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ABSTRACT. An ascismically creeping surface-breaking strike-slip fault inclined to the vertical at an arbi-
trary angle, situated in a simple model of the lithosphere-asthenosphere system consisting of a viscoelastic half
space is considered. The exact solutions for displacements, stresses and strains in the model are obtained. Com-
puted results show that the inclination of the fault has a significant influence on the values of the displacements,
stresses and strains. The rate of accumulation of shear stress tending to cause strike-slip movement has been found
to be greatest for vertical strike-slip fault, while for faults inclined at smaller angles to the horizontal, this rate is
significantly smaller. The uses of such theoretical models in obtaining greater insight into the earthquake processes
in seismically active regions and their relations to the dynamics of the lithosphere-asthenosphere system
are examined.

Key words — Earthquake, Teclonic force, Creep velocity, Surface shear strain, Strike-slip fault.

I. Introduction

The problem of earthquake prediction has attrated
wide-spread attention among seismologists in recent
years and the steady accumulation of relevant seismolo-
gical data and improvements in the techniques of their
analysis and interpretation, together with the develop-
ment of relevant theoretical models and computer simu-
lation techniques have made it possible to hope that
effective programmes of earthquake prediction may
become feasible in near future. In this connection it is
realised that effective programmes of earthquake pre-
diction would require a better understanding of the pro-
cess of stress accumulation and release in seismically
active regions and their relations to the dynamics of the
lithosphere-asthenosphere system.

In this connection it may be mentioned that regular
observations in seismically active regions in the recent
years indicate that during apparently quiet aseismic
periods, there are usually slow quasi-static aseismic surface
movements of the order of a few cm per year or less,
resulting in the accumulation of stress and strain. In
some cases this may eventually lead to a sudden fault

(365)

movement generating an earthquake, if the stress ac-
cumulation reaches sufficiently high levels. In some
other cases there may be a continuous, slow, aseismic
fault creep across the active faults, e.g., the central part
of the San Andreas fault in North America, The effect
of this aseismic fault creep on the accumulation and
release of stress in the region concerned is of great
interest in the study of the dynamics of the lithosphere-
asthenosphere system in seismically active regions during
asiesmic periods.

In recent years, some theoretical models of the litho-
sphere-asthenosphere system in seismically active regions
during asiesmic periods have been developed starting
with the theoretical model of Nur and Mavko (1974).
The general features of the theoretical models of this
type, developed till now, have been discussed by Cohen
el al. (1984), Mukhopadhyay and Mukherji (1984
1986).

2, Formulation

We consider a simple theoretical model of the litho-
sphere-asthenosphere system with a creeping, surface
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Fig. 1. The model and the co-ordinate axes
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breaking, long. plane strike-slip fault F, inclined to the
horizontal at an angle ¢ and situated in a linearly vis-
coelastic half space with its material of Maxwell type.
The upper and lower edges of the fault Fare horizontal
and D is the width of the fault. The case of a fault of
finite length has been considered by Chinnery (1961),
Pal et al. (1979). We, however, consider a long fault
(keeping in view the San Andreas fault in north America
whose length is about 1500 km) whose length is assumed
to be = D.

We introduce rectangular cartesian co-ordinates
()1, Ve, yy) with the plane free surface of the viscoelastic
half space as the plane 13—0 and the yz-axis pointing
into the half space. The upper edge of the fault F is
taken as the y-axis. For convenience of analysis, we
also introduce another rectangular system of cartesian
co-ordinates ()'y. 1's, 3's) associated with the [lault,
with the same origin; the y';-axis coincident with the
yi-axis and the plane of the fault as the plane ',—=0
(Fig. 1). With this choice of axes, the half space
occupies the region yy — 0, while the fault is given by £ :
(1's=0, 0 < y'ys- D). The relations between (1,
va, ¥g) and ()1, s, 'g) are given by :

