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सार ‒ पिरवतर्न सिदश िवæ लेषण (CVA) यािन पिरवतर्न संसचन तकनीक म दो अलगू Ʌ -अलग कािलक उपग्रह िचत्रɉ 
से प्राÜ त पिरवतर्न पिरमाण और पिरवतर्न िदशा संबंधी भ आवरण पिरवतर्नɉ को बताने और उनकी पहचान करने की ू
उपयोगी क्षमताएँ ह। ɇ CVA म िवद्यमान बाधाओ ंको दर करनेɅ ू  के िलए िपछले दो-तीन दशकɉ से कई प्रभावी CVA 
आधािरत पिरवतर्न संसचन तकनीक अथार्त उÛ नू ् त पिरवतर्न सिदश िवæ लेषण (ICVA), संशोिधत पिरवतर्न सिदश 
िवæ लेषण (MCVA) और पिरवतर्न सिदश िवæ लेषण उ× तरकालीन संभाå यता è पेस (CVAPS) का िवकास िकया गया। 
िकत िकसी ं ु के्षत्र िवशेष के िलए बेहतर उिचत CVA तकनीक का चयन करने की प्रिक्रया बहत ही किठन है क् यɉु िक 
अलग-अलग CVA तकनीकɉ की अपनी-अपनी िवशेषताएँ होती ह और कोई भी एकल तकनीक सभी मामलɉ के अÚ यɇ यनɉ 
पर लाग नहीं होती है। उपयर्क् तू ु  CVA तकनीकɉ की प्रभावो× पादकता की जाँच ऊबड़-खाबड़ मैदानी भागɉ के िहम 
आÍ छािदत के्षत्र म नहीं की गई है। इसके अितिरक् तɅ , छाया जैसी è थलाकितक िवकितयां पिरवतर्न संसचन िवæ लेृ ृ ू षण के 
िनç पादन को प्रभािवत करती ह क् यɉɇ िक सयर् की िवपरीत िदशा के ढलान की तलना म सयर् की तरफ के पवर्तीय ू ु ूɅ सतही 
ढलान म अिधक परावतर्कता के मान प्राÜ तɅ  होत ेह। यह मह× वɇ पणर् सचना को नç टू ू  कर देती ह िजसके कारण गलत ɇ
पिरणाम प्राÜ त होत े ह। अतɇ : इस पर आगे ओर िवचार करने से पहले उपग्रह आकँड़ा सेट को लाग करने के िलए ू
è थलाकितक सधारɉ की भी आवæ यृ ु कता है। इस शोध पत्र म बेहतर संभव तकनीक का पता लगाने के िलए è थɅ लाकितक ृ
सही MODIS डाटासेट का उपयोग करत ेहए ऊबड़ु -खाबड़ मैदानी के्षत्रɉ के िहम आÍ छािदत के्षत्र म अलगɅ -अलग CVA 
तकनीकɉ की जाँच की गई िजससे पिरवतर्न और पिरवतर्न नहीं िपक् सलɉ की सटीकता का पता लगाने और ˊसे-तकˊ 
पिरवतर्न संसचन का भी सही िनç पाू दन िकया जा सकेगा। इस शोध पत्र म िकए गए सीिमत अÚ यɅ यन के आधार पर यह 
पाया गया है िक ऊबड़-खाबड़ मैदानी के्षत्रɉ के िहम आÍ छािदत के्षत्र म कल संपे्रिषत आँकड़ɉ का मã यांɅ ु ू कन करने की 
CVAPS तकनीक म Ʌ MCVA और ICVA तकनीकɉ की अपेक्षा अिधक क्षमता है। इस अÚ ययन के पिरणामɉ म ऊबड़Ʌ -
खाबड़ मैदानी के्षत्र म Ʌ LULC पिरवतर्नɉ के बेहतर सही िवæ लेषण करने के िलए उपयोगी क्षमताएं होने की संभावना है 
िजससे िविभÛ न उपयोगक× तार्ओ ंद्वारा ऐसे अनप्रयोगɉ के िलए ु MODIS आकँड़ा सेट की उपयोिगता को उÛ नत िकया जा 
सकेगा।    

