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सार — इस शोध पत्र म�, एक ग�तक�य प्रणाल� म� फो�स�ग टमर् द्वारा प्रे�रत अचानक प�रवतर्न पर प्रारं�भक सैद्धां�तक शोध क े

बार ेम� बताया गया है। लोर�ज समीकरण प्र�ेप वक्र को अनुसंधान के रूप म� लेत ेहुए,�भन्न-�भन्न पल्स फो�स�ग शब्द� क ेप्र�ेप वक्र 

प्र�त�क्रया का अध्ययन अंतर समीकरण� और संख्यात्मक तर�क� क� िस्थरता प्रमेय क ेआधार पर �कया गया है। एक ग�तक�य 

प्रणाल� क ेप�रप्रे�य स,े अचानक प�रवतर्न को आंत�रक या बाह्य रूप म� वग�कृत �कया जा सकता है। पहल ेवाला एट्रैक्टर अंदर के 
प्र�पे पथ क ेआत्म समायोजन को दशार्ता ह,ै जब�क बाद वाला एट्रैक्टर स े�वचलन म� प्र�ेप पथ क े�व�चत्र व्यवहार को दशार्ता है। यह 

वग�करण अचानक वायुमंडल�य प�रवतर्न क� �व�भन्न अ�भव्यिक्तय� क ेभौ�तक तंत्र को समझन ेम� मदद करता है। पल्स फ़ो�स�ग 

टमर् क� �व�भन्न तीव्रताओ ंऔर अव�धय� क े�लए, िजन्ह� क्रमशः एक आयताकार तरंग के प�रमाण और चौड़ाई म� सरल�कृत �कया 
जाता है, इसस ेसंबं�धत अचानक प�रवतर्न का मात्रात्मक रूप से �वश्लेषण �कया गया है। यह स्पष्ट हुआ ह ै�क पल्स फो�स�ग टमर् का 
आयाम िजतना बड़ा होगा, एट्रैक्टर स े प्र�ेप पथ का �वचलन उतना ह� अ�धक होगा और अचानक प�रवतर्न उतना ह� अ�धक  

�वनाशकार� होगा। इसके अलावा, पल्स फो�स�ग टमर् क� चौड़ाई िजतनी अ�धक होगी, उतनी ह� लंबी अव�ध िजसम� प्र�ेप पथए ट्रैक्टर 

से भटक जाएगा। अंत म�, दो सरल ले�कन साथर्क रै�खक संबंध का पता चला ह�: पहला पल्स फो�स�ग टमर् क ेआयाम और एट्रैक्टर स े

प्र�ेप पथ �वचलन क� दूर� क ेबीच, और दूसरा पल्स फो�स�ग टमर् क� चौड़ाई और उस अव�ध के बीच जब प्र�ेप पथ एट्रैक्टरस ेबाहर 

रहता है। य ेसंबंध दशार्त ेह�  �क अरैखीय प्रणाल� म� कुछ रै�खक गुण होत ेह�। 
 
 
ABSTRACT. In this paper, preliminary theoretical research on abrupt change induced by the forcing term in a 

dynamical system is described. Taking the Lorenz equation trajectory as the research object, the trajectory response to 
different pulse forcing terms is studied based on the stability theorem of differential equations and numerical methods. 
From the perspective of a dynamical system, abrupt changecan be classified as internal or external. The former reflect 
strajectory self-adjustment inside the attractor, whereasthe latter represents the bizarre behavior of the trajectory in its 
deviation from the attractor. This classification helps in understanding the physical mechanisms of different 
manifestations of atmospheric abrupt change. For different intensities and durations of the pulse forcing term, which are 
simplified to the magnitude and width of a rectangular wave, respectively, the corresponding abrupt change is analyzed 
quantitatively. It is established that the larger the amplitude of the pulse forcing term, the greater the deviation of the 
trajectory from the attractor and the more violent the abrupt change. Moreover, the greater the width of the pulse forcing 
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term, the longer the duration over which the trajectory deviates from the attractor. Finally, two simple but meaningful 
linear relationships are obtained : one between the amplitude of the pulse forcing term and the distance of trajectory 
deviation from the attractor and the otherbetween the width of the pulse forcing term and the duration over which the 
trajectory dwells outside of the attractor. These relationships indicate that nonlinear systems have some linear properties. 

