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ABSTRACT. A simple version of implicit nonlinear normal mode initialization is applied to a limited area
one-level primitive equation model over a tropical domain. The model formulation is based on shallow water
equations in spherical co-ordinate and potential enstrophy conserving finite difference scheme is employed. The
model is used for predicting the movement of a typical monsoon depression formed over the Bay of Bengal.
The above scheme is found to be very effective as it requires only three iterations for attaining balance between
the mass and wind fields. However this model is not able to predict the movement of the depression very ac-
curately due to the limitations of such a one-level model.

Key words — Implicit normal mode initialization, Potential enstrophy, Shallow water model, f-term, Helmholtz
equation, Nonlinear balance eguation.

1. Introduction

Numerical weather prediction models based on the
primitive equations generally give two types of solutions,
viz., slow moving meteorologically significant Rossby
waves and fast moving gravity waves. The high fre-
quency gravity wave oscillations are considered as
‘noise” and they arise primarily from the initial imbal-
ances between the wind and mass fields. Initialization
is the process of adjusting the input data to the prediction
model ensuring minimum noise. Several methods have
been proposed to remove unwanted gravity oscillations
including different versions of dynamic initializations
and normal mode initializations.

Machenhauer (1977), Baer and Tribbia (1977) intro-
duced nonlinear Normal Mode Initialization (NMI)
which has become the most widely used initialization
technique for many research as well as operational
forecasts. Briere (1982) formulated NMI for a Limited
Area Model (LAM) on a stereographic projection with
constant Coriolis and map scale factors. Bourke and
McGregor (1983) developed an initialization scheme
where they used variable Coriolis parameter. Juvanon
du Vachat (1986) showed that the normal modes of the
model need not be found explicitly and the same can
be treated as eigenfunction of an elliptic operator.
However, this method is very similar to the second
scheme suggested by Bourke and McGregor (1983).

(1)

Following this, Temperton (1985, 1988) developed a
powerful method called “Implicit Normal Mode Tnitiali-
zation™ (INM1) applicable to both regional and global
models. Lynch (1987) too developed a similar method
suitable for models with semi-Lagrangian integration
schemes.

INMI allows nonlinear normal mode initialization
technique to be applied even when the linear system is
not separable and computing the normal modes is very
complicated. In this case the Coriolis and scale map
factors can be treated as variables and the domain of
integration need not be rectangular. The determi-
nation of the normal modes for a limited area model is
very difficult (Kasahara 1982) and for applying the con-
ventional NMI to a forecast model it is necessary to
compute the modes coefficients explicitly and store them
for further computations. In the case of a high reso-
lution model it takes huge computer memory (Temper-
ton 1989). By using INMI one can avoid such difficul-
ties.

Saha (1983) studied the movement of monsoon de-
pression in a primitive equation barotropic model and
concluded that such a model can predict the movement
of monsoon depressions to a limited degree of accuracy.
Singh and sugi (1986) applied a regional primitive multi-
level model to the prediction experiment of a monsoon
depression. and demonstrated that LAM is quite useful
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Fig. 1. Observed wind and height fields at 560 hPa on 3
July 1979 (12 UTC)

/
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for predicting tropical  disturbances. Recently
Krishnamurtier al. (1990) used a semi-Lagrangian semi-
implicit version of a high resolution regional model to
study the different aspects of monsoon dynamics.

In this experiment we have implemented INMI to a
simple one-level primitive equation limited area model,
This model is integrated for 24 hours to predict the
movement of monsoon depression that formed over the
Bay of Bengal during the period of the summer monsoon
(July 1979). In INMI scheme the Coriolis factor is
treated as a variable. The model is based on shallow
water equations in spherical co-ordinate with potential
enstrophy conserving finite difference scheme.