Y1 =01 Yo = )esinf — '3 cos 6,

yg = — Ve c0s 8 -+ )y sin f

Let (uy. us, ) be the components of the displacement
uin the half space y;7=0 in the directions (1. 1y, yg)-axes
respectively and let 7y, Ty Tage Tye Tas. Ty be
the stress components while e; (/. j=1. 2, 3) are the
components of strain.  For long fault, all these quanti-

ties are taken to be independent of y; and are functions of

s, 1gand 7. These components separate out into two
distinct and independent groups (Maruyana 1966) — one
-group consisting of wy, Ty Ty oand e, ey s
associated with strike slip movement, while the other
group consisting of ua, ug; Tas, Ty, Tzl And €as, €g3. €5
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is associated with a possible dip-slip movement of the
fault.  Here we consider only the strike-slip movement of
the lault.

(i) Constitutive equations (stress-strain relations)

The stress-strain relations for the viscoelastic half space
(Budiansky and Amazigo 1976) :
)
aoreys
s (-0 < oo,
( 1 I 2 ] oy 000 z=0) (1)
" vy 1713 7

wl.cre, 5 is the effective viscosity and p is the effective
rigidity of the material.

(if) Stress equation of motion

For the slow aseismic quasi-static deformations of the
system, inertial forces are very small and are neglected;
the relevant stresses would satisfy the following relations:

- ~

(

. (7y2) . (713) - 0,
) )y
(00 <1< B, 05 20,1200 (2)
From Eqns. (1) and (2)
,U (%) 0
ot

which is satisfied 1f

7 =0, (— oo <y,

(iif) Boundary conditions

w,t=0) 4
Tig = 0asyg=0 (—oo <)y <o, 12 0) (5)
‘o (g 22 0012 0) (6)

Tiz — 00on yy =0 (—oo <20y

T2 > Tee (1) aS | 1y

where, 722 (£) is the shear stress maintained by the tecto-
nic forces far away from the fault which may or may not
change with time but is independent of yy.
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(iv) Initial conditions

Let (H|)0. (712)-. (713)0. ("’l‘.’}ll' (()1;;]0 are the
values of w;, 7o Tiae €12 ¢y respectively at
time t=:0. They are functions of (v, 1y) and satisfy the
relations (1) to (6) where time 7 is measured from a suit-
able instani when there is no seismic activity in the
system.

3. Dispiacements, siresizs arl strains in th2 ahsence of any fault
movement

In this case the displacements, stresses and strains are
all continuous throughout the system and the time 7 is
measured from a suitable instant for which conditions
(1) to (6) are satisfied for ¢+ = 0. The solutions can be
obtained by taking Laplace transforms of the Eqns. (1)
to (6) with respect to time 7 which give rise to a boundary
value problem for wy, 74, 713, the Laplace tranforms
of uy, Tyss Tyz With respect to time 1.

In the case when 7. (7)—constant — 7., say, the
solutions are given by (Maji e al. 1979)

uy (yas y3o 1) = (g Toe 1. Va[7 )

12 (Vg dao 1) = (Tr2dy-eXP(-p1/n) | T
[1—exp (—ut/n)]

713 (Ve Yar 1) = (Tusdg-€Xp (— mt/7) > 0
aH| .
ey (Yas 3. 1) ér‘ = (€no + T .t/7

71's (Vs g0 1) = Tyasin # — 73c08 0

(74's")o exp (—pt/n) | 7, sin b

-]

[1—exp (—nt/7)] (8)
where, (715 )a 15 the value of ;5" at t=0and is given by :
(712 ) = (T12)o sin & —(T13)y cos

Thus, i’ the shear stress =,"," near the faultis <<z_ sinfat
t=0, then there will be a continuous accumulation of
shear stress r,"," near the fault for 70 and ultimately as
t—-oo, 7'y =7, sindinthe neighbourhood of the fault.