 

Key words  – Abrupt change classification, Dynamical system, Forcing term, Stability analysis, Lorenz equation. 
 
 
 
1.  Introduction 
 

Abrupt change is a phenomenon common both in 
nature and in human production activities, which can be 
manifested as either gradual or jumping change. The 
occurrence of earthquakes, biological variability and 
human mood swings are familiar examples of abrupt 
change. 

 
Catastrophe theory, which is a part of chaos theory, 

is able to explain abrupt change as a jumping change that 
can cause qualitative change when using a mathematical 
model associated with chaos theory. The establishment of 
catastrophe theory can be traced back to 1953 when 
Hadamard solved the Cauchy problem of the Laplace 
equation. Having shown that the differential equation is 
highly sensitive to the initial value, which means the 
solution is unstable, he constructed a famous counter 
example (Daniell, 1953). In 1963, Lorenz proposed an 
equation that has clear physical meaning, which indicated 
that instability is not simply an abstract mathematical 
theory but that it also exists in nature and that the feature 
of such an unstable system is the uncertainty of trajectory 
motion (Lorenz, 1963). In 1974 French mathematician 
Thom undertook systematic research that laid the 
foundation of catastrophe theory (Thom, 1974). 
Subsequently, British mathematician Zeeman developed 
and improved the basic catastrophe theory (Zeeman, 
1975). This theory has been used widely in many different 
subject areas such as genetic mutation in biology, 
adjustment of industrial structures in economics and 
climatic change in atmospheric science. All applications 
of this theory hope to exploit its capability of forecasting 
change in a complex and disordered system. 

 
The interest of the atmospheric science community 

in abrupt change stems from the abrupt changes observed 
in the atmosphere that are jumping features of initial 
empirical abrupt change (Krishnamurti and Ramanathan, 
1979; Lanzante, 1983; Shinoda, et al., 1986 and Mcbride, 
1987). Climatic abrupt change and its associated 
theoretical research represent a new field of modern 
climatology that has received considerable attention from 
researchers around the word (Charney et al., 1979; Fu              
et al., 2003; Cavalcante et al., 2013) and for which 
various abrupt change types and detection methods have 
been proposed. Heuristic segmentation algorithm and 
approximate entropyare used to detect the abrupt changes 

of nonlinear time series (Feng et al., 2005; Wang and 
Zhang, 2008; Gong et al., 2017). The prominent features 
of atmospheric motion is nonlinearity, nonlinear method 
can be used to detect the abrupt climate change 
from the point of view of dynamic (Liu et al., 2015; 
Huang et al., 1993). For abrupt changes of yearly air 
temperature series in China, the Northern Hemisphere and 
the Globe are detected with a statistical test, It turns out 
that an abrupt change from a warm period to a cold one of 
the temperature in China occurred during the end of the 
1940s and the beginning of 1950s and two abrupt changes 
of the temperature in the Northern Hemisphere and the 
Globe also happened both in the 1890s and the 1920s 
(Wei and Cao, 1995; Zheng et al., 2012). 

 
Based on the station observation data from 1961 to 

2006 in China, the trends and time points of abrupt change 
for surface air temperature (SAT) and precipitation are 
analyzed (Ding and Zhang, 2008). On behalf ofthe 
properties of operators of the equations, abrupt changes 
are also studied in the infinite dimensional Hilbert space 
(Li et al., 1996; Dingand, 2008). 

 
In 1992, Fu, et al., proposed a universal definition of 

climatic abrupt change: “the abrupt change is the jumpy 
transformation phenomenon from one steady state (the 
stable and sustainable change trend) to another steady 
state (the stable and sustainable change trend), the 
performance is a sharp change from one statistical feature 
to another statistical feature in space and time” (Fu and 
Wang, 1992). 

