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ABSTRACT. A three-layer three-dimensional, triply-nested primitive equation model, suitable to simu-
late tropical storm, has been designed. A grid telescopic technique has been used with a fine grid mesh of 18
km grid length in the centre which is surrounded by a medium mesh of 54 km grid length; this is again sur-
rounded by a course grid mesh of 162 km grid length. Each mesh consists of 32 X 32 array of momentum
points enclosing 31 X 31 array of mass points. The variables are staggered in space which reduces the amount
of averaging 10 8 minimum and hence improves accuracy. To suppress non-linear instability an improved
finite difference scheme has been applied. A two-way interaction method has been adopted to match the
solutions between grids of different lengths. To increase the time step for integration, a semi-implicit scheme
has been used. The speed of the solution of the system of Helmholtz equations arising out of semi-implicit
scheme has been appreciably increased by devising an iterative method. To examine the role of surface fric-
tion as postulated by Yamasaki (1977) and forced subsidence as hypothesized by Arnold (1977), Gray (1977)
and Yanai (1961) at the initial stage of development of a tropical storm, numerical experiments have been
accomplished with this model varying coeflicient of surface drag, and specifying heat around the centre of the
disturbance which is considered as the effect of forced subsidence through an analytical function similar to
one used by Harrison (1973). The integration was started from a weak barotropic vortex in gradient balance
and continued for 48 hous in two cases and 60 hours in one case. [t is observed that surface friction may not be
an essential factor at the initial stage of development of tropical storm when the vortex is weak. On the other
hand, initial development could be initiated by forced subsidence. But in the subsequent stage, surfacs fric-
tion plays an imponant role to induce mass convergence in the boundary layer and to reduce horizontal scale
of the disturbance. This preliminary experiment has yielded smooth and encouraging results.

Key words — Simulation, Tropical storm, Multi-nested, Equation of motion, Semi-implicit.

1. Introduction

Inspite of the fact that necessary climatological
and geographical conditions for the formation of
tropical storm prevail over large areas of the earth
during storm seasons, actual appearance of storms
is a relatively rare phenomenon. According to

)

statistics, only about 80 tropical storms with
maximum sustained wind 40-50 kt are observed per
year over the entire globe; of these, between one-half
and two-third attain hurricane strength. This
indicates that there must be a rare coincidence of
circumstances before development of a storm. On
the other hand, experience has shown that once a
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tropical storm is formed, it is a persistent
phenomenon as long as.it remains over the water of -
storm region. Very little is yet known about detailed
mechanism of its incipient stage of development.
The formation always occurs in connection with
some kind of pre-existing disturbance associated
with a deep cloud layer. All of these disturbances do
not intensify into tropical storm. Only a small per-
centage of these systems starts intensifying.
Numerous studies have been made to clarify the
process of their formation; but no general
mechanism has yet been accepted. The appearance
of an upper level (500-200 hPa) warm area during its
formation is commonly observed.

Palmen (1948) has pointed out that the
extremely low sea level pressure in the centre of a
fully developed tropical storm far exceeds the values
that could be caused by hydrostatic effect of the
temperature rise in the central cloud-free area due
to release of latent heat of condensation.

The rate of charge of iemperature at a point is
determined by herizontal advection and diffusion,
vertical motion and diabatic heating. Horizontal
advection and diffusion cannot produce the relative
maximum in tewperature associated with tropical
storm with hurricane iniensity; so a warm core must
be produced either by warming associated with sub-
sidence or excess of latent heating over adiabatic
cooling.

Since heating due to liberation of latent heat of
condensation at a point does not necessarily pro-
duce a temperature increase at the same point, there
has been some controversy regarding the physical
processes that are responsible for tropospheric
warming necessary to produce a tropical storm of
hurricane strength from a weak disturbance.

Gray (1977) states that direct cumulus cloud
induced enthalpy change due to condensation pro-
cesses is probably too small to explain increase
needed for initial storm genesis and intensification.
Condensation energy is almost wholly expended in
supporting the cluster’s vertical motion. The
magnitude of this energy appears not to be fun-
damental potential for transformation to a storm.
The various types of CISK (Conditional Instability
of Second Kind) parametrization are directly linked
with the amount of frictional convergence in the
boundary layer. These are not likely very relevant to
pre-storm disturbance maintenance and intensi-
fication.

Arnoid (1977) and Gray (1977) have observed
that low level circulation centres of growing cloud

clusters are often found outside the convective
regions. They hypothesize that the upper tropo-
spheric outflow from the cluster is blocked by the
large scale flow and forced to subside. The sub-
sidence warms the air and hydrostatically lowers
the surface air pressure. This surface pressure fall is
larger than that which could result from direct
cumulus heating alone. Gray (1979) considers a
dynamical forced subsidence to be a necessary
requirement for the genesis. Yanai (1963) stated that
weak absolute vorticity at upper levels together with
warming of middle tropospheric air is an almost
necessary and sufficient condition for the develop-
ment of a wave disturbance into typhoon. He noted
that superposition of an upper level anticyclone and
middle level warming might not be completely
independent phenomena.

Yamasaki (1977) demonstrated that surface fric-
tion is not important at the early stage of develop-
ment of tropical storm when its vorticity is not large.
With a two-dimensional model, he has shown that
(1) a disturbance may develop even when surface
friction does not exist, and (i) surface friction is one
of the impo1tant factors to determine the horizontal
scale of the disturbance. He also pointed out that it
is uncertain whether a CISK mode exists in the
actual atmosphere. Surface friction may be impor-
tant to make the atmosphere humid by causing
weak but long-lasting frictional convergence
associated with the vorticity field of pre-existing
large scale disturbance or basic shear flow.

One of the objectives of this study is to make an
attempt to understand the role of surface friction as
pointed out by Yamasaki (1977) and the hypothesis
of Amold (1977), Gray (1977) and Yanai (1961) for
the initial development of a tropical storm. For this
purpose preliminary numerical experiments have
been accomplished on a three-dimensional multi-
nested grids varying coefficient of surface drag and
imposing artificial heating through an analytical
function considered as the effect of forced
subsidence.