It may further be noted that the rate of accumulation
of the shear stress =,y as well as the maximum limiting
value of the shear stress 7,5 (which is = 7, sin#) both
increases as ¢ increases and have the maximum values
when the fault is vertical {#=m/2). Thus the accumula-
tion of shear stress ry," tending to cause strike slip move-
ment can reach comparatively greater values if the fault
is vertical or nearly vertical, so that the possibility of a
major strike slip movement is relatively greater for nearly
vertical faults compared to those which are inclined at
relatively smaller angles to the horizontal. This result
is consistent with the general observations. If the
characteristic of the fault be such that it starts creeping o1
a sudden seismic movement occurs across it when ,","in
the neighbourhood of the fault reaches some critical
value, say 7, (<< 7. sin ), then there will be a creeping or
sudden seismic movement across F after a finite length
of time and in that case the solutions (7) end (8) wiil no
longer hold good and require some modifications. We
assume here that the fault is such that it starts crecping
after a time (=T, (say) =0, when (7,",) reaches that
critical value.

4, Displacements, stresses and strains after the commencement of
the fault creep

We consider a slow, aseismic creep movement across
the fault F commencing at time (—=7,. Here all the
relations (1) to (6) are valid for ¢ = T,. In addition to
these the following creep condition is also satisfied :

[,] = U(ty).{f¥'s) . H(+—T1) ac1oss
F:ys=0, 0y,< D where, t;=1—7, (9)

f(vy)) gives the spatial dependence of the creep movement

along the fault and 1] is the relative creep displacement
across F defined by :

1] = lim (uy) — lim (117)
Vo004 ya—+0—

Here, U (#,) and [ (1y') are assumed to be continuous
functions of ¢, and 1y respectively and U(ry) = 0 for
f, 0. The creep velocity across F is given by :

dU(t,)

at“"']l = V(1,). f()'q). where V(1) = i,

which is assumed to be finite for all ¢, = 0.

To solve the initial and boundary value problem
involving (i, 712, 7y3) for ¢=T; we try to obtain
iy, Ty2» 713 In the following form :

1y = (uy)y (s

Tz = (Tizh - (Tiede '} 9(a)
T3 = (Tigh + (T1z)e J

where, (). (Ty2. Tyg)y are continuous cverywhere in
the model satisfying Eqns. (1) to (6) and assume the
values (). (Ty2)o, (753 @t 1=0.  The solutions  for
(ty);y (Ty2)1s (7ya)y will be obtained as in § 3 and
when 7, (1)= constant = 7, they are same as Eqns.
(7yand (8) and are given by :

() = (U)o = To 132/ ‘]
(T12)1 = (T12)y.€XP (—nt/7) '
¥ 10
T [l—exp ( _“”‘TJ‘)J % ( ]
(T13h = (T13)p.€XP (—w1/7)] J

(1), (Ty2)ss (T1a)s are functions of ys, yz and f and
they satisfy Eqgns. (1), (2), (3) boundary conditions (4)
(5) and the following conditions :

(Ty2): =0 as | w2 | —»00. (¥g = 0,1, 20) (11)
together with the following creeping condition :
[(y)a] = U(ty). f()'y) across F, 1=Ty with
Uty) =0 fort; =0 (12)

ALO (1y)ss (Tip)z and (Tiy)e = 0 fors, < 0 (13)

To obtain the solutions for (uy)s, (Tya)s, (712): for
1,0, we take Laplace tranforms of Egns. (1) to (5) and
Fqns. (11), (12), (13) with respect to f;, the resulting
boundary value problem involving (uy)s, (T12)ss (75a)2
the Laplace tranforms of (1y)a, (T12)as (Tyg)a Tespec-
tively with respect to time t,, can be solved by using a
suitably modified form of Green's function technique
developed by Maruyama (1966) as expldined in the
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Appendix. On inverting these Laplace transforms the
solutions for (), (T12)s. (T13)s for 1, = 0 and 1, #
can be obtained. For a constant creep velocity 1, we
have :

It I

()a (yas ¥ 1) = H(t—T) . ',;-WI(,"-.'- Yg) |
|
i Pl \
(Tm)g (Vou Vg t) = H(1—T)) . Eﬂ' [| — EXp

(14)
1) ] W (el vy)

7). =7 [ — exp
oo R FYi Ty, =2 11— ex
(713)3 (25 V3. 1) H(t—1I 1 2
{’ m1— 1), Ti}] ¥ (e vy J
where ¥, ¥,, ¥, are given in the Appendix.