  

ABSTRACT. Change Vector Analysis (CVA) as change detection technique has useful capabilities of extracting 
and identifying land cover changes in terms of change-magnitude and change-direction from two different temporal 
satellite imageries. Since past two-three decade, many effective CVA based change detection techniques, e.g., Improved 
Change Vector Analysis (ICVA), Modified Change Vector Analysis (MCVA) and Change Vector Analysis Posterior-
probability Space (CVAPS), have been developed to overcome the difficulty that exists in CVA. But the choice of best 
suitable CVA technique for particular area is a very difficult process because different CVA techniques have their own 
features and no single technique is applicable to all case studies. An efficacy of aforementioned CVA techniques has not 
been examined on snow cover area of rugged terrain. On the other hand, topographic distortions such as shadow, affects 
the performance of change detection analysis because hilly surface slope towards the sun receiving more reflectance 
value as compared to slope opposite direction from the sun. It suppresses the vital information that leads to the inaccurate 
consequences. So topographic corrections are also necessary to be executed on satellite dataset before further 
considerations.  In the present paper, different CVA techniques have been investigated over snow covered area of rugged 
terrain using topographic corrected MODIS dataset to find out the best possible technique which could distinguish more 
accurately changed and no-changed pixels, and also accurately perform “from-to” change detection. Based on limited 
study done in this paper, it is formed that CVAPS technique has greater potential than MCVA and ICVA techniques to 
evaluate the overall transformed data over snow covered area of rugged terrain. Results of this study are expected to be 
potentially useful for more accurate analysis of LULC changes over rugged terrain which will, in turn, improve the 
utilization of MODIS dataset for such applications by various users. 

 

Key words  –  Topographic correction, Improved change vector analysis (ICVA), Modified change vector analysis 
(MCVA), Change vector analysis posterior-probability space (CVAPS), Moderate resolution 
imaging spectroradiometer (MODIS). 
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1.  Introduction  
 
 Remote sensing offers a rapid way to obtain up-to-
date information about regional climate monitoring 
(Haefner et al., 1997), natural resources management 
(Flores and Yool 2007), and early warning for snow 
avalanches (Mohan 1985; Sharma and Ganju 2000) that 
occurs due to air temperature anomalies. The detection of 
multi-temporal environmental change is a major 
application of remote sensing (Lu et al., 2004). Change 
detection is a phenomenon to find out the difference in 
sequence of events that occurred at two different time 
instances (Singh 1986).  A number of change detection 
approaches have been proposed since past few decades. 
  
 Change detection techniques can be grouped into 
two categories; (a) post classification techniques; (b) 
enhancement techniques (Nelson 1983). The post 
classification techniques comprise the spectral 
classification comparison of satellite dataset that acquired 
at two different time instances of same study area (Pilon   
et al., 1988). Enhancement techniques involve the 
algebraically grouping of multi-temporal satellite 
imageries to provide a composite imagery that signifies 
the changes in distinguishing colors (Mas 1999). 
Enhancement categories are; (a) band differencing or 
ratioing (Weismiller et al., 1977; Howarth and Wickware 
1981); (b) regression analysis (Singh 1989), (c) Principal 
Component Analysis (PCA) (Byrne et al., 1980; Gong et 
al., 1992), (d) Change Vector Analysis (CVA) (Malila 
1980). The CVA technique is an effective tool to do 
research on change dynamics of LULC region that 
delivers spectral change information in terms of change-
magnitude and change-direction (category). Numerous 
features and potential of CVA techniques have been 
extensively explored in different case studies (Lu et al., 
2004; Michalek et al., 1993; Lambin and Strahler 1994a; 
Lambin and Strahler 1994b; Sohl 1999). On the other side, 
research activities on topographic correction helps in 
extraction maximum information from rugged terrain 
satellite imagery. Topographic correction must be applied 
to MODIS dataset to remove the variations that occurs due 
to shadow effects, i.e., sun-facing illuminated slopes show 
more reflectance values whereas shaded area which shows 
less reflectance values (Yongnian and Wanchang 2009; 
Mishra et al., 2009a; Raino et al., 2003). Different studies 
on topographic correction have shown that multi-spectral 
and multi-temporal image classification of rugged terrain 
can significantly improve to retrieve maximum 
information (Mishra et al., 2009a; Colby 1991; Meyer      
et al., 1993). 
 
