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सार — यह कायर वायमुडंलीय प�रसीमा स्र (एबीएल) म� द�ूष् पदाथ� के �वसरण का अनकुरण करने के 

�लए �त-आयामी अ�भवहन-�वसरण समीकरण क� �व�ेषणातमक अ�भ�कया पस्ु्  कर्ा है न �क �भननातमक कम 
α (गैर-पणूा�क कम) के पहले के  रप (x, y, z) म� दो आयाम� म�, जसैा पहले हो्ा था। इस अ�भ�कया म�, 
अनदैुधयर पवन क� ग�् u और ऊधवाररर भवंर �वसरणशील्ा Kz को केवल ऊधवाररर ऊंचाई z पर �नभरर माना जा्ा 
है, जब�क �्यरक पवन भवंर �वसरणशील्ा Ky को सो् से नीचे क� दरू� x और जमीन के ऊपर ऊधवाररर ऊंचाई z 

पर �नभरर माना जा्ा है। जेनरलइजड इंट�गल लपैलेस टांसंसमर ्कनीक (जीआईएलट�ट�) का उपयोग करके 
�व�ेषणातमक समारान पार �कया गया है जो अभी भी कैपटुो के �भननातमक वयतुपनन सूत के उपयोग पर आरा�र् 
एक अच्छ �व�र है। α के �भनन-�भनन �भननातमक मलूय� के �लए पस्ा�व् मसडल और कोपेनहेगन पयोग सांद्ा 
के बीच ्लुना का मलूयांकन �कया गया। पस्ा�व् और पयोगातमक सांद्ा के बीच सांिखयक�य �व�ेषण से प्ा 
चल्ा है �क सव��म प�रणाम �भननातमक कम α = 0.95 के साथ पार �कए गए, इस अधययन के प�रणाम� पर 
चचार क� गई है और ्ा�लकाओ ंऔर �चत� �रा पस्ु्  �कया गया है। 

 
ABSTRACT. This work presents an analytical treatment of the three-dimensional advection-diffusion equation in 

(x, y, z), not two dimensions as before, of fractional order α (non-integer order) to simulate the dispersion of contaminants 
in the atmospheric boundary layer (ABL).  In this treatment, the longitudinal wind speed  u  and  the vertical eddy 
diffusivity  Kz  are taken to be dependent only on the vertical height z, while the crosswind  eddy diffusivity Ky  is taken to 
be dependent on the downwind distance x from the source  and the vertical  height  z  above ground. The analytical 
solution has been derived using the Generalized Integral Laplace Transform Technique (GILTT) which is still a good 
method, adopting Caputo’s formula of a fractional derivative. The comparison between the proposed model for different 
fractional values of α  and the Copenhagen experiment concentrations was evaluated. The statistical analysis between the 
proposed and experimental concentrations reveals that the best results were obtained with fractional order α = 0.95 than 
others, the results of this study are discussed and presented in tables and illustrative figures.   

 

Key words  – Generalized Integral Laplace Transform Technique (GILTT), Caputo’s formula, Copenhagen 
experiment, Atmospheric Boundary Layer (ABL), Fractional order. 

 

  
1.  Introduction 
 

The dispersion of pollutants in the atmosphere is 
governed by the atmospheric advection-diffusion 
equation. The dispersion models based on the analytical 
solutions of the advection-diffusion equation (ADE) are of 
fundamental importance in understanding and describing 
physical phenomena. The analytical model has many 
advantages over the numerical solution, since all 
parameters appear explicitly in the solution, so that their 
effect can be easily investigated. Also, it is useful in 
examining the accuracy of numerical model. Several 
efforts have been made to find the analytical solution of 

the  ADE  with traditional derivatives (integer order) using 
different methodologies (Yeh and Huang, 1975; Sharan 
and Yadav, 1998; Moreira et al., 2005, 2009, 2014; 
Wortmann et al., 2005; Tirabassi et al., 2008; Essa et al.,  
2007, 2014, 2016;  Sharan and Kumar, 2009; Buske et al., 
2012; Marie et al., 2015; Sharan et al., 1996).  