 
Atmospheric motion, which can be described by 

nonlinear fluid dynamics equations, reflects an unstable 
system that is sensitive to the initial field and parameters. 
As with the Lorenz equation, the trajectory can hop in a 
disorderly manner between two or more equilibrium 
states, which can lead to statistically sharp changes in time 
series of meteorological elements. Thus, climatic abrupt 
change can be considered a manifestation of the instability 
of the dynamics equations of the atmosphere, which is a 
reflection of the internal characteristics of atmosphere 
motion. Therefore, we can assess abrupt change based on 
the trajectory change of the dynamics equations of the 
atmosphere. In other words, if the trajectory moves within 
the area of one equilibrium state, there will be no abrupt 
change. Conversely, a trajectory jumping between 
different  equilibrium  states  or  exhibiting the behavior of 



 
 

DA et al. : ABRUPT CHANGE BASED ON THE LORENZ EQUATION 

991 

 
 

Fig. 1. Stable and unstable regions of the Lorenz equation [3] 
 
 
 
moving away from the attractor can be regarded as the 
occurrence of abrupt change (Da et al., 2014; Shen et al., 
2018). In this paper, taking the Lorenz equation as the 
research object, the trajectory response to different forcing 
terms is studied to elucidate a dynamics-based explanation 
for the mechanism of abrupt change, which could 
contribute to the study of climate change. 

 
2. Theoretical foundation 

 
The Lorenz system comprises the following set of 

nonlinear equations: 
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It has two equilibrium points, i.e., 

( )27,26,26 −−L  and ( )27,26,26R , which are 
labeled left and right, respectively. Reference [3] 
describes the delineation of stable and unstable regions of 
the Lorenz equation. In Fig. 1, the region between 
surfaces z1 and z2, which is marked as P

RU , is the unstable 
region of the right equilibrium points; theregion above z1 
or below z2, which is marked as P

RU , is the stable region 
of the right equilibrium points.Therefore, z1 and z2 
representthe boundary surfaces of the stable and unstable 
regions of the right equilibrium points (and similarly for 
z3 and z4 for the left equilibrium points). In the stable 
region, the trajectorycannotmove away from the 
equilibrium point region; conversely, in the unstable 
region, the trajectory will move away from this 
equilibrium point to another (Da et al., 2014). 

 
 

Fig. 2. Graph of pulse function δ(t) 
 

 
3. Numerical experiment 

 
3.1. Abrupt change induced by a disturbance 

forcing term 
 
A disturbance that is a pulse function )(tδ , which 

has the form of a rectangular wave, can be expressed as 
follows: 

 



 ≤≤−

=
other0

5.1150
)(

t
tδ                                           (2) 

 
and depicted as in Fig. 2. 
 
Taking the rectangular wave expressed in Eqn. (2) as 

a forcing term and adding it to the right-hand side of the 
first equation of the Lorenz equations [Eqn. (1)], we 
obtain a Lorenz system with apulse forcing term: 
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                                         (3) 

 
By taking the initial field as (1,2,3), which can be 

random,numerical solutions of dynamical systems (1) and 
(3) can be solved. Using the four-rank Runge-
Kuttaalgorithms with an incremental step of 0.01 over the 
integral interval [0,20] and a truncation error of 0.013, 
surfaces z1 and z2 were found to have the following form 
ofanalytic expression (for further details, see Ref. [3]): 

 
F1 (x, y, z)  =  ‒13.8546 (0.8450x ‒0.4380y‒ 

0.3322z + 5.5159)2 +0.0940 
(‒0.3313x + 0.1718y ‒0.8529z + 
24.3817)2 + 0.0940 (0.3650x + 
1.0534y ‒0.0880z ‒9.6587)2                                                 

                                                                               (4a)                               

https://fanyi.baidu.com/#en/zh/sudden%20change�
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Figs. 3(a&b). Trajectory of the Lorenz equation: (a) with pulse forcing and (b) without pulse forcing 
 
 

 
Similarly, surfaces z3 and z4 have the following 

form of analytic expression: 
 
 
F2 (x, y, z)  =  ‒13.8546 (0.8450x ‒ 0.4380y + 

0.3322z ‒ 5.5159)2 + 0.0940 
(‒0.3313x + 0.1718y + 0.8529z‒ 
24.3817)2 + 0.0940 (0.3650x + 
1.0534y + 0.0880z + 9.6587)2 

(4b) 

 
  
Based on the above, numerical experiments can 

produce the trajectories of the Lorenz equation presented 
in Fig. 3. 