 In the present study, a few recently developed 
different CVA techniques, e.g., Improved Change Vector 
Analysis (ICVA) (Chen et al., 2003), Modified Change 

Vector Analysis (MCVA) (Nackaerts et al., 2005) and 
Change Vector Analysis Posterior-probability Space 
(CVAPS) (Chen et al., 2011), have been evaluated from 
the point of view of their efficacy in data processing on 
rugged terrain using topographically corrected MODIS 
dataset. The ICVA (Chen et al., 2003) technique includes 
two stages; (a) Double-window Flexible Pace Search 
(DFPS) algorithm to generate binary image; (b) Direction 
cosines approach to attain the change classified imagery. 
Similarly, MCVA (Nackaerts et al., 2005) technique is 
based on an enhanced 2n-dimensional feature space 
comprising change information in its change-magnitude 
and change-direction. Moreover, CVAPS (Chen et al., 
2011) technique integrates the potentials of Post 
Classification Comparison (PCC) into CVA to relieve the 
strict requirement of radiometric corrected satellite 
imagery. It has been analyzed that each CVA technique 
has its own unique features and no single technique is 
applicable to all case studies. Therefore, it is necessary to 
investigate the efficacy of  different CVA techniques over 
snow covered area of rugged terrain using topographically 
corrected MODIS dataset and evaluate a technique which 
could more accurately distinguish the “change” and “no-
change” pixels, and also accurately perform “from-to” 
change detection. 
 
 In order to assess the effectiveness of all CVA 
techniques on rugged terrain, each technique been 
experimented on same study area using topographically 
corrected MODIS dataset. This paper is divided into five 
major sections. Following the introduction part, the study 
area and required pre-processing steps have been 
described in section two. All CVA techniques are 
implemented in third section, followed by the results and 
discussions of prior studies on different CVA techniques 
in fourth section. The general conclusion has been drawn 
in last section. 
 
2. Pre-processing of study site 
 
 The dataset for study site have been acquired          
from MODIS (Moderate Resolution Imaging 
Spectroradiometer) sensor satellite, over western 
Himalayan region (India). Two multi-temporal imageries 
(6 November, 2010 and 8 February, 2011) covering the 
area located between latitude 32.21° N to 32.58° N and 
longitude 76.59° E to 77.01° E, have been used in this 
research work  [Figs. 1(a&b)]. The MODIS dataset is well 
suited for change detection studies because of its 
appropriate repeativity (1-2 days) over the area of interest.   
 
 2.1. Geometric correction 
 
 All imageries were geometrically corrected using     
25  Ground  Control  Points  (GCPs)  to define images in a  
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(b) (a) 

Figs. 1(a&b).  MODIS dataset of study site (comprises of Soil, Snow, Vegetation and Shadow) (a) 6th November, 
2010 at 0530 UTC and (b) 8th February 2011 at 0530 UTC  

 
 
 

common geographic coordinate system. A first order 
polynomial transformation has been used to maintain the 
Root Mean Square Error (RMSE) less than one (Mather 
2004). The RMSE represents a measure of the accuracy of 
GCPs points in the dataset. The Nearest Neighbor (NN) 
method has been selected for resampling the satellite 
imagery. In NN, each incorporated pixel allocated to the 
value of the nearest distance point in the input imagery. It 
occupies less space and fast to compute the process.  This 
step reduces arbitrary and residual distortion which results 
a ‘map-coordinated’ dataset. 
 