Filtered models do place a definite limit on the
accuracy of forecast. The motion in the tropics, and
particularly in tropical storm is essentially ageos-
trophic; hence, they can only be represented by the
primitive equation. The primitive equation model,
after elimination of acoustic wave propagation
through incompressibility assumption, does in-
clude inertia-gravitational wave as the fastest
moving mode as a solution. For this reason, the time
steps in primitive equation forecast must he
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considerably shorter than those allowed for
filtered model with equal grid length, as it has no
gravity wave solution, and depends upon the
maximum wind speed and grid length. Although,
the use of an implicit method removes the depen-
dence of the time step on grid length, it is difficult
to apply it to a non-linear system of equations.
Also, there is undesirable damping of physical
modes in many implicit schemes.

The numerical simulation of synoptic and
mesoscale phenomena of the atmosphere, such as
frontal wave, tropical storm etc. requires a grid
with very small mesh size. Due to limitation of
computing capacity and time, it is extremely dif-
ficult to fill the entire region with such a fine mesh
and handle it. In order to overcome these dif-
ficulties a “nested grid” was first used by Hill
(1968) for quasi-geostrophic model. The system
consists of a limited fine mesh area in the region
of interest embedded within a larger domain of
coarse mesh. Multiple grids are also used stepwise
so as to reduce the grid size less suddenly and are
called the “telescopic grids”.

One of the most crucial problems in nesting of
grid is how to connect the solutions from various
meshed grids. Matsuno (1966) and Browning et o/.
(1973) have found that wave motions in two un-
equal meshes have different phase speeds due to
different truncation errors, and as a result numeri-
cal problem usually develops.

The application of multinested grid, in pro-
blems of tropical storm, has been presented by
several authors, e.g, for simulation of hurricane—
Madala and Piases (1975) and Jones (1977), and
for real data forecast — Mathur (1974), Ley and
Elsberry (1976) and Ookochi (1978). These studies
have provided with useful information and
encouragement to the present study. In our limited
area model, we have used triply-nested grids and
semi-implicit scheme for time integration.

In semi-implicit scheme for integration, the
time steps may be increased significantly. Robert
et al. (1972) have extended this scheme to multi-
level primitive equation model. Chen and
Miyakoda (1974) have pointed out that in semi-
implicit scheme the speed of integration is about
four times faster than the leap-frog method for
non-nested grid problem, and is about eight times
faster than Euler's backward method of explicit
scheme. For the nested grid calculation, this
advantage is even greater.

But while adopting semi-implicit scheme,
coupled Helmholtz equations for one of the
appropriate variables are to be solved for each
layer at each time step offsetting some of the com-
puter time savings achieved by larger time step. To
retain the advantage of this technique, an efficient
method is" necessary to solve the Helmholtz
equations. The commonly used iterative method
such as successive over relaxation (SOR) is fast for
diagonally dominant equations; however, it con-
verges slowly or may even diverge for weekly or
non-diagonally dominant equations. In SOR
method the optimal value of the over-relaxation
coefficient depends on the number of grid points,
specific form of the coefficients of the equation
and error distribution. A theoretical estimate may
be made only for a simplified form of equation. As
such, one must resort to a sort of trial and error
method to determine it (Sturat and O'Neill
1967).

The coefficient matrix of the Helmholtz
equations obtained in this study is not symmetric
or diagonally dominant at each level. Moreover,
the equations are coupled among levels. So to
solve these equations, we first used Stabilized
Error Vector Propagation (SEVP) method (Madala
1978), an efficient direct solver. Simultaneously, we
haunted for other efficient technique, and
ultimately have developed an iterative method
which we call “Simultaneous Multi-level Relaxa-
tion (SMR)”; as during iteration, improvements
over the previous values on all levels for any par-
ticular horizontal grid point are made simul-
taneously. This method took lesser time than the
SEVP method.

Other important purposes of the present study
are to examine the computational reliability of the
proposed multinested grid, advantage of the semi-
implicit scheme, and also testing of the finite dif-
ference scheme for the non-linear terms.

2. Design of the model

The numerical model used in this study is a
three-dimensional primitive equation model. It
contains three layers in the vertical (Fig 1). The
lowest layer can be called the surface boundary
layer; since, a major part of inflow in a tropical
storm occurs in this layer. The top layer contains
most of the upper troposphere which can be called
the outflow layer as most of the outflow occurs in
this layer. The middle layer is characterized by
strong tangential velocities with no pronounced
radial mass flux.
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Fig. 1. Three layers of the model

2.1. Basic eguations

The basic equations on an fplane (f= 5X
10~5sec1) may be written in Cartesian co-ordinate
system (c.f. Rosenthal 1969, Madala and Piacsek
1975) as follows :
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Fig. 2. Grid network in x-y plane
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8P = CpT (6)

where, x, v, z and ¢ are the independent space and
time co-ordinate variables; w, v, and w are the
eastward, northward and vertical velocity com-
ponents respectively; fis the Coriolis parameter; g’
is the acceleration of gravity; p is pressure, pg is a
reference pressure and taken equal to 1000 hPa;
[®=Cp (p/po)¥C#] is a new variable in place of
pressure; Cp is specific heat of air at constant
pressure (=1004.64 X 10%rg gm~l!deg~1); R is
specific gas constant of dry air (=287.04 X 10%rg
gm~ldeg™1); T'is the air temperature; 0 is the poten-
tial temperature; § = p(z) is the density of mean
tropical atmosphere which depends upon the verti-
cal distance z only.

Eqns. (1) & (2) are the equations of motion in the
east and north directions respectively. Since the
horizontal dimension of a tropical storm is at least
two orders of magnitude larger than the vertical
dimension, the equation of motion for the vertical
component of velocity can be simplified into the
hydrostatic equation given by Eqn. (3). Eqn.(4) is a
simplified form of the continuity equation that
filters out acoustie wave solution (Ogura and Char-
ney 1962; Ogura and Phillips 1962). Use of this form
to simulate tropical storm can also be justified
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by scale analysis. Eqn. (5) is the first law of ther-
modynamics. The first term ‘H’ on the right hand
side of this equation represents diabatic heating
(heat added or removed per unit mass of air per unit
time). Vertical diffusion of heat is not included in
the model because of relatively insufficient know-
ledge about the behavior of the vertical flux of heat
in a tropical storm. Eqn. (6) is the relation among air
temperature T, potential temperature  and ®. The
terrain effect is excluded for simplicity.