This shows that the displacements, stresses and strains
due to the fault movement depends, besides  the
model parameters, on the inclinations of the fault to the
vertical and €/(r,) = V.t; where Vis a constant.

Thus the final solutions for displacements. stresses, and
strains for r, =0 are given by :
Te « s Vo

wlyas s, 1) = (iy)y

Viy
o e )

- H(t—T,).

7o' (Vo g 1) = Tya.sin 8— 7y, cOs I
= (T1'2 )g-€XP (— pt/n)— 7, sin @ -
Vo
T I
). -

[1—exp(—pt/y)—H(t

—exp | '““—T‘}}] (Wasind W, cos f)
.
ol ; |
ez (Ve Vo 1) = é_;:z = (€n2)y + 7ot/ ,

!
- H(t—Ty) .V, ¥, 2n ]

It is found that the displacements, stresses and strains
will be finite and single-valued everywhere in the model,
including the points near the lower edge{_ot’ the fault, if
the following conditions are satisfied by /{yy') :

i) f()'e) and ['()73) are C’on!.inuous]
W f::mctions of y'y for 0 < 3’y <= D,

(ii) f(D) = 0 and also f'(0) = /(D) = 0,

(1'y) Is continuous in 0 <2 )y" < D,
e {:xc(:é;:t) for a finite number of points p  (16)
of finite discontinuity in 0 < y'y < D,
or f"()'y) is continuous in 0 <21/ <2 D
and there exist real constants m,
n <2 1, such that ()'3)" f"(3’3) — 0 or

to a finite limit as )3 — 0- -0 and
that (D—y'3)"  f"(3'3) =0 or to a
finite limit as y3— D -0 J

These conditions imply that the displacements, stresses
and strains will be bounded everywhere in the model,

SEN et al.
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including the points near the lower edge of the fault, if
the magnitude of the relative creep displacement across
the fault varies smoothly over the fault and approaches
zero with sufficient smoothness as ¥3>D —0 near the
lower edge of the fault.

5. Discussion of the results sind conciusions

We study the nature of the rate of change of surface
displacement D and suiface shear strain R and the
shear stress 7'," near the mid-point (at y'3=D/2) of the
fault with the following choice of the polynomial f{yy")
and the model parameters :

S(V's) == (p's* — DDA, o that £(0) = 1, with
Un)=v.nh, v being a constant,
p= 3.78 < 10" dyne/sq cm
7= 3.0 X 10* poise
D =10 km
V'=0.0—5.0 cm/yr
Ty == 60 and 180 years
T, = 200 bars
(Tl".”)ﬂ =0.5 Tw sin ﬂs
= 307, 457, 60°, 90°,

We now consider :
(/) The rate of change of surface displacement per
year due to fault creep and compute

2
'.,7 [”l — (1) — T, "“2,"'7}]_‘.3 =
¢
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Fig. 4. Rate of release (R) (per year) of surface shear strain due to foult creep

(ii) The rate of release (per year) of the surface shear
strain due to creep and compute

a
R =—— ["12 — (€12)p — Toe /7 ]J':I =0
ol
(iii) The shear stress (7;", )yunp near the mid-point of
the fault (i.e., at the point y,'==0, yy'=2D/2).

We consider first in greater detail the rate of change of
surface displacement with distance y, from the fault
trace. Fig. 2 shows that the nature of this change depe-
nds significantly on the inclination of the fault to the
horizontal. However, the following features are com-
mon for faults with different inclinations :

() The maximum magnitude of the rate of change of
surface displacement due to fault creepis attai-
ned near the fault for both y,>>0 and y,<0.

