 8 9 10 11 12 13
breaks (x)
Frequency 11 6 4 S 0 1 0 2 1 0 1 0 |
(nx)
13
_ =1 XN
FototMe U000 (19)
I 32

6. Application to rainfall data

Now we illustrate application of the logarithmic se-
ries distribution to rainfall data analysis. For this purpose,
we have collected daily rainfall data at five rainguage sta-
tions in India. The selection of the these rainguage station
has not been on the basis of the climate conditions or typical
rainfall patterns, but purely on the basis of availability of
rainfall data. For the purpose of our discussion, we shall
denote these five rainguage stations by the simple notation
described below. These rainguage stations are Osmanabad,
Buldhana, Wardha, Gondia and Bhir. Note that the data at
different stations was not available for the same period. The
following table shows the number of years corresponding to
the five stations.

Station 1 2 3 4 5
No. of
year 10 21 24 40 29

For each rainguage station, we define a random variable
X, taking only two possible values, namely 0 and 1, as
follows :

If the amount of rainfall on a particular day dose not
exceed 2.5 mm, then the random variable X takes the value
0. If the amount of rainfall on a particular day exceeds 2.5
mm then the random variable X takes the value of 1. Note
that on any day, the random variable X takes only one of the
two possible value 0 and 1, since the two events described
above are mutually exclusive. Defining the random variable
X as above, the daily rainfall data was coded to produce
values of the random variable X for every day of the year. A
wet spell is then defined as a period of sussessive rainy days.
The number of rainy days in a single stretch is then defined
as the length of the wet spell. Denoting the length of a wet
spell by x;, i = 1,2, ... and the corresponding frequencies by

fi i = 12, .., we obtain the following data for
Osmanabad.

x 1 2 3 4 5 6 7 g 9
fi 192 s§ 23 10 11 3 1 2 1
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The sample mean is ¥ = 1.73422 and so
8 = 0.6379046

After obtaining 8 we can compute the theoretical or
expected frequencies and compare them with observed
ones.The result of a goodness of fit test is as follows.

497

cated negative binomial distribution (maximum likelihood
estimator), and Es denotes the expected frequency according

to the logarithmic series distribution.
6.1. Buldhana
1 2 3 4 5 Sample  Table
value value

0O 289 114 62 25 29

i Py E; 0;

1 0.62796 189.01390 192
2 0.20028 60.28642 58
3 0.08518 25.63799 23
4 0.04075 12,26594 10
5 0.04583 13.79589 18

Chi-square calculated = 2.11
Chi-square tabulated = 9.49

Note that Cochran's model was applied to this data set
in Section 2.2 and gave a Chi-square value of 24.21. In
Section 4.2, the zero-truncated negative binomial distribu-
tion is fitted to the same data, with Brass estimates produc-
ing a Chi-square value of 0.56 and the maximum likelihood
estimates giving a Chi-square value of 1.19. In comparison,
the logarithmic series distribution gives a Chi-square value
of 2.11. It then appears that the zero-truncated negative
binomial distribution fits better than the logarithmic series
distribution.

In this connection, it may be noted that the Chi-square
value in case of the zero-truncated negative binomial distri-
bution has 2 degrees of freedom, while that in case of the
logarithmic series distribution is based on 3 degrees of
freedom. This is so because the logarithmic series distribu-
tion has only one parameter, while the zero-truncated negat-
tive binomial distribution has two parameters, and that
affects the degrees of freedom of the Chi-square test statistic.

We now summarise the results of fitting all the four
distributions described above to rainfall data at the other four
rainguage stations. In each case, O denotes the observed
frequency, E;| denotes the expected frequency according to
the Cochran’s model, E; denotes the expected frequency
according to the zero-truncated Poisson distribution, Ej3
denotes the expected frequency according to the zero-trun-
cated negative binomial distribution (Brass estimator), E4
denotes the expected frequency according to the zero-trun-

E; 26340 12906 63.23 3040 3291 x’=569 x:=7-51
E; 22547 16759 83.04 3086 1204 »’=6537 x:=?-31
E; 29147 11286 5323 2733 3411 y*=244 x:=5-99
Eq 29055 11449 5383 27.35 3278 y’=1.89 xj=5.99
Es 30355 10556 4895 2553 3541 y’=6.02 x:=7-31

It may noted here that most of the distributions of fits
satisfactorily, while their relative performances are more or
less similar to what was observed for Osmanabad. Only, the
maximum likelihood estimates have given a better fit than
Brass estimates for the zero-truncated negative binomial
distribution.

6.2. Wardha
1 2 3 4 5  Sample Table
value value
0O 387 136 65 31 46
E\ 34191 16669 8126 3930 3584 x7=1948 ,2-7g)
3
E; 29352 21440 10440 38.13 1455 yx’= 14262 5= 73]
3
Ey 32778 15609 8105 4383 5625 x*=2209 4 -599
3
E, 37876 137.89 6382 3269 5184 »*=097 ,2-599
3
Es 39151 13518 6223 3223 4385 y7=033 42 .73
3

The results for Wardha are similar to those obtained for
Osmanabad and Buldhana. Note that the zero-truncated
Poisson distribution gives a very bad fit compared to the
other three distributions.

6.3. Gondia

The zero truncated negative binomial and the logarith-
mic series distributions have provided with good fits, while
the other two models have not provided with good fits,

-although the relative performances of the four models are

very similar to the earlier results.

1 2 3 4 5 6 7 Sample value Table value

0 546 244 132 69 50 27 49

E, 514.67 273.47 146.26 77.97 57.75 22,15 24.73 xz =3343 xz 11.07
(]

E 35840 31567 22997 11281 4426 14.47 5.42 X =551.92 2=1107
(]

Ey 54312 27415 13174 7537 44.88 2743 2032 x=4494 ¥ =9.49
4

Eq 54478 24536 13069 7498 44.88 2760 4871 X =110 $} =949
4

Es 58437 22523 11575 6692 4127 2651 5695 x*=9.39 ¥} =11.07
5




498 MAUSAM, 49. 4 (October 1998)

6.4. Bhir

1 2 3 4 5 Sample Table
value value

0O 418 144 64 24 3B
E, 36635 17136 80.15 37.49 3265 3°=2063 =781
3

Ey 34375 21616 9061 2849 899 »'=14226 4 =78]
3

Ey 41494 15003 64.34 2975 2894 3*=0421 =599
k)

E, 41563 14807 6388 2997 3045 x*=317 y'=599
3

Es 42798 13824 59.54 2885 3339 x'=256 4 =78l
3

At Bhir, the logarithmic series distribution gives the
best fit among the four models being compared here. This
shows that the logarithmic series distribution can provide a
good description of wet spell distribution at some places. It
should now be interesting to find out specific features of
rainfall patterns that are better described by the logarithmic
series distribution. This is a point that the authors are now
working on. Some apparent characterization will definitely
help scientist in general, and meteorologists in particular,
identify areas where wet spells follow the logarithmic series
distribution.
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