We replace 8 by a(= 1/8), as a varies more
linearly than 6 between levels. For computational
accuracy, we divide ® and a into the basic (undis-
turbed) field (indicated by over bar) which is a func-
tion of z only and the perturbation part as
below :

D =¢(2)+ oy z1)
a=(z)+a'(xpzt) (N
The horizontal and vertical momentum flux

terms in the Eqn. (1) are assumed to be of the follow-
ing form :

_ Ou . Ou . Ou
Tox = PKHE; Ty = PKHE; Ty = PK.ZE;i

and at the surface, we assume :

T = p()Cpuy {u] + v ®

with similar expression for t,,. t,, and Tz in Eqn.
(2): where, Kz and K7 are respectiveley the horizon-
tal and vertical eddy coefficients of viscosity; Cp is
drag coefficient: p (1) is the air density at the surface
in the mean tropical atmosphere: u}, and vy, are the
horizontal components of velocity at the 0.5 km
level in the model.

We impose the following boundary condition on
w:

w=0:atz=0 and z=Zpn

where, Zrdenotes the upper boundary of the model
atmosphere. When these conditions are imposed,
external gravity waves are filtered out, because of
the continuity Eqn. (4).

The sensible heat transfer between the tropical
storm and the ocean surface is included implicitly
in the model by assuming that the temperatures at
levels 1 and 2 of the model (Fig. 1) are held
constant for all time. This eliminates the need for

2 -618 TMD /95

a temperature forecast at levels.1 and 2 and for
an explicit formulation of the air sea exchange of
sensible heat. Frank (1977), in a composite study of
hurricanes, showed that the boundary layer tem-
perature is relatively constant with radius despite
decreasing pressure towards the centre. Hawkins
and Rubsam (1968) verified the isothermal expan-
sion by estimating the surface temperatures of
hurricane (Hilda 1964). The lifting condensation
level of the surface air is assumed to be fixed for all
time half way between levels 1 and 2 (500 m). The
average specific humidity over the lowest 1 km is
assumed to be the average saturation value for this
layer. Above two assumptions eliminate the need
for a water vapour convergence equation.

2.2. Structure of the model

McGregor and Leslie (1977) have shown that for
semi-implicit schemes, the use of non-staggered
grid with the usual time and space central finite dif-
ference approximations leads to a decoupling into
four separate solutions on different elementary sub-
grids. A preferable procedure is to use a particular
staggered grid which has no solution separation.
This results in better treatment of geostrophic
adjustment process and should predict the structure
of small scale features more accurately. So, the
variables in this model are specified in staggered
grids (similar to Williams 1969), as shown in Figs. 2
and 3. The horizontal velocity components u and v
are specified at levels 2, 4 and 6 (Fig. 1). The ther-
modynamic variables are specified at levels 1, 2, 4
and 6; the vertical velocity w is specified at levels 1,
3,5and 7. The pressure variable ® and temperature
variables T and 6 which are defined at the same
points form the basic grid. The velocity components
u and v are defined at different points interlacing
with the basic grid. The velocity points, u lie on the
east-west @ grid line at mid-way between its grid
points; similarly, v points on north-south grid line.
Finally, w points lie on the vertical lines through ®
points. Standard values of pressure, density, tem-
perature and potential temperature in the mean
tropical atmosphere at different levels of the model
are given in Table 1.

The continuity equation is applied at a @ point
and is valid for the fluid unit surrounding that
point. Through using an interlacing grid system, the
amount of averaging reduces to a minimum; thus,
improves accuracy. The continuity equation should
have a unique exact form which can only be
achieved by such a grid. This uniqueness is essen-
tial for deriving the Helmholtz equations in semi-
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TABLE 1

Approximate values of pressure, temperature, potential temperature and density at various levels
of the model in the mean tropical atmosphere (after Frank 1977)

Pressure Temperature Potential Density
Level Height P T Temperature ?
(km) (hPa) (°K) ] (103 gmem™)
°K)
1 0.0 1010000 299700 298.850 1.17406
2 035 951828 256.954 300.992 1.11902
3 1.0 900.030 284201 303.164 1.06611
4 4.8 569.657 272954 320.563 0.72708
5 86 346571 249454 337.659 0.48402
6 126 191.591 217.439 348.637 0.30697
7 16.6 97.982 190.321 369.600 0.17936
2.3, Nested grids
H(i:'r?)'-” - Weo W=o LEyet In a tropical storm, the dependent variables

16-6 7 vary rapidly in the radial direction near the centre
and less rapidly away from it. Therefore, a finer
resolution of 10-20 km is required for representing
the motion on the scale of a tropical storm ‘eye’
and intensity forecast. But. it is not practically
fcasible to increase the spatial resolution
ole dle g AZ3 throughout the entire domain. As such. a nested
grid arrangement is considered suitable for this
study. One important limitation is that the ratio of
reduction of mesh should be such that certain
coincident points are to be maintained between
meshes for all the variables. In the staggered grid
86 w w W _k_ used in this model. minimum mesh ratio for adja-
’ cent grids must be 3:1. Considering all these
points, we have used three nested meshes, each of
uniform spacing. The innermost mesh with fine
grid spacing of 18 km (hereafter called FG) is cen-
tered near the centre of the vortex. This is surroun-
dle L OZ2 ded by a medium grid mesh (MG) with grid length

12.6 L L

ch
cp

4-8 b

A A
v u of 54 km. which is again surrounded by another
coarse grid mesh (CG) of 162 km grid length. Each
mesh consists of 32 X 32 point array of momen-
tum points enclosing 31 X 31 point array of mass
points (Fig. 4).
10 w w W 3 ¥
05 J 2 A1 o i
0-0 ¢l e 1T 3. Semi-implicit scheme and finite-difference
Wzo Wzo Weo cquations
Fig. 3. Grid network in x-y plane
The semi-implicit method developed by Kwizak
implicit scheme. To define @ and T at the same and Robert (1971) treats implicitly those terms in
point. is desirable for consistency with equation the-equations of motion that are primarily respon-

of state. sible for the propagation of gravity waves. The
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Fig. 4. The nested grid in x-y plane

advection terms are treated in an explicit fashion.
The stability criteria for this method can be made to
depend mainly upon the maximum wind speed and
grid length, thus allowing longer time step. The time
truncation errors associated with the permissible
time step in semi-implicit method still remain an
order of magnitude smaller than the errors
associated with space truncation errors; and hence
accuracy of the result is not lost. The way in which it
is done, is to evaluate certain terms implicitly as a
mean over times (1—Ar) and (1+Ar), rather than at
time ¢ A coupled set of equations in time, then,
results rather than a decoupled set. The method
used in the present model is similar to the one des-
cribed by Robert er al. (1972). Here the basic part of
pressure gradient force, divergence and vertical
advection of potential temperature are evaluated

implicitly as a mean over times (t—Ar) and (t+ A1),
and calculating all other terms of the variables at
time r (Madala and Piasek 1975).