 2.2. Radiometric correction 
  
 Radiometric correction overcomes the errors that 
affect the illumination value due to irregular atmospheric 
conditions, e.g., different scattering and absorption, and 
different viewing geometry, e.g., variation in Sun and 
Earth distance, solar azimuth angle or solar zenith angle. 
The radiometric correction converts the illumination 
values in reflectance values. The Digital Numbers (DN) of 
the images were transformed to reflectance “R” based on 
the following equation (Song et al., 2001; Pandya et al., 
2002). 
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 where, “E0” and “Lsatλ” represents the exo-
atmospheric spectral irradiance and sensor radiance of 
MODIS (Mishra et al., 2009b), respectively. The solar 
zenith angle is represented by “θz” that is calculated for all 
different pixels (Kasten 1962), “d” represents the distance 
between Earth and Sun (Vander Meer, 1989),  “Ed”  is the 
down-welling diffused radiation which can be represented 
as zero (Chavez 1984). The path radiance is represented 
by “Lp” (Chavez 1996).  

 2.3. Topographic corrections 
 
 Topographic corrections refer to the compensation of 
the different solar illuminations that occur due to irregular 
shape of the terrain. This effect causes a high variation in 
the reflectance value of satellite imagery in which shaded 
areas shows low reflectance and bright areas shows the 
high reflectance (Raino et al., 2003). The topographic is 
an important factor that affects quantitative and 
qualitatively analysis of satellite dataset when remotely 
sensed data are acquired over mountainous regions 
(Mishra et al., 2009a). In this paper, slope match 
technique as topographic correction has been used to 
remove the shadow effects (Nichol et al., 2006). The 
following Equation gives the slope match topographically 
corrected imagery. 
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 In Equation (2), cos i  and coss (i) represent 
illumination (IL) and slope of illumination, respectively; 
The parameters  Lmax and Lmin represents maximum and 
minimum reflectance, respectively; In Equation (3), the 
parameter Cs is normalization coefficient of slope match 

technique for different satellite bands;  represents mean 

reflectance on sunlit slopes after first stage normalization, 
Na represents mean reflectance on shady slopes in 

uncorrected reflectance imagery and  is the mean 

reflectance value on shady slope after first stage 
normalization. The slope match topographically corrected 
imageries of both dates (6th November, 2010 and            
8th February, 2011) have been shown in Fig. 2. 

1
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(a) (b) 

Figs. 2(a&b).   Slope match topographically corrected MODIS dataset of study site (a) 6th November, 
2010 at 0530 UTC and (b) 8th February, 2011 at 0530 UTC  

 

                      

(a) 

(b) 

Figs. 3(a&b). (a) Change magnitude image and (b) Change magnitude “change” and “no-change” scale (140-20) 

 

 

(a) (b) (c) 

(d) 

Figs. 4(a-d).  Training sample of change magnitude image (a) Sample, (b) Inner boundary of sample, (c) Outer boundary of sample and (d) Change 
magnitude “change” and “no-change” scale (20-140) 

 
 

3. Change vector analysis (CVA) techniques 
 
 The core concept of CVA comprises computation of 
spectral change vectors based on multi-temporal pairs of 
spectral measurements and compares their magnitude 
based on specific threshold approach (Chen et al., 2003; 
Nackaerts et al., 2005). The CVA can overcome the  
disadvantages of “type-one” approaches, e.g., cumulative 
errors in image classification of an individual date and 
processing any numbers of spectral bands simultaneously 
to retrieve maximum change-type information (Malila 
1980). It has also been concluded (Sohl 1999) that CVA is 

better than all other change detection techniques because 
of its graphically rich content and its ability to detect 
LULC changes with good locational information. The 
change vector magnitude imagery is calculated according 
to Euclidian distance as following Equation (Malila 1980, 
Chen et al., 2003). 
 

