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सार – वर्षा के उपग्रह से लिए गए आकिनों में सधुषर करने के लिए प्रषय: सशंोधधत बषयस कष प्रयोग ककयष जषतष 
है। सबसे तेजी के सषथ संशोधधत ककए गए बषयस की पद्धतत मीन फील् ा बषयस (MFB) और िोकि बषयस (LB) हैं। 
कफर भी पे्रक्षित की गई वर्षा और उपग्रह से लिए गए वर्षा के आकिनों के अनपुषत कष प्रयोग करते हुए TRMM जसेै 
आकिन वर्षा की ककसी भी प्रकषर की स्थ थततयों के प्रतत असषवधषनी नहबं बरतती है। जबकक उा्   षकबबधंीय मेरब बषइम िेत्र 
में वर्षा कष न होनष प्रषय: होतष है। इस अध् ययन कष उद्देे् य MFB और LB के अनपुषत कष उपयोग करते हुए वर्षा के 
उपग्रह के आकिनों के संशोधन में सुधषर िषने पर ध् यषन कें रित त करनष है। जबकक प्रततिोमन देीरब पद्धतत कष उपयोग 
करते हुए अनपुषत को इंबरपोिेबेा करने से पहिे थ थषनीय बषयस के अनपुषत को वगृक त ककयष गयष। इस वववे न को 
अमि में िषने के लिए मकषसर जिसंधध के आस-पषस के वर्षा के आकंडों को लियष गयष है। वर्षा के न होने की स्थ थतत 
में अनपुषत के तना् फि होने से ब ने के लिए वर्षा के आकंडों में 1 लम. मी. जोडष गयष। इस वववे न कष मील् यषंकन वगा 
मीि औसत त्ररुितब (RMSE) औसत तनरपेि त्ररुितब (MAE) और सहसबंधं के सषथ ककयष गयष है। इन पररणषमों से यह पतष 
 ितष है कक पररा् क त िोकि बषयस कष तना् पषदेन RMSE और MAE में सुधषर िष सकतष है। सहसंबधं के मषनों के 
आधषर पर 20 क् िषसों सरितहत पररा् क त LB कंाीशनि मस्जिंग (CM) को छोडकर अन् य पद्धततयों की अपेिष सहसंबधं को 
बढष सकतष है। हषिषंकक RMSE में MFB की अपेिष LB की पद्धतत ज् यषदेष अछ छी़ है। पर यह CM से कहबं अधधक खरषब 
है। कफर भी MAE के थ थषतयव व की वजह से वर्षा के उपग्रह से प्रष् त हुए आकिनों के लिए LB सवाशे्रा् क संशोधन पद्धतत 
हो सकती है। इस पररा् क त अलभपसु्ा् ब से यह समम में आतष है कक वर्षा की घबनष के होने यष नहबं होने की बषत उपग्रह 
से प्रष् त वर्षा के आकिनों को प्रभषववत करतष है। 

 
 

ABSTRACT. Corrected bias is often used to improve satellite rainfall estimates. The fastest corrected bias 

methods are mean field bias (MFB) and local bias (LB). Nevertheless, using the ratio between rainfalls observed and 
satellite rainfall estimates such as TRMM neglects no rain conditions. Whereas zero rainfall often happens in the tropical 

maritime region. The aim of this study focuses on improvement of correcting satellite rainfall estimates in using the ratio 

of MFB and LB. Modified MFB is done by classifying the ratio, then multiplied it to the pixel of TRMM rainfall 
estimates. While, classified the ratio of local bias is done before interpolated the ratios uses inverse distance methods. 

Implementation of this treatment uses rainfall data in surrounding of the Makassar Strait. For avoiding of failure of a ratio 

in zero rainfall observed, 1 mm is added to the rainfall data.  Evaluation of this treatment is assessed by root mean square 

(RMSE), mean absolute error (MAE) and correlation. The result shows that performance modified local bias (LB) can 

improve RMSE and MAE. Based on value of correlation, modified LB with 20 classes can increase correlation than other 
methods except conditional merging (CM). Although LB is better methods than MFB in RMSE, but it is worse than CM. 

Moreover, modified LB can be considered as the best correction method for satellite rainfall estimates because of the 

stabilization of MAE. This modified, affirm assumed that the persistence of rainfall event or not, have an effect of 
satellite rainfall estimate performance. 

 

   
Key words – Corrected satellite rainfall estimates, Tropical maritime, Sulawesi, Modified. 