(i) The rate of change of surface displacement due
to fault creep decreases rapidly as we move
away from the fault on the free surface, and
for y,>> D, it becomes very small.

(iii) For y;=>0 and y,-<0, the rate of change of
surface displacement due to fault creep has
opposite signs, the surface displacement due to
fault creep being in opposite direction for
y2>0 and Ya<Z 0.

(iv) The rate of relative displacement across the
fault on the surface is equal to U in all cases, as
expected.

Apart from these similarities there are considerable
differences between the rate of change of surface dis-
placement due to fault creep for faults with different
inclinations. We consider here only four different
values of 8, viz., =30°, 45°, 60°, 90°. It may be men-
tioned in this connection that smaller values of 8 are not
considered, because of the fact that such situations are
not likely to occur in reality,

The differences in the rate of change of surface dis-
placement due to fault creep for different values of 0 as
revealed from numerical computations, are stated in the
following :

For y,=>0, this rate is found to increase as f# decreases
and the rate for 0-=30° is more than about 1.6 times the
rate for =90° as y3,—~0--0. However, for y,<0,
this rate has a smaller magnitude for smaller values of 8
and the magnitude of this rate for 0=90" is nearly 3
times the magnitude for #=30" as y,—»0 —0. For
7—90° the rate is anti-symmetrical with respect to y,=0.
However, for #5607, there is no such anti-symmetry.

Fig. 3 shows the changes in the total surface shear
strain near the fault and near free surface (y3 ~ C, y3=
0) for a vertical fault. In the case =0, there is a steady
accumulation of surface shear strain near the fault with
time. This rate is of the order of 10—° per year which is
of the same order of magnitude as the observed rate of
accumulation of surface shear strain near the locked
parts of the San Andreas favlt in California as reported
by Savage and Burford (1970) and others. Fig. 3
shows that fault creep commencing at =T, leads to
reduction in the rate of surface shear strain accumula-
tion near the fault, this rate being greater for greater
creep velocities. For laults with different inclinations
A to the vertical, the general nature of the changes in the
surface shear strain near the fault with time is found to
be similar, the rate being the same for V=0 for all
inclinations. For ' > 0, the effect of creep is qualita-
tively similar [or different inclinations of the fault,
corresponding to different values of 8. However, the
effect of fault creep on the surface shear strain near the
fault trace is found to decrease significantly as € dec-
reases.

Fig. 4 shows the rate of release (per year) of the sur-
face shear strain due to fault creep near the fault (y;=0,
y3=0) and away from the fault for different inclinations,
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It is found that the fault creep resuils in  release of the
surface shear strain. But this effect falls off rapidly as
we move far away {rom the fault trace on the lree surlace
for all inclinations # of the fault to the horizontal. For
- 0=90°, the surface shear strain release due to creep is
greatest near the fault trace (1,20, )3—=0) @nd is sym-
metrical - about the fault trace (1,—0. 1,—0). For
, A7#90°, the effect is not symmetrical about the fault
trace, and the maximum rate o” release of surfuce shear
strain occurs a little away from the fault trace. The
‘distance from the fault trace of the point of the maximum
rate of release of surface shear strain increases os 4
decreases. Near the fault trace (1yoa0. 1, -0) the sur-
. face shear strain release effect of fault crecp decreases is
8 decreases. It is also noted that as 7 Jecreases from
 90°, the maximum magnitude first decreases till #60
and then increases as @ decreases further., Thus. the
effect of fault creep on the surface shear strain depends
significantly on the inclination of the fault to the hori-
zontal. The differences in the eflects of fault creep on
the surface shear strain for different inclinations of the

-fault may be useful in estimating the inclinations of

creeping faults, using observational data on aseismic
. changes in the surface shear strain near the fauli.

near the mid point of the fauit for @ (a) A= 307,45, 1357, 150°, and (b) 8-60°, 90°, 120°