    22
11 ... ii nmnmG                     (4) 

 
 “∆G” represents that transformed data lies between 
the two multi-temporal imageries captured at different
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Figs. 5(a-c).  Improved change vector analysis (ICVA) technique (a) Binary image with color codes; (b) change discriminated on              

6th November, 2010 and (c) change discriminated on 8th February, 2011 with color codes 

 

       
 
 
 

Figs. 6(a-c).    Modified change vector analysis (MCVA) technique (a) Binary image with color codes; (b) change discriminated on              
6th November, 2010 and (c) change discriminated on 8th February, 2011 with color codes 

 

 
 
time periods, time “T1” (6th November, 2010) and time 
“T2” (8th February, 2011) for a given pixel defined by  

 and , respectively 

and “i” represents number of bands in imagery. In Fig. 3, 
the change magnitude imagery that calculated according 
to Euclidian distance represents the change (bright area) 
and no-change (dark area) pixels.  
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 3.1. Improved change vector analysis (ICVA) 

technique 
 
 The Improved Change Vector Analysis (ICVA) 
(Chen et al., 2003) technique consists of two stages; (a) 
Double-window Flexible Pace Search (DFPS) approach to 
semi-automatically predict a threshold value for change 
magnitude to generate “change and no-change” imagery;  
(b) direction cosines to determine the change direction 
based on a minimum-distance classification method. In 

this paper, DFPS technique has been executed on training 
dataset sample containing all possible kinds of changes to 
select a threshold value. The selected training sample is 
shown in Fig. 4(a). A succession rate of change detection 
analysis has been used to evaluate the performance of 
each potential threshold value during one search process 
for identifying change and no-change pixels. In semi-
automatic DFPS process, success rate (Sr) criteria is 
calculated according to the following equation to select 
the most optimal threshold value for change magnitude 
imagery. 
 

 %
r

cc
r I

OI
S


                    (5) 

  
 In Equation (5), “Ic” represents number of 
transformed pixels inside an inner window sample that       
has  been  shown  in  Fig. 4(b), “Oc” represents  number of 

Change No-Change 

(a) (b) (c) 

ShadowSnow Soil Vegetation 

Change No-Change ShadowSnow Soil Vegetation 

(a) (b) (c) 
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TABLE 1 
 

Succession rate results for DFPS threshold determination (ICVA) technique 
 

Search range = 160-20 

Pace difference =  20 

Search range = 110-80 

Pace difference  = 10 

Search range = 110-90 

Pace difference  = 5 

Search range = 100-90 

Pace difference = 2-3 

Search range = 97-93 

Pace difference = 1 

Threshold 
value 

Success    
percentage 

Threshold 
value 

Success    
percentage 

Threshold 
value 

Success    
percentage 

Threshold 
value 

Success    
percentage 

Threshold 
value 

Success    
percentage 

160 4.9% 110 48.14 % 110 48.14 % 100 56.79 % 97 57.85 % 

140 4.9% 100 56.79 % 105 52.68 % 98 57.85 % 96 58.76 % 

120 39.5 % 90 55.55 % 100 56.79 % 95 59.25 % 95 59.25 % 

100 56.79 % 80 51.85 % 95 59.25 % 92 56.87 % 94 56.87 % 

80 51.85 %   90 55.55 % 90 55.55 % 93 56.87 % 

60 50.61 %         

40 48.14 %         

20 48.14 %         

 
 
transformed pixels in an outer window sample that has 
been shown in Fig. 4(c) and “Ic” is the total number of 
pixels in inner training window sample. The Double-
Window Flexible Pace Search method was used to 
determine the threshold of change magnitude. The search 
range of DFPS can be set from highest to lowest value 
(160-20) based on sample magnitude with pace (step) 
difference from maximum to minimum (20-1) value.  The 
threshold search process iterated until the success rate 
difference between the maximum and the minimum value 
was less than 1 per cent that is calculated according to 
Equation (5). As a result, the threshold of change 
magnitude was obtained as 95 with a maximum success 
rate of 59.25 per cent. The search process has been noted 
in Table 1, and the search range changed five times with 
the paces (steps) of 20, 10, 5, 2-3, and 1. The number of 
thresholds verified totaled 18. The change and no-change 
pixels in the study site at threshold 95 were extracted and 
shown in Fig. 5(a). 
           
 In ICVA (Chen et al., 2003), change type 
discrimination can be obtained using change vector’s 
direction cosines (Hoffmann 1975). The change vector’s 
direction can be defined by a sequence of cosine functions 
according to subsequent equation in which X (x1, x2, …, xi) 
represents vector, “i” is the number of bands.  
 