 
 

1.  Introduction 

 

 The availability of precipitation data in satisfactory 

spatial distribution is difficult to provide for hydrological 

needs (Goovaerts, 2000; Jia et al., 2011). Rainfall data 

mainly derived from three sources. There are the direct 

rainfall measurement from rain gauge stations, rainfall 

estimation from remote sensing such as satellite and 

rainfall estimates from weather model. Although a rain 

gauge station measures direct precipitation and it is 

expected the most accuracy, but it restricted in numbers 

and poor in the spatial distribution. Hence, researchers use 

spatial interpolation to estimate rainfall in ungauged 

location (Keblouti et al., 2012; Das et al., 2017).
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Fig. 1. Locations of rain gauge (blue circles) in surrounding the Makassar Strait, Kalimantan (western) 

and Sulawesi (eastern). Sulawesi has more mountains (red colour) than Kalimantan, while 

Kalimantan is dominated by terrain below 1000 meters (green and white colour) 

 

 

 

Meanwhile, the others combine different types of rainfall 

data from various types of measurement techniques (Sik  

et al., 2007; McKee, 2015). Hence, this technique takes 

the advantages of both types of rainfall data to predict 

rainfall in a location. 

 

 The combination of different types of rainfall data 

can improve accuracy of rainfall estimation    compared 

with only remote sensing rainfall estimates (Kim et al., 

2008; Goudenhoofdt and Delobbe, 2009; Mitra et al., 

2009). The fastest method of combination of different 

types, uses the ratio between rainfall observed and remote 

sensing rainfall estimates (McKee, 2015; Mahavik, 2017). 

The ratio can be in a single value that applied in all areas 

or multiplies interpolation result of local ratio to rainfall 

interpolated. The first is called mean field bias (MFB) and 

the second is a local bias adjustment (LB). Some 

researchers restricted only consider in above 1 mm rainfall 

case, especially corrected rainfall in heavy rain 

(Goudenhoofdt and Delobbe, 2009; Mahavik, 2017). 

Therefore, they neglect ratio of zero value of rainfall in 

the interest area. 

 

 In the tropical region include Indonesian maritime 

continent (IMC), rainfall event is very random. Then, the 

rainfall in this region can be varied in a short time and 

also although in close location. Some places may have a 

high rainfall accumulation, but the other places have zero 

rainfall accumulation. This condition makes a lot of zero 

rainfall in daily accumulation found, although in the rainy 

season. The local factors such as sea or mountain breeze 

can influence of rainfall in a location (Qian, 2008; 

Hashiguchi et al., 2013). Combining with global weather 

global circulation through in this region makes rainfall in 

a location is not similar in each place in Indonesia 

(D’Arrigo and Wilson, 2008; Giarno et al., 2012; Lee,  

2015).   

 

 Using directly correction methods in this area that 

neglects zero rainfall is not suitable because it will ignore 

the large amount of rainfall data. Moreover, accuracy of 

satellite rainfall estimates varies both in the Indonesian 

maritime continent (Prasetya et al., 2013; Giarno et al., 

2018) and in other places such as Bangladesh (Rahman            

et al., 2012), Himalaya (Parida et al., 2017), Cina (Tang  

et al., 2016), Iran (Sharifi et al., 2016), Korea, Jepang 

(Kim et al., 2017) and Singapura (Tan and Duan, 2017). 

Rainfall at a location sometimes can’t represent to close 

locations, so weighting using general ratio neglects local 

variability. Hence, it may be not suitable to correct 
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TRMM rainfall estimates in local scale, mainly in                     

IMC region. So that it must be modified. Moreover,                     

using zero rainfall observed in ratio, will make the                 

failure of weight. So, this work tries improvement 

corrected the TRMM rainfall estimates by treatment                        

of the ratio. 

 

2. Data and method 

 

 2.1.   Study area  

 

 Surrounding of the Strait of Makassar is chosen in 

this study. This region is located between 113.875° E - 

123.625° E and 7.625° S - 4.125° N. There are two big 

islands in surrounding of this strait, Kalimantan Island and 

Sulawesi Island. Also, some sea encompasses this region 

in the north and the south such as the Java Sea, the 

Sulawesi Sea and the Flores Sea. Meanwhile, in the east 

part of this region, Kalimantan Island is a flatter land than 

Sulawesi Island, which it’s elevation does not reach            

1000 m. On the contrary, in the western part of the strait is 

Sulawesi Island that has mountainous region. Where it has 

complex topography. 