2. The model

The model is formulated by using shallow water
equations in spherical co-ordinates (Williamson 1976)
and the horizontal discretization of the model equations
are based on Sadourny's (1975) potential enstrophy
conserving scheme. The staggering of the variables
are done over the Arakawa-C grid. The model equations
can be written in semi-discretized form for a wunit
sphere (a=1) as follows {
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Observed wind and height figlds at 500 hPa on 6
July 1979 (12 UTC)

Fig 2.

where. u and v are the velocity components of the wind
along zonal and meridional directions respectively.
4 is the geopotential field and A, # are longitude and
1atitudc respectively, f is the Coriolis parameter and 1
is the time. Now the other variables in the above system

:\ __H
are defined as p = cos 0, K = (12v)/2, ¢y=¢—P.

i _A
where. @ is the mean geopotential V=¢ v, U — 4 u,
and the potential vorticity = is defined as:
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The independent variables A and @ are discretized as
A=iAd, i=b....m, 8=j/ 6, j—=1....n where, m
and n are the number of grid along latitude and longitude.
The operator § denotes central difference quotient and

which is defined as follows

For any variable F,

" ; Fitale — Fisle . . Fii1a—Fpye
b;\ (F) = X ; SR(F) ==
The over bars appearing in Egns. (1)+(3) denote

average quantities of the variables indicated with res-
pect to A or 6 which are defined as follows :

A . o :
F (Fitqss -~ Fia)/2s F o= (Fitae +Ean)f2
= M . ; ;
and F denotes the successive averaging with res-
pect to A and &, and this operation is commutative

A9
(F —=F ).
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3. Domain, data and houndary conditions of the model

The grid point data of geopotential and wind compo-
nents have been extracted from FGGE-IIIb data sets
of European Centre for Medium Range Weather Fore-
cast (ECMRWF) available in 1.875° Lat./Long. grid
points. The data of a typical monsoon depression,
5 July 1979 has been chosen as the basic input of this
study. In order to obtain the initial balanced data
of the model, geopotential field is computed from the
nonlinear balance equation (Krishnamurti 1969).

L2 (e @
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where, ¢ the stream function can be calculated from
the vorticity field  through the relation 72y = {, 72
is the horizontal Laplacian operator in spherical co-ordi-
nate (unit sphere), J denotes the Jacobian, f'is the Corio-
lis parameter and £ is the angular velocity of the earth.
The boundary conditions of the Eqn. (4) are the
observed values of the geopotential at the boundaries
of the domain.

Vig=/7+ o

The boundary conditions for solving the model equa-
tions are taken as follows (Krishnamurti er /. 1990). The
prognostic variables u, v and ¢ are held fixed with time
along the boundary. In order to avoid the wave re-
flection caused by such a boundary condition a Lap-
lacian type smoother is applied near the boundary. A
similar smoothing is applied over the entire domain for
which the value of the smoothing coefficient increases
from the centre to the boundaries of the domain.

The domain of integration is from equator to 31.875°N
and 65.625°E to 108.75°E, and consists of 2418
grid points. The domain is selected in such a manner
that the depression comes almost at the centre so that
the influence of the boundary onthe depression will be
reduced.

4. Integration of the model

For this numerical experiment we assume A A= A#f
=1.875° and the time step /.7=4 minutes and the
model is integrated for 24 hours. The integration
begins with a “smooth start” consisting of a forward
time step of length A 1/2, followed by a centred step of
length At before using regular leapfrog (central) time
steps. In order to avoid the computational mode
associated with leapfrog scheme a Robert time filter is
used as follows :

For any time dependent variable F= F(t), F,=F,} y
(Fi+1—2F~-F,—;) where, t—1, t, -1 indicate different
time levels and the coefficient y is taken as 0,05,

5. Implicit nonlinear normal mode initialization

The shallow water equations in spherical coordinutes
can be expressed in vorticity and divergence form as
shown below :

(18 ;
T —2 0 smBD-f-N; (5)
D

gT =202 sin 0 [—72%+Np (6)
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where, D is the divergence, { is the vertical component
of wvorticity Nz Np and Ng are the terms
containing nonlinear and remaining linear terms

(B-terms). For simplicity the B-terms are omitted in the
linear system, though these terms are important in
determining the fast modes and are related to the evo-
lution of the slow modes. Now the linearized system
can be expressed in matrix form.

£ {0 ==f 0 4 ‘I
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where, ®=gH, Histhe mean depth of the fluid and g
is the gravity.