 ,Cos,Cos,Cos 2
2

1
1 G

x

G

x

G

x i
i 






             (6) 

  
 Change type information is calculated according 
minimum distance classifier in which an unknown pixel is 
assigned to a certain class or unclassified class based on a 

minimum distance to means of all candidate classes when 
the distance is within a certain threshold (Richards and 
Jia, 1999). The change type discriminated imageries of 
respective dates which are calculated through              
ICVA technique, are shown in Figs. 5(b&c). All land 
classes in the study site have been categorized into four 
classes (with respective color coding) : snow covered land 
(white), soil land (red), vegetation (green) land and 
shadow (black). 
 
 3.2. Modified change vector analysis (MCVA) 

technique 
 
 Modified Change Vector Analysis (MCVA) 
(Nackaerts et al., 2005) stores the change information in 
change-vector’s magnitude and direction as change-type 
data. In MCVA, each change vector is described by 
Cartesian coordinates in a continuous domain. Moreover, 
requirement of reference is data only for feature extraction 
and it enhances the applications of MCVA. In Fig. 6(a), 
binary image generated through MCVA represents the 
“change” pixels in white color and “no-change” pixels in 
black color. The important advantages of this technique 
are (Nackaerts et al., 2005); (a) change discrimination 
(categorization) is in the continuous domain which allows 
change descriptors to be used in classification approaches 
such as supervised or unsupervised classifiers, (b) the 
computational simplicity, (c) feature space 
multidimensionality (two or more number of change 
descriptor input bands). In this paper, Maximum 
Likelihood Classifier (MLC) has been used to categorize 
change type information in the continuous domain. The 
change type discriminated imageries using MCVA 
technique, have been shown in Figs. 6(b&c). 
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(a) (b) (c) 

 

Change No-Change ShadowSnow Soil Vegetation 
 
 

Figs. 7(a-c).  Change vector analysis posterior-probability Space (CVAPS) technique (a) Binary image with color codes; (b) change 
discriminated on 6th November 2010 and (c) change discriminated on 8th February 2011 with color codes 

 
 
 3.3. Change vector analysis posterior-probability 

space (CVAPS) technique 
 
 Change Vector Analysis Posterior-probability Space 
(CVAPS) (Chen et al., 2011) integrates the merits of Post 
Classification Comparison (PCC) (Castellana et al., 2007) 
into CVA to enhance its capability. CVAPS identifies 
LULC changes by pixel-wise radiometric comparison 
(Chen et al., 2011) instead of comparison as in PCC 
(Castellana et al., 2007). This process reduces the 
occurrence of error in individual classified imageries. In 
CVAPS approach, the posterior probability is 
implemented by Maximum Likelihood Classifier (MLC). 
Generally, change-type (category) information can be 
obtained based on the change vector’s direction “ΔP”. A 
pixel transformed from one class “a” to another class “b” 
is represented by change base vector. Assuming that the 
posterior probability vectors of one pixel in time 1 and 
time 2 are Pa and Pb, respectively, the change vector in a 
posterior probability space “∆Pab ” can be defined as 
 
 ∆ Pab = Pb - Pa         (7) 
 
 “P” denotes the posterior probability vector 
belonging to class from 1 to m, where m is the number of 
classes. Here, “Pzi” represents the pure pixel posterior 
probabilities that belongs form a class i to a class z in the 
following Equations. 
         
 P = (P1, …, Pm )       (8)
  

    ziifP
ziifPzi

zi

zi
P 

 ,1
0        (9) 

 
 In order to determine change information, DFPS 
(Chen et al., 2003) threshold determination technique has 
been employed in CVAPS. Fig. 7(a) represents binary 

image generated through CVAPS in which the “change” 
pixels donated as white color and “no-change” pixels as 
black color. The change vector’s direction in a posterior-
probability space has an effective particular mean in 
change-type identification. The change type discriminated 
imageries of respective dates have shown in Figs. 7(b&c). 
      