 
The trajectory of the Lorenz equation with pulse 

forcing, i.e., Eqn. (3), is shown in Fig. 3(a) as a magenta 
line (with local highlighting in blue), together with 
surfaces z1 and z2 shown in translucent blue and surfaces 
z3 and z4 depicted in translucent cyan. In the lower-right 
corner, an enlarged localized graph is presented. 
Thetrajectory of the Lorenz equation without pulse 
forcing, i.e., Eqn. (1), is shown in Fig. 3(b) using the same 
color scheme. A markedbulge (blue)is evident in the 
trajectory shown in Fig. 3(a), whereas there is no such 
anomaly in Fig. 3(b). The bulge shown in Fig. 3(a) starts 
at   t = 1.0 and ends at t = 1.75, i.e., the duration is 0.75 
time units. Comparison of Eqns. (1) and (3), with 
reference to Figs. 3(a&b), reveals that the bulge is induced 
by the pulse function )(tδ and that the start and end times 
are also related to the pulse function but with a slight lag. 
Moreover, it can be seen that the trajectory density differs 
between Figs. 3(a&b). 

In Ref. [3], an abrupt change is defined as the 
process of a dynamic system jump of the trajectory from 
one equilibrium state to another. This phenomenon is seen 
as the adjustment of the trajectory inside the attractor; the 
attractor of Lorenz system (1) is the “butterfly's wings” 
depicted in Fig. 3. As shown in Fig. 3(a), when the forcing 
term [ ])(tδ is added to dynamic system (1) [i.e., Eqn. (3)], 
the corresponding trajectory has a bulge. This 
characteristic is markedly different from the jumping 
between different equilibrium point regions; it reflects the 
movement of the trajectory away from the attractor, which 
has a different dynamic mechanism. Jumping between 
different equilibrium point regions represents self-
adjustment of the trajectory within the attractor, whereas 
movement of the trajectory away from the attractor 
iscaused by the forcing term. To distinguish them, we call 
the former an internal abrupt change and the latter an 
external abrupt change. Based on the above, we can 
conclude that the pulse forcing term can lead to the 
occurrence of external abrupt change. 

 
3.2. Dwell time changeand pulse forcing term 
 
Comparison of the sparseness of the trajectory in the 

equilibrium point regions of Figs. 3(a&b) reveals the 
trajectory is sparse in the left equilibrium region of 
Fig. 3(a) but dense in the left equilibrium region. This 
means the pulse forcing term can also lead to change in 
the dwell time of the trajectory in the equilibrium point 
regions. For this reason, quantitative study on the dwell 
time of the trajectory in different equilibrium point 
regions is interesting. 

 
Dwell time of the trajectory in Fig. 3(a) : time in the 

left equilibrium point region: [0, 0.7], [11.19, 11.8], [12.8,  

https://fanyi.baidu.com/#en/zh/sudden%20change�
https://fanyi.baidu.com/#en/zh/sudden%20change�
https://fanyi.baidu.com/#en/zh/sudden%20change�
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Figs. 4(a&b). Dwell time of the trajectory (a) with pulse forcing and (b) without pulse forcing 
 

 

 
 

Figs. 5(a&b). Trajectory of the Lorenz equation: (a) with pulse forcing and (b) without pulse forcing 
 
 
13.5], [15.1, 16.7], [17.5, 20.0]; time in the right 
equilibrium point region : [0.7, 1.0], [1.75, 11.19], [11.8, 
12.8], [13.5, 15.1], [16.7, 17.5]; time outside the                 
attractor [1.0, 1.75]. Dwell time of the trajectory in 
Fig. 3(b) : time in the left equilibrium point                          
region: [0, 0.7], [10.2, 12.4], [14.0, 15.6],                               
[16.4, 20.0]; time in the right equilibrium                               
point region : [0.7, 10.2], [12.4, 14.0],                                 
[15.6, 16.4]. For an intuitive visualization, please see 
Figs. 4(a&b). 