Temperton (1985, 1988) and Juvanon du Vachat
(1986) have developed an initialization method equi-
valent to the normal mode method. They decomposed
the state vector X=({, D, ¢)7 into slow (Rossby)
and fast (Gravity) orthogonal components such that
Xo=Xp+Xg, where, the suffixes O, R and G
denote “observed” (total), Rossby and gravity terms
respectively. The vectors Xp=({y, Dy, 07,
Xz=({n, Dg: ¢r)T and Xgp=({p, Dp, ¢5)T where
the superscript T indicates the transpose of the vector.
Similarly the time derivative (.) of the fields can be
expressed as X,=Xp+X;. Temperton (1988) derived
INMI using the Machenhauer’s (1977) algorithm, i.e.,
at time 7=0, ).(g=0 and considering the following
two properties of the normal modes :

(i) The slow modes are stationary and non-diver-
gent, i.e.,

Vip = {pfi; Dp=0 ©)

(ii) The fast modes have zero linearized potential
vorticity, i.e.,

® i =1do (10)
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Now the Eqn. (4.25) of Temperton (1988) in this case
takes the form

(0 £ 0 (a8 )
- 0 J |‘ D: |tD)¢, ‘ (1)
Lo @ o0 Lag ) L(#)g

where, A{, /D and /. ¢ are the quantities to be esti-
mated in each iteration of INMI and added to the initial
fields.
the model one time step forward.
equation of Egn. (11) we have

{, D, ¢ are the tendency obtained by running
From the second

—~f AL+ V2 (A) = Dg (12)
Since the slow modes are stationary by property (i) we
have
(D)o = (D). (D) = 0
and by the property (i)
oo Lo
- @ (13)
Therefore Eqn. (12) takes the form
S i , -
( Vi—'g v = (D)o (14)
To find /.D we have to consider the third equation of
Eqn. (11)
ie, @ AD=(¢)g (15)

Now by using the property (ii) and following the corres-
ponding steps of Temperton (1988) we obtain the equa-
tion for ({b)c-,- as given below :

-] f-)
(v 5

6. Computation and convergence of INMI

) (Bo =V (Bo—S Do (16)

In the computational process we have to solve two
Helmholtz  equations [Eqns. (14) and (16)]. The
boundary conditions should be selected in such a way
that the unwanted gravity modes should be suppressed.
Here the boundary of the domain is kept time fixed
during initialization, in other words the increments or
decrements of the dependent variables Au, /v and
/¢ are all zero along the boundary, ie., Ax=A4 =
A¢ = 0, where, .x and /. ¢ are the corresponding
velocity potential and stream function respectively-
This set can form a consistent set of boundary condition

for initialization (Juvanon du Vachat 1988).
initialization the time filtering is switched off.

During

The convergence of iterative steps is monitored
through the quantity “BAL™ which measures the
balance in the adjusted gravity modes. Here, BAL is
defined (Briere 1982, Temperton 1988) as follows :

((u'
g

m n

BAL — Z Z [ (42 +

i=1j=lI

o ) ] cos 0
i @
(17)

As INMI scheme converges BAL approaches zero. In
this study we used 7 iterations for INMI but after 3
iterations the scheme seems to have converged within
computational tolerance.

The computational procedure INMI can be summariz-
€d step by step (Temperton 1988) as follows :

Step (1) — Integrate the model for one time step for-
ward and obtain the observed tendencies ( {)o, (D)os ($)o-

Step (2) — Solve the Helmholtz Eqns. (14) and (16)
for /. ¢ and (96)0 respectively with Dirichlet boundary
condition.

Step (3)— Calculate /D and /.{ using the equations

AD = 5L (18)

af = 157 (19)

Step (4)—-Calculate the improvements of the initial
fields Aw and /v for any iteration by solving (i.e.,
reconstruct the wmd fields from known values of new
vorticity and divergence fields)

V2 (Ax) = AD (20)
V2 (AY) = AL (21)

and using the equations

o ( 2(AY)
Ly = —p —— -+

, 1 [ a(ad) 8 (Ax)
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Fig. 6(b). Prediction without initialization at 500 hPaon6 \
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Fig. 8. Time-trace of divergence (I 107% 7Y at

the grid point (15°N, 86.25°E). solid line indicates
prediction without INMI and dotted line indicates
prediction with INMI
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and dotted line indicates prediction with INMI
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Step (5)— For any iterative step ‘K" the initialized
fields are given by

“IJ.‘# = yi1) 1. Ta

R U AN

S8 = D 4 Ad,
In each iteration the improvements of wind fields have
to be estimated accurately. The method as suggested
by Lynch (1988) has been employed and the integration
of the Egns. (20) and (21) are performed using the stag-
gered Arakawa-C grid. Since the model variables are
computed on the same grid it is very desirable to adopt
this method.