 

 Besides Asian Monsoon and Australian Monsoon as 

the most influential of rainfall event in IMC region,                 

the other factors that influence to rainfall event are                    

El Niño and the Southern Oscillation (ENSO), Madden-

Julian Oscillation (MJO, Indian Ocean Dipole (IOD) 

(D’Arrigo and Wilson, 2008; Hidayat and Kizu, 2010) or 

local circulation such as sea and mountain breeze 

(Hashiguchi et al., 2013). That makes each region                    

has an own early time of rainfall and withdrawal                

(Giarno et al., 2012). 

 

 2.2.  Data  

 

 Rainfall data in Indonesia are measured and 

collected by the Indonesian Meteorological Institute 

(BMKG) where the location of the rain gauge is 

distributed as shown in Fig. 1. The higher density of rain 

gauge in Sulawesi Island  than Kalimantan Island, also is 

in the south part of Sulawesi Island than the north part. In 

this work used 589 rain gauge locations in 2015. Where 

544 locations are used for the correction bias of                    

satellite rainfall estimates and 45 locations randomly 

chosen for validating the correction (Table 1). 

Independent rainfall observed is needed to evaluate 

performance of correcting the TRMM rainfall estimates 

(Mitra et al., 2013). 

 

 There are only less than 30% of the places in this 

region have rainy days in 2015. Very light rain event               

(0-5 mm/day) dominates a rainfall event. There is        

very little rainfall in the peak of  the  dry season such as in  

TABLE 1 

 

Independent locations of rain gauge for validating                               

rainfall bias corrected 

 

S. No. Name Location Long. (°) Lat. (°) Height (m) 

1. Cerbon Sei Rasau -3.045 114.753 6 

2. Banua Hanyar -2.454 115.165 7 

3. Langkang Baru -3.950 116.069 28 

4. Lontar -3.798 114.781 16 

5. Sengayam -3.981 116.193 15 

6. Pabahanan -2.731 115.338 30 

7. Samhurang -2.616 115.237 134 

8. Pudi Seberang -2.880 116.340 7 

9. Angsana Indah -3.713 115.602 16 

10. Manunggal Lama -2.530 116.000 10 

11. Upau Masingai’i -2.103 115.553 62 

12. Tenggarong -0.160 116.719 17 

13. Tenggarong Seb 2.164 117.456 29 

14. Rempanga -0.503 117.015 16 

15. Long Iram 0.010 115.644 86 

16. Bengalon 0.683 117.119 118 

17. Sangkulirang -0.987 117.981 1 

18. Bukit Makmur 2.111 117.122 60 

19. Harapan Jaya 2.197 117.130 700 

20. Nunukan 0.137 117.667 8 

21. BPP Bahagia -1.146 120.103 579 

22. Watatu -0.873 119.585 20 

23. Tivo 1.300 120.628 3 

24. Lais Ogoasang 0.779 120.449 3 

25. Ds Beringin -0.873 122.219 59 

26. Sinorang -1.382 122.446 6 

27. Baji Minasa -5.499 120.073 9 

28. BPP Amali -4.404 120.110 125 

29. BPP Lanca Tellu -4.384 120.239 52 

30. Awangpone -4.497 120.347 9 

31. Pg Camming -4.859 120.093 132 

32. Bontotanga -5.440 120.350 144 

33. BB Garing -5.442 119.842 300 

34. BPP Sukamaju -2.540 120.480 28 

35. Stamar Paotere -5.114 119.420 2 

36. BPP Tanralili -5.066 119.620 18 

37. BPP Marang -4.780 119.940 189 

38. Lampa -3.661 119.533 7 

39. SMPK Tiroang -3.829 119.741 20 

40. Watan Pulu -3.905 119.742 19 

41. BPPK Galesong -5.316 119.386 15 

42. Cakura -5.425 119.511 20 

43. Rantebua -3.090 119.986 784 

44. AAWS Bontouse -4.046 120.031 15 

45. BPP Manyili -4.179 120.285 16 
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August, September and October. In those months, no rain 

event  reaches  more  than  90%. On the contrary, the rain 

season in this year, rainfall event is not so dominant.                  

The peak of rainfall happens in December, January                  

and February when the moist air from the Asian monsoon 

is dominant cause rainfall in this region, mainly in the 

south.  