 
In Figs. 4(a&b), the length of the dark (light) gray 

rectangular block represents the dwell timeof the 
trajectory in the left (right) equilibrium point region (start 

and end times are marked on opposite sides) andthe 
orange rectangular block represents the time during which 
the trajectory is outside the attractor when the external 
abrupt change occurs. Comparison of the dwell times in 
the different equilibrium point regions reveals that the 
pulse forcing term not only induces external abrupt 
change but can also change the time at which internal 
abrupt change occurs. 

 
3.3. Response of external abrupt change to 

magnitude of pulse forcing term 
 
To explore the characteristics of the externalabrupt 

change, we consider the magnitude of the pulse forcing

https://fanyi.baidu.com/#en/zh/sudden%20change�
https://fanyi.baidu.com/#en/zh/sudden%20change�
https://fanyi.baidu.com/#en/zh/sudden%20change�
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Figs. 6(a-h). Trajectory of the Lorenz equation with pulse amplitude: (a) 4.0, (b), 5.0, (c) 6.0, (d), 7.0, (e) 
8.0, (f) 9.0, (g) 10.0 and (h) 11.0 

 
 
 
 
term to be 0.1. Thus, the pulse function )(tδ has the 
following form: 

 



 ≤≤−

=
other0

5.111.0
)(

t
tδ                                           (5) 

 
Using the same initial field and calculation method 

as described in the previous section, numerical solutions 
of dynamical systems (3) and (1) can be solved but by 
replacing pulse function (2) with Eqn. (5). The numerical 
solutions are shown in Fig. 5 using the same color scheme 
as in Fig. 3. It can be seen that the bulge evident in 
Fig. 3(a) does not appear prominently in Fig. 5(a). It 
means that pulse function (5) cannot induce the external 
abrupt change depicted in Fig. 3(a), i.e., not all pulse 
functions will induce externalabrupt change. Comparison 
ofthe sparseness of the trajectory shown inside the 
attractor in Figs. 5(a&b) reveals that they are different. It 
indicates that although pulse function (5) cannot induce an 
external abrupt change, it can change the time at which 
internal abrupt changeoccurs. 

 
The magnitudes of forcing terms (2) and (5) are 

different and therefore the occurrence of the external 
abrupt change might be related to the magnitude of the 
pulse. To investigate the threshold at which pulse 
amplitude can trigger external abrupt change, we analyzed 
the relationship between external abrupt change and pulse 
amplitude systematically. For the analysis, pulse 
amplitude was taken as 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 and 
11.0 and the corresponding local trajectory is shown in 

Figs. 6(a-h), respectively. In Figs. 6(a-c), the trajectory is 
inside the attractor, i.e., there is no bulge on the trajectory. 
In Fig. 6(d), there is a small bulge but it is not obvious. In 
Fig. 6(e), the bulge is slightly more evident and it 
becomes increasingly pronounced at the pulse amplitude 
increases from 9.0 to 11.0 [Figs. 6(f-h), respectively]. 
Thus, as pulse amplitude increases, the bulge grows from 
nothing to something and from small to large. It means 
that any pulse term will inevitably induce abrupt change, 
either internal or external. If the pulse magnitude is small, 
internal abrupt change will be induced. Only when the 
pulse amplitude is sufficiently large will external abrupt 
change be triggered. It means that the occurrence of 
external abrupt change has a certain threshold in terms of 
pulse amplitude; only if the threshold is exceeded will 
external abrupt change occur. 