3.1. Finite difference operators

To derive the finite-difference equations, the
following sum and finite difference operators are
used (vide Appendix A, for non-linear terms):

i As As
B B(s+ THB(S—T)]

g = L[ BG+A9+B6—As ]
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58 .-.,A_‘;)[g(” 24 é;_)]

&7 = &,(8,B)

where, B represents one of the dependent variables
u, v, w, ® or a and s represents one of the indepen-
dent variables x, y, z or + and As the grid
interval.

3.2. Finite-difference equations

Introducing the basic and perturbation parts in
® and a as shown in the Eqn. (7), the terms in the
Eqns. (1) to (5) are arranged in such a way that all
terms on the left hand side will be treated implicitly
using values at time (r —Ar) and (r + Ar); while the
terms appearing on the right will be treated
explicitly using the values at time r. Thus, the finite
difference form of the above equations can be writ-
ten in the following form (Mandal 1989):

Bpu + = 8% =4 ©
5T + % 8,62 =B (10)
8% = — g2’ an
Bx (pu)* + 8y (PV)¥ + 8,(pw)¥ = 0 (12)
8,52 + 8. (W) = (13)

where, the quantities 4), By, and C; are functions of
the dependent variables at time 7, and will be
evaluated first explicitly, and the implicit method
will be applied to the remaining calculations.

The non-linearity in the equations of motion
introduces computational instability from the finite
difference approximation to the non-linear terms of
the equations. Since, this instability results from the
space truncation error of non-linear terms, it can
not be eliminated either by reducing time step or by
using implicit or semi-implicit method. One
method is to suppress this instability by introducing
artificial viscosity terms in finite difference equa-
tions. Grammeltvedt er al. (1969) showed that this
can be controlled by devising a finite difference
scheme for non-linear terms which satisfies certain
linear and quadratic integral constraints. The finite

difference form applied in this model conserves
mass, momentum and total energy over a closed
domain. In addition to these, difference equations
approximately conserve mean square vorticity for
non-divergent barotropic motion (Appendix A).

3.3. Prediction equations
The time averaged-set of prediction equations

for u, v and a’ from (9), (10), and (13) can be
written as :

pu’ + a%maxa?t =A (14)

- P —

P + =A15,4% = B (15)

P2 + A8, (pw)¥ = C (16)
where,

A = A)Ar + pu(t — Ar)
B = B1At + pv(r — An)
C=CAr+pa'(t - Ar)

Here, all terms on the right hand side of the above
equations are known at time (t — Ar) and .

In order to determine ¢, the Eqns. (14) and (15)
are differentiated with respect to x and y respectively
and are added together. Then, eliminating the
divergence part via continuity Eqn. (12), we get :

Lars2+ 823 - 5w =54 +8,8 (17)

Applying hydrostatic Eqn. (11) to the three
layers of the model and energy Eqn. (17) at the levels
4 and 6, pec’¥ can be eliminated to get pw;¥ and
pwyY for the levels 3 and 5 respectively as :

pw1¥ = FP1 and pwy¥ = FP2 (18)

where, FP1 and FP2 are functions of ¢¥, grid
lengths, time step, basic part of the variables and
dependent variables at time (t — Ar) and 1.

Thereafter, applying Eqn. (17) at the levels 2, 4
and 6 and eliminating §,pw¥ the following set of
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Elliplical (Helmholtz) equations in ¢* can be
obtained.

V212 +ay10, % +ay,0,% +ay3037=F) (19)
V2B 2 +ay0,% +ay$, 7 +ayd¥=F, (20
V2932 +ay,01 % +a3,0,2+a330,2=F3 (21)

where, V4 represents horizontal Laplacian operator;
the coefficients ajq...... a33, are functions of the
basic parts of thermodynamic variables, grid
lengths and time step At; Fy, F5, and F3, are forcing
functions computed explicitly at time 1. For details,
the readers are referred to Mandal (1989).

Having solved these equations for ¢,%, ;% and
#;% by any direct or iterative method, the values of
¢, u, v, w, and a' at time step (r + Ar), can be
calculated from the values of these variables at time
(t = Ar) using the implicit relation given below :

x(@ + Ar) = 272 = x(1 — Av) (22)
where, x represents any of the above variables.

The CFL stability condition of the type of grid
used in the study is given by:

At < Ax[2(c2 + v2¥4]™!

where, Ar and Ax are the time and space incretment;
V is the maximum wind speed; and c is the phase
speed of the fastest moving explicitly treated mode.
It was considered prudent to use a conservative time
step; so initially, a time step of 360 sec was used for
all grids. Subsequently, it was reduced according to
the stability criteria.

4. Computational procedure

4.1. Solution of the system of Helmhotz
equations

In principle, it is possible to solve a system of
Helmholtz equations by simultaneous relaxation
method. Sela and Scolnik (1972) mentioned that
this method is neither efficient nor elegant. They
pointed out that by decoupling the efficiency
becomes double. But their method of decoupling
can not be adopted in this problem as the coeffi-
cient matrix is not symmetric.