The BAL can be determined after step (3) fromthe
Egn. (17). The entire cycle is repeated till the BAL is
sufficiently small. Al the elliptic equations are solved
by using SOR method.

7. Results and discussion

The main objective of this work is to implement a
simple version of INMI to a tropical limited area model
and study its effect. The INMIscheme has been tested
to a barotropic LAM as described in sections 2 to 4.
The mean depth of the fluid at 500 hPa is taken as
5700 m and the time step for integration as well as
INMI is

Figs. 1 and 2 show the observed fields at 12 UTC
(5July 1979) and 12 UTC (6 July 1979) respectively. The
centre of depression over the Bay of Bengal as sezn in
Fig. 1 lies at (21.5°N, 91.0°E) while after 24 hours
the depression has moved to (20.0°N, 90.0°E). Fig. 3
shows the initialized input of the model, in this case the
position of the depression remained stationary while a
little change observed in the height field (6 m).  Fig. 4
shows the predicted field of 12 UTC (6 July) where the
centre of depression has moved (20.0°N, 88.5°E), this
shows that predicted field moved about .57 west-
wards more than the observed (Fig. 2).

.t = 4 minutes.

Fig. 5 shows the difference fields, i.e., initialized minus
observed fields. The height fields are smooth which
attain a maximum near by the centre of the domain.
Prediction is made for 12 hours with and without INM]
and the results are shown in Figs 6 (a & b) (00 UTC,
6 July 1979) respectively. In the initialized case the
centre of the depression moved to (20.0°N, 90.5°E)
after 12 hours but in the uninitialized case the centre of
depression moved to (17.5°N, 86.0°E). The spurious
prediction of the centre of the depression in the unini-
tialized case is mainly due tothe influence of gravity

modes (noise).

The Fig.}7 shows the plots of height field at the grid
point (15°N, 86.25°E) nearer to the centre of the
domain, at each hour of prediction with (dotted line)
and without (solid line) INMI. A similar graph is
given forthe divergence ficld at the same grid point
(Fig. 8). These graphs clearly show that the initialized
data is free from spurious gravity oscillation to a great
extent. The experiment isrepeated for different sets
initialized data obtained by iterating INMI schemes
more than 3 times, all these cases the predictions are
identical and initialized plots of Figs. 7 and 8 are in-
distinguishably same. This shows that the BAL is
practically converged after 3 iterations. The conver-
gence of INMI scheme is shown in Fig. 9 (logarithmic
curve) for seven iterations. The BAL (non-dimen-
sional) as shown in Fig. 9 is reduced by 3 orders of
magnitude after 3 iterations.

The initialization was performed using the basic
geopotential data extracted from FGGE-IIIb asinput.
In this case also the results are the same as the case of
geopotential data obtained through nonlinear balance
equation (Eqn. 4). This confirms the ability of the
INMI scheme to adjust the mass and wind fields of the
initial (observed) data,

8. Conclusions

A simple version of implicit nonlinear normal mode
initialization has been implemented to a tropical one-
level primitive equation model, for predicting the move-
ment of monsoon depression. This initialization pro-
cedure was found to be very suitable to suppress unwant=
ed gravity wave oscillation for a one-level tropical LAM.
INMI is computationally economical as it does not
require explicit knowledge of normal mode coefficients
and can be incorporated to a multi-level baroclinic
model. Inclusion of all the g-terms in the linearized
system could have improved the results at the cost of
solving more complicated Helmholtz equations (Tem-
perton 1989). '

In spite of the limitations of the one-level barotropic
primitive equation model and the fact that the monsoon
depression is a baroclinic system, this study has been
successful in predicting the depression movement.
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