 

 Rainfall observed is considered the best data, then it 

will be used to correct  the TRMM rainfall estimates. The 

daily rainfall estimates of TRMM product is available              

at ftp://disc2.nascom.nasa.gov/data/TRMM/Gridded/). 

Although satellite rainfall products are not particularly 

accurate because of the spatial scale effect, daily 

resolution and the island complexity (Rahmawati and  

Lubczynski, 2017), but in some parts of Asia show that 

TRMM rainfall estimates better than others (Rahman           

et al., 2012; Hu et al., 2014). So this satellite rainfall 

product is chosen to combine with rainfall observed from 

land stations.  

 

 Combination rainfall observed from rain gauge and 

satellite rainfall estimates is done in daily. The missing 

data are neglected and deleted each day because highly 

dynamical of weather circulation in this region. Correction 

of satellite rainfall estimate uses rainfall observed on the 

same day.  

 

 2.3.   Bias corrected methods 

 

 There are two classes of correction methods for the 

rainfall of remote sensing estimates, error variance 

minimization and bias reduction (Wang et al., 2013;      

McKee, 2015). Minimization of error variance takes 

advantage of interpolation of error as a correction 

(Sinclair and Pegram, 2005; Goudenhoofdt and Delobbe, 

2009). While bias reduction uses one coefficient that 

multiplied as correction of rainfall estimation of remote 

sensing (Sik et al., 2007). Moreover, correction can be 

done in general or local correction, although this method 

is not always a good result in some places (Sik et al., 

2007; Goudenhoofdt and Delobbe, 2009), but it can be the 

best correction methods in the tropical region such as 

Thailand (Mahavik, 2017). 

 

 2.3.1. Mean field bias (MFB) 

 

 Mean field bias or MFB corrects TRMM rainfall 

estimates or other remote sensing rainfall estimates using 

the ratio, then multiplies it to each pixel of remote sensing 

rainfall estimates. The ratio obtained from comparison 

between rainfall observed and rainfall remote sensing 

estimates. The nearest pixel of rainfall of remote sensing 

is chosen in each rain gauge location. Then, the total of 

rain observed divided by the total of remote sensing 

rainfall estimates as correction using the following 

equation: 

 








N

i

i

N

i

i

R

G

C

1

1          (1)

 
  
 where, C is MFB correction, G is rainfall observed 

on the ground, R is rainfall estimate of remote sensing, i is 

rain gauge location and N is number of rainfall station 

observation on the ground. Corrected factor C is then 

applied in the entire spatial domain of remote sensing of 

interest.   

 

 2.3.2. Local bias (LB) 

 

 MFB uses one ratio that is applied to entire pixel of 

remote sensing rainfall estimates, so that difference of 

rainfall observed in a location and satellite rainfall 

estimates is not considered. Therefore local bias or LB is 

used. Ratio is calculated in each rain gauge location, then 

interpolates its whole interest of the area. Corrected in 

equation (1) is calculated in each location. 
 

 
i

i
i

R

G
C         (2) 

 

 Recorded zero rainfall is common in the tropical 

Indonesian maritime continent region, although in rainy 

season. Applied equation (2) directly will result an error 

correction factor. Hence, only the pairs exceeds 1 mm are 

considered (Delobbe et al., 2008). But, removing a 

location which has zero rainfall means ignoring the fact 

that there is a part of the area that does not rain.  So in this 

work, locations which has zero rainfall are still used, but 

modified by adding 1 mm to avoiding giant divisor. After 

calculating local correction factor in each location, then it 

is interpolated in the entire area of interest. The inverse 

distance weighting is used to interpolate method because 

of simple and fast in the calculation. Then, the 

interpolation result of correction factor is multiplied to 

TRMM rainfall estimates.  

 

 2.3.3. Modified correction by classification 

 

 Satellite rainfall estimates such as TRMM tends 

overestimate than in rainfall observed (Ochoa et al., 2014; 

Kneis et al., 2014).  Sometimes the difference between 

TRMM rainfall and observation rainfall is very large. So 

that it can result giant ratio. For this reason, it is necessary 

to classify the ratio. The Classifying the ratio can be used 

to anticipate a  giant  correction  factor. Moreover, in  this

ftp://disc2.nascom.nasa.gov/data/TRMM/Gridded/
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TABLE 2 

 

Comparison corrected TRMM rainfall estimates CM, mean field bias (MFB), local bias (LB) and the modified in 8, 9 and 20 classes 

 