As the system of Helmholtz Eqns. (19)~(21) are
coupled in different levels, to apply the direct
method, such as Error Vector Propagation method

(EVP), each of the equations is required to be
decoupled to an equation in a single dependent
variable at each time step. The EVP method can not
be applied in an area with large number of grid
points. This has been overcome in the Stabilized
Error Vector Propagation method (SEVP), a modi-
fication of EVP method, developed by Madala
(1978) by dividing the integration region into blocks
each of which is stable for EVP method. In the pre-
sent problem this has been accomplished by divi-
ding integration region of each mesh of 31 X 31 grid
points into three overlapping blocks. In this (or
other) direct method several subsidiary calculations
are involved. Moreover, in the present problem the
coefficient matrix is also not symmetric, so the
transformation has been achieved by using latent
vectors of the transpose of the coefficient matrix.
After solving the new equations in terms of new
variables independently of each other, they were
again transformed back to the original set of
variables by algebraic method. All these took
sizable computer time and was not so easy for
coding.

In the circumstances, we tried for other suitable
method and have developed an iterative method
(SMR) for such type of equations. It has been found
that the total computer time required for a par-
ticular period of integration by this method is nearly
two third of the time that required by SEVP method.
In our method there is no need for de-
coupling the equations, easy to code and no
extra memory is required as indirect method
(Appendix B).

4.1.1 (a) Divergence correction during integration

In deriving the Helmholtz Eqns. (19)+21), con-
tinuity equation has been used (Divergence = 0). If
these equations could be solved exactly there was no
problem. In reality, however, a degree of round-off
error is inevitable even with trigonometric method.
This, in turn creates an artificial divergence which
can lead to computational instability.

By inserting round-off divergene at step (t — Ar)
as correction term in the forcing function for the
solution for step (t + Ar) (Williams 1969), it was
found that divergence remained bounded.

42. Boundary conditions and maiching of the
solutions

This is a numerical model with a limited part of
the atmosphere. One of the difficulties in this




connection is how to formulate the lateral boundary
conditions on the outermost grid without imposing
any physical constraint. To minimize the effect of
the boundary conditions on the results, a square
region with sides of 5184 km was selected for
integration.

During the course of integration, all variables
were held constant on the outermost grid boun-
daries. The spurious spatial oscillations were
suppressed by applying a nine-point smoother
(Shuman 1957) with smoothing element equal to 0.1
within four grids from the boundaries.

The most crucial problem in nesting of grids is
how to connect the solutions of different grids.
Various interface boundary conditions have been
employed to permit mass, momentum and energy to
flow between grids. But, no condition can be perfect,
because of the differences in resolvable waves with
different grid lengths (Elsberry 1979). In general,
there are two approaches, viz, one-way interaction
and two-way interaction. In one-way interaction the
boundary conditions for the fine mesh grid are
specified from independent solutions of coarse grid
area and there is no feed back from the fine grid to
coarse grid solution. This results in unbounded
growth unless controlled very carefully, In two-way
interaction the solution for the fine mesh grid is
obtained by using boundary conditions from coarse
mesh grid and solution thus obtained in the fine
mesh grid are substituted on common grid points of
coarse mesh grid. Thus, the two mesh areas interact
dynamically with each other. The scale interaction
is more valid than reaction obtained with externally
specified condition only. We have followed the
second approach.

The computation proceeds from coarser grid to
finer grid. First the forcing functions at all grid
points are calculated. Then the diagnostic Eqns.
(19)-(21) for ¢* are solved on the CG network.
Boundary conditions of ¢ for the MG network are,
then, obtained from CG solutions by four point
cubic Lagrangian interpolation along the grid
length followed by eighth order linear filter (Francis
1975) to remove two grid length irregularities. Initial
guesses for MG mesh solutions are also obtained
from CG data by similar interpolations from two
orthogonal directions of the grids. This helps in
reducing the number of iterations for both iterative
and direct methods (in SEVP direct method,
iterations are necessary to match the solutions of
different blocks). Same procedure is repeated for the
FG network. Having obtained the solutions for the
three grid networks, at the common grid points
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between the FG and MG networks, the values of $%
on the MG are replaced with the corresponding
values obtained on the FG. Same process of back
substitution is followed between MG and CG net-
works. The values of $¥ at the second row of MG
and FG networks are smoothed by interpolation so
that the second derivative normal to the grid boun-
dary is equal to that derivative at third row.

Using the values of * thus obtained, the values
of u, vand a’ can be calculated from the prognostic
Eqns. (14)((16); w from diagnostic Eqn. (18) and ¢
from implicit relation (22). Replacement of coarser
grid values of all these variables by the finer grid
data are done in the same way as in the preceding
paragraph. The boundary values foru, v, w, and a’ of
the finer grid network are obtained by four point
cubic Lagrangian interpolations of the coarser grid
data. As on the finer grid along the eastern and wes-
tern boundaries of , and northern and southern
boundaries of v, there is no coarser grid data, the
interpolation is bi-cubic, i.e, parallel and perpen-
dicular to the interface. The values at the corner
points are obtained as averages of values inter-
polated from two directions.

5. Numerical experiments
5.1. Diabatic heating due to subsidence

The amount and distribution of heat source due
to subsidence is not well known in disturbance
region. For this preliminary experiment, our
approach is to test the effect of it with an analytical
expression and see what can give better agreement
between the model and observations. The horizon-
tal heat distribution due to forced subsidence in the
model atmosphere is formulated in a similar way as
proposed by Harrison (1973). In actual tropical
storm, one expects to find maximum heating at the
centre of the storm. So, the horizontal heating func-
tion is given by:

— 2 - 2
0=0pexp {— (x r:") } cxp{—( ”r—:") } (23)

where, (xg, yo) is the horizontal location of the heat-
ing maximum, which is assumed to coincide with
the centre of the storm: rg is the distance of the maxi-
mum tangential velocity from (xp, yo); Q is the
amount of heat available in calorie per square cen-
timeter per second to increase the air temperature of
the layers 2 and 3, Qp being its maximum value.




SIMULATION OF FLOW IN A TROPICAL STORM 11

Since the model predicts the temperature in
layers 2 and 3 only, we assume that heat Q is dis-
tributed between these two layers in such a way that
the amount of heat available to each layer is propor-
tional to the difference, of pseudo-adiabat (cloud
temperature, T,) and the temperature (T) of the
storm scale circulation (Rosenthal 1969).

5.2. Initial fields

For this preliminary test, the time integration of
the numerical model was started from a weak cir-
cularly symmetric, cyclonic vortex in gradient
balance. The tangential wind, V3 is of the following
function of radius r.