 
Recently, special attention has been devoted to find 

the analytical solution of the advection-diffusion equation 
of fractional order (non-integer order) to simulate the 
pollutant dispersion in the atmospheric boundary layer  
(Xavier et al., 2019;   Moreira and Moret, 2018; Goulart  
et al., 2017; Matlob and Jamali, 2019;  Rubbab et al., 
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2016). Numerical analysis of the fractional evolution 
model for heat flow in materials with memory has been 
studied by Nikan et al. (2020), A computational approach 
for the space-time fractional advection-diffusion equation 
arising in contaminant transport through porous media has 
been evaluated by Esmaeelzade Aghdam et al. (2020), 
Also, Numerical approach for modeling fractal 
mobile/immobile transport model in porous and fractured 
media has been studied by Nikan et al. (2020), Numerical 
approximation of the time fractional cable model arising 
in neuronal dynamics has been investigating by Nikan         
et al. (2020), Numerical evaluation of fractional Tricomi-
type model arising from physical problems of gas 
dynamics has been solved by Nikan et al. (2020). 

 
In this work we present an analytical investigation 

for the three-dimensional fractional advection-diffusion 
equation by using the Generalized Integral Laplace 
Transform Technique (GILTT), adopting Caputo’s 
formula of a fractional derivative. Assuming in this 
treatment  that  the wind speed u and vertical eddy 
diffusivity Kz are functions only of the vertical height z, 
while the lateral eddy diffusivity Ky is taken to be 
dependent on the downwind  distance  x  from the source  
and the vertical  height  z  above ground. The proposed 
analytical formula has been compared with Copenhagen   
experiment concentrations data set. Statistical measures 
have been utilized in the comparison between the 
observed and proposed concentrations by the new model 
with different values of the fractional order α of the 
derivative. This study reveals that the concentrations 
obtained by the proposed model with α = 0.95 are in a 
very good agreement with those measured than others 
values. The results of this study are discussed and 
presented in tables and illustrative figures. 
 
2. Solution of the fractional advection-diffusion 

equation 
 
The steady state fractional advection-diffusion 

equation that describes the dispersion of a non-reactive 
pollutant released from a point source in a turbulent 
atmospheric boundary layer can be written as: 
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where, C (x, y, z) is the mean contaminant 

concentration (Bq/m3) or (g/m3), c is the Caputo 
derivative, α  is the order of the fractional spatial operator, 
u, v, w and Kx, Ky, Kz are the components of wind speed 

(m/s) and eddy diffusivity coefficient (m2/s) along the x, y 
and z directions, respectively. 

 
On using the following assumptions:  (1) The mean 

wind blowing along the x -axis,  so that v and w = 0  and  
(2) The transport of pollutants due to diffusion in the x 
direction is neglected in compared to that due to 
advection,  equation (1) is reduced to the following 
equation: 
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Equation (2) can be solved under the following 

boundary conditions: 
 
Zero flux in z direction at vertical height z = zo 

(roughness length) and ABL top. 
 

0=
∂
∂

z
CKz

 
at z = zo,      z = h                                (3a) 

 
Zero flux in y direction at crosswind height y = yo 

(height in y direction) and at Ly (large distance in the 
crosswind direction). 

 

0=
∂
∂

y
CK y at y = yo,      y = Ly                              (3b) 

 
A source with emission rate Q at height, Hs : 
 

( ) ( ) ( )so HzyyQzyxCu −−= δδ,,  at x = 0           (3c) 
 
Considering that u, Kz are functions of z only and Ky 

is function of (x, z), where h is the height of the 
atmospheric boundary layer (m), zo is the roughness length 
(m), Ly is a large distance in the crosswind direction (m), 
Q is the rate of emission (g/s) or (Bq/s), Hs. is the source 
height (m), δ(.) is the Dirac Delta function. The source 
position is at x = 0, y = yo and z = Hs.  

 

Let us expand ( )zyxC ,, as a linear combination of 
orthogonal eigen functions ( )yψ ; namely: 
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In which ( )yψ satisfy the differential equation: 
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and has the form:  
 

( ) ( )yy  λψ cos=                                                     (6) 
 
where, ( )yψ  and λ , are  respectively  the eigen 

functions and  eigen values  satisfy the  following 
orthonormality  relation: 
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where, 
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(8) 

 
 
Inserting Eqn. (4) in Eqn. (2), multiplying with

( ) 2/1/ mm Nyψ and integrating from 0 to Ly, with respect to 
𝑦𝑦, yields: 
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Upon using Eqn. (5), the above equation can be 

simplified to: 
 
 

( ) ( )
α

α
α

x
zxCczum

M

∂
∂∑

=

,

0






 