Method/Indicator 
Correlation RMSE MAE 

Mean Max Min Mean Max Min Mean Max Min 

Trmm 0.16285 0.91957 -0.25466 13.23318 39.23360 0.00000 7.08595 21.26715 0.00000 

MFB_mean 0.01409 0.68869 -0.32477 19.49109 47.38728 12.81286 12.10074 25.28402 7.53909 

MFB_sum 0.01409 0.68869 -0.32477 19.49109 47.38728 12.81286 12.10074 25.28402 7.53909 

MFB_8class 0.01450 0.68869 -0.32477 16.14459 49.21500 0.00000 9.71127 25.46690 0.00000 

MFB_9class 0.01450 0.68869 -0.32477 16.14459 49.21500 0.00000 9.71127 25.46690 0.00000 

MFB_20class 0.01450 0.68869 -0.32477 18.16857 46.10915 0.00000 11.13316 26.27302 0.00000 

LB 0.14935 0.99789 -0.22132 15.17275 78.88354 0.00000 7.40768 32.21194 0.00000 

Local Bias_8class 0.15634 0.98109 -0.23250 11.44032 47.68220 0.00000 5.34286 22.98433 0.00000 

Local Bias_9class 0.15636 0.98109 -0.23258 11.44006 47.68248 0.00000 5.34213 22.98466 0.00000 

Local Bias_20 class 0.16331 0.98714 -0.22929 11.41270 40.37668 0.00000 5.41220 20.24909 0.00000 

CM 0.28231 0.99702 -0.26399 10.71762 104.52520 0.01546 6.14314 31.12116 0.00604 

 
 

work resulted correction factor in the equation (2) will be 

classified in 9 classes as below: 

 

 
1;10  ii CC

 
 

 
21;21  ii CC

 
 

 
51;52  ii CC

 
  

 
101;105  ii CC

 

 

 
201;2010  ii CC

 
 

 
301;3020  ii CC

 
 

 
501;5030  ii CC

 
 

 
1001;10050  ii CC

 
 

 
1501;100  ii CC

                   
 

 Correction factor that obtained from the equation (3) 

is interpolated using IDW in an entire interest area, then 

the result is multiplied with estimation of TRMM. Besides 

9 classes, in this work also calculates 8 and 20 class as 

compared.  

 

 2.3.4. Conditional merging (CM) 

 

 In this study we include conditional merging (CM) 

that is often considered the best in combining rainfall data 

from rain gauge and remote sensing rainfall estimates (Sik 

et al., 2007; Goudenhoofdt and Delobbe, 2009; Park et al., 

2017). Sinclair and Pegram (2005) are considered as the 

first ones that found this method (McKee, 2015). This 

method assumes that remote sensing rainfall estimates 

such as TRMM has a true field of unknown values, while 

the rain gauges produce an unknown field of true values. 

The CM combines the strengths of each technique using 

following equation  
 

      sGsGIsZ   

 

      sRsRIsR   

 

      sRsGIsM   

 

 where,  sZ  is the true rainfall field at location s, 

 sGI  is rainfall interpolation of  sZ  from the rain 

gauge and  sG  is error of  sGI .  sR  is the remote 

sensing rainfall estimates at location s,  sRI  is rainfall 

interpolation of  sR  using the remote sensing values and

 sR  is error of  sRI . Finally  sM  is the corrected 

rainfall estimates and s is a location. 
 

 Improved rainfall estimates with CM has longer 

steps than MFB and LB. First, TRMM rainfall estimates 

in each gauge location are selected and interpolated in the 

whole area of as interest. Second, the difference between 

interpolation and original TRMM estimation is calculated. 

Third, rainfall observed is interpolated in an area that 

(3) 
(4) 
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same with TRMM area of interest as correction of rainfall 

in each grid. Finally, the result of interpolation is added 

with a difference of interpolation and original TRMM 

rainfall estimates.  

 

 CM result contains two error sources. There are an 

error from gauge interpolation and satellite interpolation. 

Because of TRMM tends to overestimate prediction, the 

value may be negative. If the error is too large, corrected 

rainfall estimates will have big negative rainfall. Of 

course, it is an unreasonable condition for rainfall 

measurement. So in this work, all negative of the rainfall 

correction result is replaced by zero.     

 

 In this work, we modified CM by using an inverse 

distance weighting (IDW) than the original CM that 

always uses the kriging. A lot of zero of daily rainfall in 

the tropical region, so that this condition makes the using 

of a kriging very difficult and often unsuccessful for 

semivariogram modelling. 