&)=l
Vo=Vmax [—| exp—| 1= [— (24)
ro 2 ro

where, Vmax(= 9.8 m/sec) is the maximum wind
which is located at r = rg(= 162 km). Since the
winds are constant in the vertical, the vortex is non-
divergent and there is no radial or vertical motion.
The choice of the initial vortex is of course to some
degree arbitrary, as it is difficult to judge what
should be the most realistic state. Sundquvist (1970)
used the same form.

The gradient wind, after eliminating 8 with the
help of Eqn. (6), can be written as:

Vi olnd
—ﬁ+fVo=CPT -
r

(25)

This equation is solved for the distribution of @,
by assuming that the temperature T is constant on
any horizontal level and equal to the temperatureof
the mean tropical atmosphere at that level. The
value of a, and hence, 8 at any level is calculated
from the hydrostatic equation.

5.3. Surface friction

In the concept of CISK mechanism to tropical
cyclone theory, surface friction has been recognized
as an essential factor for development of tropical
storm. Yamasaki (1968), Ooyama (1969), Su ndquvist
(1970) and many other authors made numerical
experiments on this concept. In their models, sur-
face friction was indispensable to maintain the con-
vective activity and disturbance should not develop
when ‘the drag coefficient concerning friction is
reduced to zero. Linear analysis shows that the
growth rate of tropical storm is directly proportional
to the drag coefficient (Ooyama 1969). On the other

hand, increased surface drag leads to an increased
dissipation of kinetic energy. In Yamasaki's (1977)
two dimensional model, it is found that large scale
disturbance may develop, even if the surface friction
is not taken into consideration.

Representation of the surface friction at the
ground in terms of the large scale variables is a com-
plex problem. In the conventional flux expressions,
we need empirical determination of the drag coefTi-
cient Cp Investigation in this context, have not
yielded a conclusive relationship between Cp and
wind. Some studies indicate a linear increase of Cp
with increasing wind (Miller 1962); while according
to Wu (1969), Cp becomes constant for sufficiently
strong wind (greater than 15m/sec). Consequently,
the numerical values of this coefficient include
some uncertainty too.

54. Three cases of the experiments

The effect of the surface friction can be inves-
tigated by changing the value of Cp. In view of the
discussions in the preceding section, following three
numerical experiments have been performed to see
how the surface friction and its variation can
influence the development of a tropical storm in the
early stage imposing artificial heating considered as
the effect of forced subsidence.

Case A

Horizontal coefficient of eddy viscosity, Ky is
taken equal to 10°m2sec~1; vertical coefficient, K z is
1 m2sec™! atlevel 2 and decreased linearly to zero at
the top of the model; Cp is kept zero up to 20 hours,
then linearly increased to 0.0025 from 20 hour to 40
hour and thereafter kept constant. The maximum
diabatic heat, Qy is linearly increased from zero at
the initial time to 68.8 X 10~3 calorie cm~2 sec~! at
1 =40 hour; thereafter it is kept constant for the
remaining time of integration. Equivalent amount
in Harrison’s (1973) model is much higher than
this value.

Case B

The values of Ky, Kz and Cp are zero during
entire period of integration. Qg is linearly increased
from zero at the initial time to 18.34 X 10~3 calorie
cm~2 sec™! at 6 hour; thereafter it is kept constant
for the remaining period-of integration. This value
is much smaller than that in case A.
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Figs. 5 (a & b). Time vanaton of (a) Centrial sea level pressure
anomaly (hPa) and (b) Maximum wind at U5 km
level (knots)

Case C

he values of Ky, K7 and Qg are kept same as in
Case A, but Cpis linearly increased from zero at the
initial time to .0025 during a period of 40 hours, and
thereafter kept constant.

6. Discussion of the numerical results

Since, the vortex in case A reached storm stage
within 48 hours. and case C is similar type of A, the
time integration of these two cases was discontinued
after it. As the case B is frictionless, its integration
was extended 12 hours more.

The time variations of central sea level pressure
and the maximum winds at 0.5 km level in three
cases are shown in Fig. 5. Though, there are small
fluctuations on all curves throughout the time of
integration, it is more pronounced on the velocity
curves at the initial stage. Short period oscillations
are not properly reflected as hourly data are plotted.
Yamasaki (1977) mentioned that such oscillations
are probably due to convective motion and gravity
wave. Though the rate of diabatic heating in fric-
tionless case is much smaller than other two cases.
the rate of fall of central sea level pressure and
increase of surface wind and their magnitudes are
highest in this case. In C, the fall of central pressure
or increase of surface wind upto 18 hours is very
small. These are expected. since in B there is no dis-
sipation of kinetic energy. and in C frictional term
was included from the starting of integration. This
figure indicates that at the termination of integra-
tion. the vortex was developing in all cases at a
steady rate. In B, the central pressure has fallen

2 J. C. MANDAL

-5 L1 1 B D R e ST R TS WY R ST |
36 77 108144 180 216 252 288 124 3160 396 £37 L68 504 540 576
RADIAL DISTANCE ( km)

Figs 6 (a &b). Mean tangential velocity (A, B. C€). and (b) Radial
winds (A) in knots

from 1007 10 997.75 hPa in 60 hours; while in C, it
fell from the same value to 1000.3 hPa in 48 hours.
Starting from a weak vortex (19.8 kt), the system has
intensified to a minimum storm (35 kt) at 30 hour in
B, and at 47 hour in A: but in C, it could not attain
this strength.

Radial variations of mean (around the centre)
tangential velocity at 0.5 km level in three cases at
4%-hour are shown in Fig. 6 (bottom). In B, the
radius of the maximum tangential velocity is 100
km: while it is only 36 km in A and C. Such small
values at this stage of development may be due to
small radius (162 km) of the maximum velocity of
the initial vortex. Radial gradient of diabatic heat-
ing may also have influence on this decrease. In B,
the belt of high wind speed covers larger area than
other two cases. In A and C, the speeds in the outer
region are almost same; but around the radius of
maximum wind, the profile of A has well defined
peak, typical to real data; but in C, it is flat and its
value is less than that in A, due probably to early
imposition of Cp in C. These variations may be
attributed to the variation of Cp. Radial variation of
mean inflow velocity for A (Fig. 6, top) is smooth
without any pronounced peak. Considering the
early stage, this appears to be realistic. In C, it is of
the same type: but in B, radial flow is very
feeble.