( ) ( )zxCzxK ym

M

,,2

0




αλ−=∑
=

 

( ) ( ) dy
z

zxCzK
z z

M
m













∂
∂

∂
∂

+∑ =

,
0



 α  

(10) 
 
And can be written in matrix form as: 
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This yields a set of M + 1 two dimensional 

differential equations, namely: 
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In which mα stands for: 
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and mα , λ  by virtue of Eqns.  (5, 6, 7 and 8) are 

given by: 
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Also, ( )zxC , can be expressed as a linear 

combination of orthogonal eigen functions ( )zmϕ  as : 
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where,   
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Substituting Eqn. (16) into Eqn. (12), multiplying 

with ( ) 2/1/ ss Nzϕ and integrating from 0 to h with 
respect to z yields: 
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This can be simplified to: 
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In which (B1)ms, (B2)ms and ( )xC m represent the 

matrices B1, B2 and the column matrix ( )xY namely : 
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Then Eqn. (19) in matrix form reads: 
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and can be written as: 
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where, F is the matrix; 
 

2
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B1, B2 are constant matrices. 
 
The transformed problem given by equation (24) can 

be solved analytically by using the Laplace transform 
technique and diagonalization of the matrix F (Segatto 
and Vilhena, 1999; Moreira et al.  2009). Laplace 
transform technique transforms the variable x to s and the 
function ( )xY to ( )sY

~ , namely: 
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and adopting the Laplace transform of a fractional 

derivative of α order given by Caputo’s formula (Moreira 
and Moret, 2018): 
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Therefore, in this study we used: 
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Then, Eqn. (24) transformed to: 
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To find the expressed expression of ( ),~ sY  the matrix 

F in Eqn. (29) can be diagonalized as: 
 
F = XDX-1                                                              (30) 
   
where, D is the diagonal matrix of eigen values of 

the matrix F, X is the matrix of the respective eigen 
functions and X-1 is its inverse. 

 
Therefore, Eqn. (29) becomes as: 
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After algebraic treatment we obtain: 
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where, “I” is the identity matrix. 
 
Performing the Laplace transform inversion on          

Eqn. (32) yields: 
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It is a diagonal matrix and L-1 is the inverse Laplace 

transform. 
 
Adopting the standard theory for the Laplace 

transformation yields (Matloband Jamali, 2019; Moreira 
and Moret, 2018): 
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where, αE is the Mittag-Leffler function, which is 
intrinsic to the solution of equations with fractional 
derivatives and has the form: 

 

( ) ( )
( ) 0,

10
>

+Γ
−

=− ∑∞

=
α

α

α
α

α k
xdxdE

k
i

ki
        

(36) 

 
where, di are the eigen-values of the matrix F and Γ 

is the Gamma function. 
 
Therefore, the final form of Eqn. (32) can be 

rewritten as: 
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(37) 

The column matrix ( )0Y  can be evaluated by 
inserting Eqn. (4) in the boundary condition given by  
Eqn. (3c), multiplying with ( ) 2/1/ ii Nyψ and integrating 
with respect to y from 0 to Ly, gives: 
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Then, introducing Eqn. (16) in Eqn. (38), 

multiplying with ( ) 2/1/  Nzϕ and integrating with respect 
to z from 0 to h to get: 

 

( ) ( ) ( ) ( ) dz
NN

zzzuC
m

m
h

o

m

M

m 




ϕϕ
∫∑

=

0
0  

( ) ( ) ( ) ( ) ( )












N
HyQdz

N
zHz

N
yQ s

s

h

o

ϕψϕδψ 00 =−= ∫  

(39) 
 
and can be written in matrix form as: 
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
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 N
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1 0 =

                                    
(40) 

 
Therefore, the column matrix ( )0Y can be written as: 
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(41) 

 
Or  
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 N

N
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h

o

s

ϕϕ

ϕψ

                

(42) 

 
 
( )xY is a column  matrix whose components are

( )xC M  and ( )0Y  is a column  matrix whose components 

are ( )0MC , therefore the two dimensional concentration 

given by Eqn. (16) is determined once ( )xC M  is known. 
Consequently, the three-dimensional concentration given 

by Eqn. (4) is determined once ( )zxC M , is known. 
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TABLE 1 
 