Figs. 5(a&b) show the variations with time of (&> )
the shear stress {,’," near the mid-point of the lault for
different inclinations of the fault to the horizontal
(8=30°, 45°, 60°, 90", 120°, 1357, 150”) and for different
values of the creep velocities from =0 to V=35 cm/
vear. It is found that in all cases, in the absence of
fault creep. there is a steady accumulation of shear
stress ;%" near the fault with gradually decreasing rate of
accumulation. I fault creep commences at (=T,
there is a reduction in the rate of accumulation of shear
stress near the fault due to creep and this effect is greater
{or larger values of creep velocities V. For sufficiently
large creep velocities, there is a gradual release of the
shear stress near the fault after =T instead of accumu-
lation and if V=35 cm/year, there is more or less com-
plete release of the accumulated shear stress {;'s" near
F after a sufficient time. The gradual rclease of shear
stress would be expected to reduce progressively the
possihility of the sudden seismic fault movement, thus
reducing the possibility of a major tectonic earthquake
due to sudden seismic movement across the fault.

The rate of accumulation of the shear stress as well as
the maximum value attained by 'y" near the fault
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(;;3)2 -0 as y3> o, —O<p<n (AS)
(fe>0as|ys| > 00, 3320 (A6)

the absence of fault creep, the rate of accumulation of
l's’ near the fault is greatest for #=907 and decreases
as the inclination @ decreases. For 0 =<t << T, the
average rate of accumulation of {,’y’ near F for #=90°
has a value nearly twice the average rate for #=30°.
Also it is found that the value of creep velocity 1 for
which there is no accumulation or release of ¢’y near
F for 1> T, is nearly 1 cm/year for A=30°, nearly 1.37
cm/year for #—45°, nearly 1.67 cm/year for #=60° and
nearly 2 cm/year for =90

For relatively large values of ¥ (say, V=35 cm/year) the
rate of release of the shear stress {;'s’ near 'the fault for
t > T, is found to depend to some extent on the incli-
nation of the fault and is found to be smallest for =907,
As 0 decreases from 0=90°, the average rate of release
of shear stress for laige values of ¥ (say, V=35 cm/year)
increases slowly upto #—=30° as shown in Figs. 5 and 6.
The total release of ({,"s )anp over the period =180 years
to 1==500 years, for }'=35 cm/year, is nearly 56 bars for
8=90°, 61 bars for =60°, 65 bars for #==45" and 72 bars
for #=30°,

Finally, we conclude that the inclination of the fault
to the horizontal has an important influence on the effect
of fault creep on the surface displacement, surface shear
strain and the shear stress near the fault tending to cause
strike-slip movement.

APPENDIX

A 1. Displacements, stresses and strains for t>T, after
the commencement of the fault creep—the method
of solution

The displacements and stresses after the commence-
ment of the fault creep have been found in the form
given in Egqn. (9A). Taking Laplace transforms of
Egns. (1) to (5), (11), (12) and (13) with respect to time
1;, a boundary value problem involving (i), (T12)as
(Tyg)s, the Laplace transforms of (uy)s, (712)2 and
(T1a)2 respectively with respect to # defined by :

- L o0
{(t11)s (T12)2s (T12)e} :6[ {(u)as (T12)2s (T1a)a}

e =Py dt,
(p being the Laplace tranform variable) is obtained. The
resulting boundary value problem s characterised by the
following relations :

. 1 s
(Ty2): = ‘P/( — -+ p_) .i (11), ]

'? © (‘_rg

e | ®
_— . s ,R . —
G =(of (2= 2)) 2 @ |
2 @t L k=0 A2
Eyz( 12)2 ¥ 1302 (A2)
T2 (uy); = 0 (A3)

(—oo <y, <, y;=20)

Also,
(1192 = 0 on yy = 0,

(—o<pn<wn) (Ad

and [(tT,)g] =U(p) f(ypacross F: (V2= 0,

0<< Y3 << D) (AD)
(7,a)s and (7,3)s are continuous across F, {(p) being
the Laplace tranform of U(f,) with respect to f,, so that

o 0
U(p) — g U(fl).exp ('—Pfl) dt]