Streamlines for the lower, middle (direction
only) and upper (including isotach) levels in A at
48-hour are shown in Figs. 7 to 10. The streamlines
clearly show that the flow is nearly symmetric at all
levels. These are characterized by cyclonic inflow at
the surface (Fig. 7) and outflow at the upper level
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(Fig. 9), cyclonic inside a radius of 100 km and
anticyclonic outside. But, middle level wind
directions (Fig. 8) indicate practically no inflow
or outflow. The centre of the flow pattern at
each level lies on the centre of the vortex on
the surface. This is expected as the vortex was
not allowed to interact with other system. The
isotach analysis on the surface indicates that
the wind speed is also nearly symmetric about
the centre. The inner pressure profiles are
nearly circular, and on the surface they are
closely packed. Outer profiles indicate that
matching of the solutions between grids of dif-
ferent lengths did not produce any unwanted
effect. There is a noticeable asymmetry of the
isotach field in the upper level (Fig. 10) with
higher wind speed to the northwest and
southeast sectors.

The vertical velocity w;, at the top of the
boundary layer at 48-hour in A is shown in
Fig 11. It increased slowly with time and
region of high speed gradually moved towards
the centre. At 48-hour, it reached to 13 to 15
cm/sec in an annular region between 36 and 50
km from the centre. One interesting feature of
wy is that band-like regions of upward motion
are separated by descending motion. In the
upper level, w, (Fig. not shown) is mainly
ascending around the centre (maximum 32 cm/
sec) with weak descending motion at a
large distance.
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Fig. 12, Air temperature anomaly (A) at upper level at 48 hour.
Unit: °C

In case A. at 48-hour. warm core in the mid-
dle level is noticeable at this stage (Fig. not
shown). The maximum positive potential tem-
perature anomaly of 6°C, and air temperature
() anomaly of 4.6°C, are located at the centre
of the vortex. Both the anomaly profiles are
nearly circular and concentric. Radial gradient
of air temperature is highest around the centre;
but that of potential temperature is highest bet-
ween 36 and 54 km. The air temperature
anomaly in the upper level is shown in Fig. 12.
It is seen from the figure that the maximum
warming at this level is not situated at the cen-
tre. It is negative only at the centre grid point
and increases sharply with radius to more than
2.5°C, then decreases slowly outwards. Warming
is maximum within an annul-.r region approx-
imately between 58 and 100 km around the cen-
tre. It's gradient is steep upto 60 km. Potential
temperature anomaly (Fig. not shown) is nega-
tive in a very small area around the centre, and
increases sharply with radius to more than
4.0°C, then decreases slowly outwards. This
implies that warming in the central part of
upper layer is not yet sufficient enough to com-
pensate adiabatic cooling due to vertical motion
in the centre.

At 24-hour, in the frictionless case (B) (Figs. not
shown) alternate region of ascending and descend-
ing motion are observed at the top of the boundary
layer. In the central region of about 90 km radius,
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the upward velocity is very small and almost all
parts of the outer region are ¢overed with sinking
motion. At the upper level, the pattern is similar
to that at lower level. This suggests that such
patterns may be independent of friction and pro-
bably linked to the dynamics and thermo-
dynamics of the flow itself. The potential
temperature anomaly profiles at 24-hour are cir-
cular and symmetric. In the middle level, the
anomaly is positive with its maximum at the
centre (4°C). While in the upper level, it is nega-
tive (% — 1°C) at the centre and weak positive at
large distance.

Sea level pressure anomalies, streamlines at
lower and upper levels and w; for this case at 60-
hour are shown in Figs. 13 to 16. The pressure
anomaly pattern in the inner domain represents
circular contours comparable to observation. The
streamlines in the boundary layer are symmetric.
The angle of inflow is very small (1 to 3 degree).
This could be expected as the surface friction and
diffusion terms are excluded in this experiment.
The streamlines and inflow angle in the middle
level (not shown) are similar to those in the
boundary layer. In the upper level these are not
symmetric. A large area in the centre is
dominated by cyclonic outflow which is surroun-
ded by a trough and two weak ridges. Anthes
(1972) concluded that the asymmetry of the out-
flow layer results from dynamic instability. This
may also happen due to Cartesian co-ordinate
being used for circularly symmetric system.

Due to increase of the potential temperature
in the middle and upper layers, the pressure
-gradient force increased steadily during the later
part of integration. This increased pressure
gradient force accelerated the radial influx of
mass in the lower layer. The major part of the
radial momentum, thus created, was converted
into the tangential momentum by Coriolis force,
thereby increasing the tangential momentum to
restore partly the gradient wind balance. In
cases with friction, there was loss of tangential
momentum to the ocean surface and gradient
wind balance of the vortex was disturbed leaving
to an unbalanced pressure gradient force direc-
ted to the centre. As a result, rings of air started
to move toward the centre in the boundary layer
and a part of which was also converted to
tangential momentum. Thus, the radius of the
maximum tangential velocity in the frictional
cases (A and C) has been decreased. In
frictionless case, this reduction is very less
in comparison with frictional cases. With

friction, the rate of increase of surface wind
depends upon the excess of tangential momen-
tum generated by heating over the loss due to
surface friction and turbulent diffusions. Hence,
the increase of tangential velocity is highest in B
and lowest in C.

The cyclonic flow in the upper troposphere
slowly disappeared and anticyclonic outflow
formed and intensified with time. The air con-
verging in the boundary layer rose and diverged
out in the upper troposphere due to decrease of
pressure gradient force. The absolute angular
momentum of a parcel of air moving horizon-
tally in the upper troposphere is nearly conser-
ved; so the relative angular momentum of
diverging air decreases with radius. Thus, the
initial cyclonic circulation in the upper level
weakened slowly and anticyclonic ouflow formed
away from the axis. The vortex remained
stationary and nearly symmetric during the
period of integration in all cases, since it was
not allowed to interact with other system
of the atmosphere.