Meteorological parameters during the Copenhagen experiment 
 

Exp. 𝑢𝑢10(𝑚𝑚𝑠𝑠−1) 𝑢𝑢115 (𝑚𝑚𝑠𝑠−1) 𝑢𝑢∗(𝑚𝑚𝑠𝑠−1) 𝑤𝑤∗(𝑚𝑚𝑠𝑠−1) - L(m) h(m) 

1 2.1 3.4 0.36 1.8 37 1980 

2 4.9 10.6 0.73 1.8 292 1920 

3 2.4 5.0 0.38 1.3 71 1120 

4 2.5 4.6 0.38 0.7 133 390 

5 3.1 6.7 0.45 0.7 444 820 

6 7.2 13.2 1.05 2.0 432 1300 

7 4.1 7.6 0.64 2.2 104 1850 

8 4.2 9.4 0.69 2.2 56 810 

9 5.1 10.5 0.75 1.9 289 2090 

 
 

 
In the present study a power-law profile is used to 

describe the vertical variation of wind speed with height 𝑧𝑧 
above ground surface in the ABL and has the form (Essa 
and Maha, 2008): 

 
u (z) = a zp,         z ≠ 0                                           (43) 
 
where, a = 3 and the values of p are taken from 

Hanna et al., (1982). 
 
The lateral eddy diffusivity Ky is taken to be 

dependent on the down winds source distance x and the 
vertical height z above ground surface and is given by 
(Essa and Maha, 2008): 

 
Ky (x, z) = β ux / a,        β = 0.31 (w* / u)2            (44) 
 
While the vertical variation of the vertical eddy 

diffusivity Kz with height z above ground surface is 
defined as (Pleim and chang, 1992): 

 

( ) 





 −=

h
zzkwzKz 1*

                                             
(45) 

 
where, w* is given by the following expression 

(Degraziaet al. 2001): 
 

3/1

** 





−=

kL
huw

                                                  
(46) 

 
where, w* is the convective velocity, k = 0.4   is the 

von Karman constant, h is the height of the planetary 
boundary layer, u* is the friction velocity and L is the 
Monin-Obukhov length scale. The power-law exponent p 

of wind speed is a function of the atmospheric stability 
and the nature of underlying surface. 

 
2.1. Evaluation of the model against Copenhagen 

data set 
 

 The performance of the proposed solution has been 
evaluated against the observed data set from the 
atmospheric diffusion experiments conducted at the 
northern part of Copenhagen, Denmark, under neutral and 
unstable conditions (Gryning and Lyck, 1984; Gryning            
et al., 1987). In Copenhagen experiment the tracer SF6 
was released without buoyancy from a tower at a height of 
115 m and collection of tracer sampling units at the 
ground level positions at the maximum of three crosswind 
arcs.  The sampling units were located at a distance of 2 to 
6 km from the point of release. The site was mainly 
residential with a roughness length of 0.6 m. 
 
3. Results and discussion 

 
The meteorological parameters during the 

Copenhagen experiment are presented in Table 1. The 
values of ground-level centerline concentrations measured 
during Copenhagen experiment and the corresponding 
proposed values by the new model given by Eqn. (4) are 
presented in Table 2. Notice that the values of 
concentrations measured and predicted are normalized by 
the source strength (C/ Q). 

 
A comparison between the normalized centerline 

ground-level concentrations observed and proposed by the 
new model as a function of downwind distance (x) for a 
orders of the derivative (α) are represented graphically as in 
Fig. 1. Fig. 1 shows the best value of the proposed model 
with observation concentration at α = 0.95 than others values. 
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TABLE 2 
 

Normalized observed (Co / Q) and proposed (Cp / Q) centerline ground-level concentrations (10-7 sm-3) for Copenhagen  
experiment considering different fractional parameters (α) 

 