 
The forcing term can be the force density function, 

which is related to momentum in differential equation 
theory. Of course, in the thermodynamic equation, it can 
also be the source or sink function. From this perspective, 
external abrupt change requires that the pulse term be 
sufficiently large, i.e., the momentum must be sufficient to 
leverage internal system changes and induce external 
abrupt change. This could have implications for abrupt 
change within the atmospheric system. In the atmospheric 
system, only external atmospheric forcing is sufficiently 
large to promote external abrupt change. If the forcing is 
too small, external abrupt change cannot be induced; 
however, the time at which internal abrupt change occurs 
will be changed. 

https://fanyi.baidu.com/#en/zh/sudden%20change�
https://fanyi.baidu.com/#en/zh/sudden%20change�
https://fanyi.baidu.com/#en/zh/sudden%20change�
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Figs. 7(a-e). Amplitude of pulse function δ(t) (upper row): (a) 50, (b) 100, (c) 200, (d) 300 and (e) 500 
and local trajectory of the Lorenz equation (lower row) 

 
 

 
 

Figs.8(a-h). Trajectory of the Lorenz equation with pulse width: (a) 0.001, (b) 0.005, (c) 0.01, (d) 0.02, 
(e) 0.03, (f) 0.04, (g) 0.05 and (h) 0.06 

 

 
 
Numerical solutions of the dynamic systems with 

pulse amplitudes of 50.0, 100.0, 200.0, 300.0 and 500.0 
[Eqn. (2)] are depicted in Fig. 7. In this figure, the panels 
in the upper (lower) row show the pulse function )(tδ
(corresponding local trajectory). The lower panels show a 
green curve that represents the time during the interval [1, 
1.75], local surfaces z1, z2, z3 and z4 and a black plane 
that represents x = −12.4815, i.e., the furthest positionin 
the x-axis direction that the trajectory can reach when            
t = 1.5. In this instance, the black plane can partially 
characterize the extent of the external abrupt change. 
Obviously, the further the trajectory reaches, the more 
severe the external abrupt changewill be. When the pulse 

amplitude is 100 [Fig. 7(b)], the black plane is positioned 
at x = −15.7056 and t = 1.46. The position of the plane and 
the time in Figs. 7(c-e) are x = −23.6811, t = 1.38;               
x = −32.7, t = 1.5; and x = −51.5078, t = 1.49, 
respectively. It can be seen that the larger the pulse 
amplitude, the greater the deviation of the trajectory from 
the attractor and the more severe the external abrupt 
change. Irrespective of the magnitude of the deviation of 
the trajectory from the attractor, the time taken to move 
from the attractor to the furthest point is approximately 
1.5 units and the time taken to return to the attractor is 
approximately 0.25 units. In terms of trajectory length, it 
can be seen that as pulse amplitude increases, the
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Figs. 9(a-h). Width of pulse function  (upper row): (a)0.1, (b) 0.4, (c) 4.0, (d) 9.0 and (e) 19.0 and local 
trajectory of the Lorenz equation (lower row) 

 
 
 
 
trajectory length increases, which causes the speed to 
increase. It can also be seen that the duration of trajectory 
deviation from the attractor remains at approximately 1.75 
time units, which means pulse amplitude affects the 
degree of external abrupt change but not the duration. 
Each of the trajectories shown in Figs. 7(c-e) presents a 
spiral structure when moving from the attractor to the 
furthest point and a quasilinear structure when returning. 

 
3.4. Response of external abrupt change to width of 

pulse forcing term 
 
To analyze the impact of the width of the pulse 

forcing term on external abrupt change, pulse width was 
taken as 0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05 and 0.06 
and the corresponding local trajectory is shown in 
Figs. 8(a-h), similar to Fig. 6. A faint bulge can be seen 
when the pulse width is 0.02 [Fig. 8(d)] and the size of the 
bulge increases gradually with increasing pulse width 
[Figs. 8(e-h)]. Similar to Fig. 6, it can be seen that as the 
pulse width increases, the bulge grows from nothing to 
something and from small to large. 

 
Taking the width of the forcing term as 0.1, 0.4, 4.0, 

9.0 and 19.0, numerical solutions of the dynamical 
systems are illustrated in Fig. 9. The panels in the upper 
row of the figure depict the pulse function )(tδ and the 
lower panels present the local trajectory and the local 
surfaces z1, z2, z3 and z4, as in Fig. 7. In Fig. 9(a) (pulse 
width: 0.1), the local trajectory (blue line) jumps out of 
the attractor at t = 1.0, which is when the external abrupt 