4. Results and discussion 
 
 Accuracy assessment of each change detection 
technique is an essential part of remote sensing data 
processing for evaluations the effectiveness of different 
CVA based change detection techniques. The most 
common accuracy assessment elements to generate error 
matrix include overall accuracy (accuracy of a map), 
commission errors (including a pixel in a class when it 
should have been excluded) and Kappa coefficient 
(accuracy statistic that permits two or more contingency 
matrices to be compared) (Green 1994; Biging et al., 
1999). The result of an accuracy assessment typically 
provides us with an overall accuracy of the map and the 
accuracy for each class in the map.  In order to access the 
accuracy, binary output (“Change” and “no-change” 
imagery) of each CVA technique is compared with 
reference image to generate the error matrix, kappa 
coefficient and commission error. With experimental 
outcomes, it is evaluated that ICVA technique achieved 
0.76 kappa coefficient and 88% accuracy assessment as 
shown in Table 2, MCVA technique achieved 0.56 kappa 
coefficient and 78% accuracy assessment as shown in 
Table 3, and CVAPS technique achieved 0.80  kappa 
coefficient and 90% accuracy assessment as shown in 
Table 4. It has been analyzed that both ICVA and CVAPS 
techniques achieved nearly high accuracy in terms of 
kappa coefficient and accuracy assessment. On the other 
hand, MCVA overestimates the change and thus, achieved 
lower kappa coefficient as well as accuracy assessment.  
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TABLE 2 
 

Error matrix for ICVA technique using 50 samples 
 

Reference change 
Un-change 

Pixels 
Change 
Pixels 

Sum 
Commission

error 

Un-change 
pixels 

21 4 25 16% 

Change Pixels 2 23 25 8% 

Sum 23 27 50  

Classified 
change 

 

 

 Commission 
error 

8.6% 5.5%   

Accuracy assessment =  88% 

kappa coefficient = 0.7600 

 
TABLE 3 

 
Error matrix for MCVA technique using 50 samples 

 
Reference change 

 
Un-change 

pixels 
Change 
pixels 

Sum 
Commission

error 

Un-change 
Pixels 

20 5 25 20% 

Change Pixels 6 19 25 24% 

Sum 26 24 50  

Classified 
change 

 

 

 Commission 
Error 

23.07 % 20.83%   

Accuracy assessment =  78%  

Kappa coefficient = 0.56 

 
TABLE 4 

 
Error matrix for CVAPS technique using 50 samples 

 
Reference Change 

 
Un-change 

Pixels 
Change 
Pixels 

Sum 
Commission

Error 

Un-change 
Pixels 

22 3 25 12% 

Change Pixels 2 23 25 8% 

Sum 24 26 50  

Classified 
Change 

 

 

 Commission 
Error 

8.33% 11.53%   

Accuracy assessment =  90% 

Kappa Coefficient = 0.80 

 
 
 The commission errors were less in ICVA and 
CVAPS as compared to MCVA. These results have been 
evaluated on same study area of rugged terrain for 
evaluation of different CVA techniques for change 
detection. 
 
 The “From-to” (one class to another class) change 
accuracy assessment of ICVA, MCVA and CVAPS 
techniques have shown in Table 5, Table 6 and Table 7, 
respectively. ICVA achieved a kappa coefficient of 0.6808 
and accuracy assessment of 78%, MCVA achieved 0.8244 
kappa coefficients and 88% accuracy assessment         
and  CVAPS  achieved  0.8814 kappa coefficient and 92%  

    

TABLE 5 
 

“From-to” accuracy assessment for ICVA technique                          
using 50 samples 

 
Reference change Snow Soil Vegetation Shadow Row total 

Snow - 15 - - 15 

Soil 24 10 - 1 35 

Vegetatio
n 

- - - - - 

Shadow - - - - - 

Classified 
change 

 

 

 Column 
Total 

24 25 - 1 50 

Overall Accuracy = 78%, 

Kappa Coefficient = 0.6808 

 
TABLE 6 

 
“From-to” accuracy assessment for MCVA Technique                           

using 50 samples 
 

Reference change Snow Soil Vegetation Shadow Row total

Snow 13 2 - - 15 

Soil 16 19 - - 35 

Vegetation - - - - - 

Shadow - - - - - 

Classified 
change 

 