To solve this boundary value problem, a suitably
modified form of Green’s function technique, developed
by Maruyama (1966) and Rybicki (1971) is used. Fol-
lowing Maruyama (1966) :

(1) (@) = [ (@) (P {G"13 (2, P) dé,
— Gy (Q, P)ES) (A8)
where, Q(y. Vo, v3) is the field point in the half space
and P(¢,, £a. £3) is any point on the fault Fand [(3)s (P)]

is the discontinuity in (i), across Fat the point P,
while G} (Q,P) and G}(Q, P) are two Green'’s

functions given by :

1 ‘s — i
Gy (@ P) = 5= [Us 12—6"") - (st.ng)]
L [Ga—tD)  Oa—és
Glye (0, P) = 2;{(}. Lz-z “(yeMz 6_)]
where, L? = (y2 — 2)* + (s — £3)%

M2 = (y; — £° + (s + £2)%

Now, P(¢,.é.. £;) being a point on the fault' £
028, <Dcos 4, 0<£<Dsinf and £,=¢&; cot 0. A
change in co-ordinate axes from (&, 2 £3) to
(&), &' &5) connected by the relations :

L= &', &g = E'psin 8 1 £5c030,
g — — &5 cos 8 1 E'ysin @
is introduced so that £,=0 and 0=<£'3<CD on F. Then
from Eqn. (A8) using Eqn. (A7).

D
@:@=22 rew
L]

[ _ (nsin®—yecosB)
g2 —2E'y (205 0 + yysin 0) (a2 + ¥5?)
o (p sin A + y3 cos 8) —A]df'
TR 28 (v, 008 0—yysin ) - (p2fyd) | ?
or (e @ = YD ¥, (32 y) (A9)
D

where, ¥, (¥s, ¥3) = J. f(€'3)
1]

(3o sin 8 — yg €05 6)

£72 3¢, (y2 €08 8+ yg sin 0) + (e + 5
i (.“‘_' Siﬂ 6 "'r' Ya cos 9) ]Ifr
I . o | ¢
£ — 28y (ya008 B — yy sin) -+ (0 +yH
(A9A)
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On taking mverse Laplace tranforms ol (A9) with
respect to 1y and noting that (i),=0 for r - 0

) {ir )

(ty)e (Fas Voo 1) = H(1 W ra.

where, ¥y(ya. ¥g) 1s given in Eqgn. (A9A)
Again {rom Eqn. (A1)

N (__'
| P/ /]
This gives

(1
T 12)'3{.“21 _1-::) —: ,l"/( .

Uipl

Y e

D

(7y2)2 (Van 0y

o (W, 43) (AT

y . )
where, ¥, (Va, 1y) = ' = ' f(&)
v

[fa sinfl ~2&75 0y (- ap®) sind

E'22 —- 285 ()sc0s9 -1 yysind)

E'a®sin 0+ 283 (0 3eP)sind -Zysyycosd
rasind) | (F
de's  (A10)

On taking inverse Laplace tranform of Eqn. (ATD)
with respect to 7, and noting that (7;,), — 0 for 0

2z
{f g2—2 {E'J(] L cos

AN P

(Ty2)a (Ve vy 1) = H(r 'f',);‘” . [('(m
T

f

I U(r) exp { ! T} }:fr I o e 1)
. |
n

Noting that U(s,)

0 for 1;<<0. this can be written as

2 [

(Tyz)a (¥o. ¥y 1) = HU

{ M
\‘\P' =
Ui

i |

where. Wa (V. 2w) 65 given in (A10A).  Similarly

(Tygha (Vo 2o 1) = HU1

1) cos f - 2y, g sind
rysin@) | (et - 1aH))R
2y yysin

déy
Aoulle '

RS )_ _ct)g; il
1 sin ) - (71'._:'3

From Egns. (Al and (A2) the

oy

expressions  [or

Tyain 6

2 T13¢0s 7 can susily be
cYa

ms thus obtained are unique.
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