change begins. At t = 1.28, the trajectory jumps back into 
the attractor and the external abrupt change ends; the 
dwell time outside the attractor is 0.28 time units. The 
black plane (x = −10.5420) is the furthest position that the 
trajectory can reach in the x-axis direction, which occurs 
when t = 1.09. For a pulse width of 0.4, the dwell time of 
the trajectory outside the attractor is [1, 1.75] and when            
t = 1.5, the furthest position that the trajectory can reach is 
the black plane at x = −12.4815 [ Fig. 9(b)]. For the 
remaining examples of pulse width, i.e., 4.0, 9.0 and 19.0, 
the time interval is [1.0, 5.28], [1.0, 10.25] and [1.0, 
20.25]; the black plane is at x = −12.4815, x = −12.4815  
and x = −12.4815; the time t = 1.5, t = 1.5 and t = 1.5; and 
the dwell time outside the attractor is 4.28, 9.25 and 19.25, 
respectively [Figs. 9(c-e)]. It can be seen that the larger 
the pulse width, the longer the trajectory deviates from the 
attractor and the longer the external abrupt change lasts; 
however, the furthest position that the trajectory can reach 
remains largely unchanged. Therefore, the dwell time 
outside the attractor is determined by the pulse width, 
whereas the furthest position that the trajectory can reach 
is controlled by the pulse amplitude. 

 
3.5. Linear relationship in nonlinear systems 
 
Taking the magnitude of the forcing term as the x-

axis and the furthest position that the trajectory reaches as 
the  y-axis, the data from Fig. 7 [i.e., (50, −12.4815), (100, 
−15.7056), (200, −23.6811), (300, −32.7) and (500, 
−51.5078)] are plotted as blue stars in Fig. 10(a). The red 
fitting line suggests a strong linear relationship between 

https://fanyi.baidu.com/#en/zh/sudden%20change�
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Figs. 10(a&b). Linear relationship in nonlinear systems: (a) pulse magnitude and furthest position and 
(b) pulse width and dwell time outside the attractor 

 
 
 
the pulse amplitude and the furthest position that the 
trajectory can reach; such a linear relationship in a 
nonlinear system is rare. 

 
Taking the width of the forcing term as the x-axis 

and the dwell time of the trajectory outside the attractor as 
the y-axis, the data from Fig. 9 [i.e., (0.1, 0.28), (0.4, 
0.75), (4, 4.28), (9, 9.28) and (19, 19.25)] are plotted as 
blue stars in Fig. 10(b). Again, the red fitting line indicates 
astrong linear relationship between the pulse width and 
the dwell time of the trajectory outside the attractor. 

 
4.  Conclusions and Outlook 

 
Here, we investigated the response of the Lorenz 

equation trajectoryto an idealized forcing termcomprising 
a single pulse, in which the pulse amplitude represented 
intensity and the pulse width represented duration. For 
different pulse forcing terms, the response of the trajectory 
was discussed and the following conclusions derived. 
 
(i) Abrupt change was classified as either internal or 
external. The former represents the trajectory jumping 
between different equilibrium point regions, while the 
latter reflects the movement of the trajectory away from 
the attractor. 
 
(ii) Classically, the forcing term can induce abrupt 
change; however, only if the amplitude or width exceeds a 
certain threshold can external abrupt change occur. This 
feature should not be limited solely to the Lorenz equation 
but true also for a general dynamical system. 

(iii) The larger the pulse amplitude, the further the 
trajectory deviates from the attractor and the more severe 
the external abrupt change. The larger the pulse width, the 
longer the duration of the deviation of the trajectory from 
the attractor and the longer the external abrupt change 
persists. No significant relationship was found between 
the degree of the external abrupt change and the width of 
the forcing term, or between its duration and the 
amplitude of the forcing term. 
 
(iv) It was found that certain linear properties exist in the 
nonlinear system investigated. 

 
Must to say, as the numerical solution of differential 

equations can be smooth by adjusting integration step size, 
our research is confined on theoretical aspects which is 
based on numerical solutions of differential equations. For 
the study on climate change, we have made some 
attempts, but the conclusion obtained is not very ideal,the 
reason is that the meteorological data are not smooth 
enough. For the use in climate change research, it is 
necessary to smooth meteorological data. 
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