 

 Column 
Total 

29 21 - - 50 

Overall accuracy = 88%, 

Kappa coefficient = 0.8244 

 
TABLE 7 

 
“From-to” accuracy assessment for CVAPS technique                      

using 50 samples 
 

Reference change Snow Soil Vegetation Shadow Row total

Snow 13 1 - 1 15 

Soil 22 13 - - 35 

Vegetation - - - - - 

Shadow - - - - - 

Classified 
Change 

 

 

 Column 
Total 

35 14 - 1 50 

Overall Accuracy = 92%, 

Kappa Coefficient = 0.8814 

 
 

accuracy assessment. Both CVAPS and MCVA achieved 
equal accuracy but kappa coefficient of CVAPS is much 
better than MCVA. On the other side, ICVA achieved low 
accuracy and low kappa coefficient as compared to 
CVAPS and MCVA. 
 
5. Conclusions 
 
 This paper summarizes different Change Vector 
Analysis (CVA) based change detection techniques, e.g., 
ICVA, MCVA and CVAPS, and evaluated their impact on 
snow covered rugged terrain. MODIS sensor satellite 
dataset has been used in this research work to experiment 
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the effects of different CVA based change detection 
techniques for retrieving more accurate change map 
between two different time instances imageries. 
Furthermore, necessary pre-processing steps such as 
geometric correction, radiometric correction and 
topographic correction for rugged mountain terrain, have 
been implemented to correct the estimated spectral 
reflectance value. 
 
 In this investigational report, it has been concluded 
that Double-window Flexible Pace Search (DFPS) 
technique plays a vital role in Improved Change Vector 
Analysis (ICVA) and Change Vector Analysis Posterior-
probability Space (CVAPS) to detect more accurately the 
LULC changes in western Himalaya. Based on the results 
of this limited study, ICVA has achieved 88% overall 
accuracy (0.76 kappa coefficient), and CVAPS has 
achieved 90% overall accuracy (0.80 kappa coefficient) 
for change imagery. Moreover, ICVA and CVAPS can 
control commission errors up to a great extent using DFPS 
approach. All ICVA, MCVA and CVAPS change 
detection have capability to access multiple satellite 
imagery bands simultaneously in contrast to traditional 
CVA technique that can apply only to single satellite 
imagery band.  
 
 In ICVA technique, change type information is 
extracted by direction cosine of the change vectors 
because the spectral feature difference between any two 
kinds of LULC types on either date are similar to their 
spectral change features from time t1 (6th November, 
2010) to time t2 (8th February, 2011). This process 
overcomes the requirement of ancillary data from another 
date to obtain change type information. However, ICVA 
technique has achieved 78% overall accuracy (0.6808 
kappa coefficient) for “from-to” change. On the other 
hand, MCVA required training samples for extraction of 
feature descriptors, which is based on MLC. This 
technique has achieved 88% overall accuracy (0.8244 
kappa coefficient) for “from-to” change. In CVAPS, the 
direction of the change vector in a posterior probability 
space has a specific physical meaning, and such 
information is easy to be used in change-type 
identification. CVAPS has achieved maximum (92% 
overall accuracy with 0.8814 kappa coefficient) accuracy 
as compared to other two techniques, i.e., ICVA and 
MCVA. Only drawback of CVAPS is that it relies on 
analyst skills in proper selection of training samples 
required for classification of image and threshold value. 
The CVAPS technique provides number of features such 
as less sensitive to topographic effects, describes the 
output in term of overall magnitude of change, direction 
of change, simultaneously processing of multiple satellite 
imagery bands, semi/automatic threshold finding process 
(DFPS), and makes a perfect choice of CVAPS as change 

detection technique for regional climatic change and snow 
avalanche hazard analysis over rugged terrain. It is 
expected that further developments in CVA will provides 
more integrated techniques and robust algorithms for the 
processing of satellite dataset in the area related to LULC 
change detection. 
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