7. Summary and remarks

From the results of three cases tested in this
preliminary study. it is clear that the staggered
grid scheme, finite difference method, matching
of solutions between meshes of different grid
lengths and the technique of integration. have
yielded smooth and encouraging results.
Therefore, we may conclude that the present
scheme has shown satisfatory performance from
the computational point of view. Using the new
iterative method for solution of the system of
Helmholtz equations developed in this study, the
semi-implicit method has become more advan-
tageous in speed for the nested grid model. In
this regard, the purpose of the present experi-
ment has been fulfilled.

The results of the numerical experiment indicate
that a disturbance may develop without surface fric-
tion. It may be inferred thai surface friction may not
play an essential role in the early deveioping stage
of a tropical storm when the vortex is weak, as the
frictional convergence at this stage may not be suffi-
cient for its growth. That is, the CISK mechanism
may not be very relevant to pre-storm disturbance
maintenance and intensification. On the other
hand, initiation of initial development to the
storm'’s intensity may be attributed to the warming
caused by forced subsidence in the central region of
the disturbance as postulated by several authors.
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The structure of the disturbance obtained in fric-
tionless case at 60-hour is different from the real
storm in the sense that it has very less convergence
in the boundary layer. The radius of the maximum
tangential velocity is also much higher than the fric-
tional case. This suggests that surface friction comes
into play when the strength of the vortex is
increased and it is one of the important factors to
determine the scale of the disturbance.

An interesting related application of this work,
for example, may be conducting experiments for
tropical storm modification. Since, the behaviour of
a storm may be examined adding heat directly or
indirectly in the upper layers.

There are several deficiencies in the model. The
heating due to forced subsidence has been incor-
porated through an analytic function. This is to be
parametrized in terms of large scale flow. The verti-
cal resolution of the model is poor. Heat transfer
between ocean surface and the vortex has been for-
mulated implicitly. Eddy coefficients of viscosity
have been treated in a simple fashion. This model
can be further extended and refined to study small
scale weather phenomena and the life-cycle of a
tropical storm taking into consideration the varia-
tion of Coriolis parameter, environmental flow with
movable nested grids, more sophisticated paramet-
rization of physical processes, smaller grid lengths
etc., if high speed computer facility is available.
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APPENDIX A
Finite-difference of non-linear terms

The following finite-difference and average
operators are defined on a uniform horizontal mesh
of uniform grid length As, for a dependent variable
B, as discrete values of independent variables
v =iAs y=j As (As=Ax=Ay):

Bx = (Bi+3v Bf—}id)/As
Bx = (Bisl i+ izl )2

( bad 2” (Al)
By = (Bij+} ~ ﬁfj—‘i]/AS

In addition to these operators along the coor-
dinate directions, we define similar operators along
the diagonals of a grid square (Ookochi 1972):

(A2)

The factor /2 that naturally occurs in the
denominator of 8,8 and 8,f has been omitted above
and combined with /2 that occurs when the
diagonal component is expressed in terms of
momentum components.

In terms of the above operators, the finite dif-
ference equations for non-linear terms in the first
and second equations of motion and energy equa-
tion can be written in the following form :

d (B d ) d (Fuw)
—_— —_ v —— U
™ puu) + 3 (puv) + % puw
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APPENDIX B

Iterative method for solution of a system of
Helmholtz equations

In iterative method, an initial guess of the solu-
tion is made and then progressively improved until
an acceptable level of accuracy is reached.

To illustrate our Simultaneous Multi-level
Relaxation (SMR) method, let us consider a rec-
‘angular region consists of a grid of equally spaced
points. The values of the variable, ¢ for which the
solutions to the system of Helmholtz equations are
sought, are specified on the outermost boundaries.
The equations in this study are of the following
form :

2
Va®ij1+and; ;1 +a;;

2
+ a3t 3= Fi (B1)
Vi ®i 2+ ane; 1+ ant;
+ a3 ;3= Fij2 (B2)
)
Viadij3+ane 1 +apd, ;o
T 4139, i3 F,'j 3 (B3)

where, Vé is the S-point Laplace operator; ay,
aYF; seasic as3 are co-efficients and F; ;¢ F; j 2 and
F; j 3 are forcing functions.

In Sequential Relaxation (SR) or Sussive Over
Relaxation method (SOR), the correction to
estimate (or guess) value using residual is applied to
each equation separately and independently of
other equations. In our method (SMR) the residuals
on a particular grid point %, j° on all levels are
calculated first as in SR method, and corrections to
previous “guess values™ at that particular horizontal
grid point an all levels are done simultaneously tak-
ing into account each and every ierms nf all
equations, rather than each level separaiciy. since
the change in one level affects other 1oy

Let o', ; represent the “m'th eaiin i
Then the residuals R”’ e (k=1 3, for £ w'th
estimate is defined as l‘ollm\v

m = mm+1 m m+1
ij1 T O T O ol

Ol 1~ 40T +a o7

tapoliatapol i —F; (B4)

Similarly, R’,-f’),;z and R} 3 are calculated,

IL.RY; | RYY 2and R} yjusthappened to vanish
atall points. then tbl} I <fy”'- >and ¢7'; 3 would be th
true solutions of the equs: mom (Bly1o (B1).

Let us now suppose that our guesses at the par-
ticular point ‘i /" on all three levels were changed by
amounts 8¢; ; 1. 8, ;2 and By, j 1 respectively,
without altering the guess at any of the surrounding
points. Since the forcing functions are fixed. the
equation (B4) implies that the resulting changes in
¢’s will make residuals of all equations to zero. if the
following relations are satisfied.

(=d+ay)80; ;| + ayd0; ;
+ap3d0; 3= —R; ;) (B3)
@y 80; ;) + (—4+a) 80, ; 5

+ 35,80, ;3= —R; ; (Bh:

i 2

a3 8; ;) +a3ndoe; ;

+ (—4+ﬂn)5¢, i 3 - H‘Rf.j. 3 (B?)
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Above three algebraic equations can be easily
solved for 8d; j 1. 8¢, j 2 and 8¢; ; 3 and (m+Dith
guess can be obtained from the following
relations :

o7l = O 1 + 80

o= o7, + 8¢ >

O =T 3+ 80,3

This procedure is applied to all internal grid
points and iterations are repeated and the solutions
progressively improved until the maximum of the
absolute value of residual becomes less than an
optimum value.
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