Exp. Distance(m) 𝐶𝐶𝑜𝑜/𝑄𝑄 
𝐶𝐶𝑝𝑝/Q 

α = 0.9 α = 0.95 α = 1.0 

1 1900 10.5 5.9 10.2 7.1 

1 3700 2.14 2,56 2.18 2.03 

2 2100 9.85 7.17 8.6 7.92 

2 4200 2.83 2.45 2.58 2.16 

3 1900 16.33 13.27 16.18 15.27 

3 3700 7.95 6.43 7.05 6.44 

3 5400 3.76 2.99 3.37 3.07 

4 4000 15.71 13.78 15.66 14.06 

5 2100 12.11 9.39 12.03 11.47 

5 4200 7.24 6.39 7.85 8.45 

5 6100 4.75 5.81 4.45 5.56 

6 2000 7.44 6.48 7.14 6.36 

6 4200 3.47 3.92 3.67 3.48 

6 5900 1.74 1.61 1.78 1.71 

7 2000 9.48 8.10 9.40 8.98 

7 4100 2.62 2.00 2.24 2.20 

7 5300 1.15 1.35 1.16 1.68 

8 1900 9.76 8.79 9.72 9.32 

8 3600 2.64 2.70 2.80 2.46 

8 5300 0.98 0.86 0.92 0.91 

9 2100 8.52 7.14 8.62 7.84 

9 4200 2.66 2.27 2.71 2.59 

9 6000 1.98 1.55 1.86 1.74 

 
 
 

A scatter diagram of the normalized centerline 
ground-level observed concentrations against the 
corresponding values proposed by the new model for 
different orders of the derivative (α) is shown in            
Fig. 2. Also this figure shows that all the proposed model 
at α = 0.95 lies one to one line but the others values are 
located inside a factor of two. 
 
 3.1. Statistical evaluation of the present model 
 

To evaluate the model accuracy, we used the 
following statistical idiocies that characterize the 
agreement between the predicted and observed 
concentrations. These measures are discussed by Hanna 
(1989) and defined as: 

 

( )
( )[ ]po

po

CC

CC

−

−
=

5.0
(FB)BiasFraction  
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Fig. 1. Comparison between the normalized centerline ground-level concentrations observed and proposed as a function 
of downwind distance (x) for different orders of the derivative (α) 

 

 
 

Fig. 2. A scatter diagram of the normalized concentrations observed and proposed by the  present model for different 
orders of the derivative (α). Dotted lines indicate a factor of two; the solid line is the one-to-one line  

 
 

 
0.25.0(FAC2)TwoofFactor ≤≤=

o

p

C
C

 
 where, σp and σo are the standard deviations of the 
proposed concentrations Cp and observed Co respectively. 
The over-bar indicates the average value. The perfect
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TABLE 3 
 

Statistical evaluation of the proposed model for different values of α against Copenhagen experiment 
 

α NMSE FB COR FAC2 

0.90 0.08 0.17 0.97 0.89 

0.95 0.00 0.02 1.0 0.97 

3 0.03 0.09 0.98 0.94 

 

model must have the following performances:                
NMSE = FB = 0 and COR = FAC2 = 1.0. 
 

The calculated values of these statistical measures 
that evaluate the performance of the proposed model for 
different values of the order α of the derivative are shown 
in Table 3. 

 
Table 2 and Fig. 1 show a very good agreement 

between the observed and proposed concentrations by the 
new model for the order of the derivative α = 0.95 and 
good agreement with α = 1.0 than α = 0.90. 

 
Fig. 2 reveals that all the proposed concentrations by 

the new model with different orders (α) lie within a factor 
of two. Most of the proposed concentrations with α = 0.95 
nearly locate on a perfect one to one line where the 
measured and the corresponding proposed concentrations 
are equal. This indicate that the best performance of the 
new model occurs when α = 0.95.   

 
The values of the statistical measures in Table 3 

show also a very good agreement between the observed 
and proposed concentrations by the derived model for            
α = 0.95 with NMSE = 0.0,  FB = 0.02, COR = 1.0 and 
FAC2 = 0.97. The statistical values indicate that the best 
performance of the new model occurs when α = 0.95.   

 
4. Conclusions 

 
In this study we proposed an analytical treatment for 

the three-dimensional ADE in (x, y and z directions) of 
fractional order α (non-integer order) using the (GILTT) 
which is still good method and adopting Caputo’ formula 
of a fractional derivative to simulate the dispersion of 
contaminants in the atmospheric boundary layer (ABL). 
Considering through this treatment that the wind speed u  
and the vertical eddy diffusivity Kz are functions of z only 
but the lateral eddy diffusivity Ky is function of (x, z). The 
accuracy of the proposed model for different values of α 
was evaluated against the Copenhagen experiment. The 
new model and the statistical analysis that performed 
between the proposed and experimental concentrations 
reveals that the best results were obtained with order            
α = 0.95 and good agreement with α = 1.0 than α = 0.90. 

Disclaimer : The contents and views expressed in this 
study are the views of the authors and do not necessarily 
reflect the views of the organizations they belong to. 
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