 

 2.4. Evaluation method 

 

 Satellite rainfall estimates is corrected in daily, so do 

the evaluation. In this work, evaluation uses three statistic 

indicators. There are pearson coeficient correlation (r), 

root mean square error (RMSE) and mean absolute error 

(MAE) that formulated as  
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
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

 1              (7)                    (9)  

 

 where, iG  refers to rainfall observed, iG  refers to 

average of iG . While iCSE  refers to corrected satellite 

result and iCSE  refers to average of iCSE . Then   refers 

to total of rain gauge station and   refers to station index.  

 

 This evaluation was conducted using rainfall from 45 

different locations with the location which used               

for  correction  of  satellite rainfall estimates.  Correlation, 

 
Fig. 2. Correlation in bloxplot of TRMM rainfall estimates, 

conditional merging (CM), original local bias (LB_ori), 

modified local bias with 8, 9 and 20 classes respectively 
LB_8c, LB_9c and LB_20c, mean field bias with mean 

(MFor_me), mean field bias with summation (MFor_sum) 

and modified mean field bias with 8, 9 and 20 classes 
respectively MFB_8c, MFB_9c and MFB_20c 

 

 
RMSE and MAE are calculated on daily at each 45 

locations and simplified evaluation is shown in a table and 

boxplot. Besides showing the median, first and third 

quantile, the bloxplot will also show distributed in 

minimum and maximum of evaluation parameter.  

 

3. Results and discussion 

 

 3.1. Evaluation of correction method 

 

 Comparison of daily rainfall observed and corrected 

TRMM rainfall estimates showed that the daily corrected 

does not always result in improved accuracy, mainly in 

correlation (Table 2). Increasing of correlation is not 

always followed improvement of correction of TRMM 

rainfall estimates. There are only 2 methods better than 

original TRMM rainfall estimates, there are conditional 

merging (CM) and local bias with 20 classes. From mean, 

maximum and minimum correlation, all local bias and its 

modified have better correlation than mean field bias and 

its modified.  

 

 Base on RMSE and MAE show that CM and 

modified local bias are better than original TRMM rainfall 

estimates and other methods. Because of the value of 

mean of RMSE and MAE, CM and modified local bias 

smaller than TRMM. Although CM and modified local 

bias are better on average of RMSE, but maximum value 

of RMSE and MAE are bigger than TRMM. Comparison 

both of the best models, although CM is better in the mean 

of RMSE but classified LB results has stable errors with 

smaller maximum RMSE and MAE than CM. Also, 

modified LB has better MAE than other methods              

includes CM. 
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Fig. 3. Root mean square error (RMSE) in bloxplot of TRMM rainfall 

estimates, conditional merging (CM), original local bias 

(LB_ori), modified local bias with 8, 9 and 20 classes 
respectively LB_8c, LB_9c and LB_20c, mean field bias with 

mean (MFor_me), mean field bias with summation 

(MFor_sum) and modified mean field bias with 8, 9 and 20 
classes respectively MFB_8c, MFB_9c and MFB_20c 

 

 

 

 Figs. (2-4) show the distribution of boxplot 

distribution of RMSE, MAE and correlation of TRMM 

rainfall estimates and its correction. The MFB and its 

modified have lower RMSE and MAE than TRMM 

rainfall estimates, while local bias and modified local bias 

almost equal to TRMM prediction. Comparing other 

correction methods, CM is the best in correlation. On the 

contrary, boxplot distribution of local bias and modified 

local bias are almost similar to original TRMM rainfall 

estimates. Among local bias methods, modified local bias 

with 20 classes has slightly better than others, because the 

third quartile is higher than others. 

 

 Modified local bias can improve in RMSE and 

MAE. Comparing with the original local bias              

[Figs. (3&4)], these modified methods can reduce error 

less than TRMM rainfall estimates, mainly in MAE. The 

distribution of MAE of all modified local bias is slightly 

narrower than other methods. While, CM has smaller 

RMSE and slightly narrower than modifying local bias. 

Also, mean field bias and modified mean field bias have 

worse, both in RMSE and MAE than CM, local bias and 

modified local bias. Among correction methods, original 

MFB has the biggest in RMSE and MAE. Although its 

modified MFB still can improve but not better than LB 

and CM. 

 

 Among correction methods, conditional merging 

(CM) is frequently said the best methods (Sik et al., 2007; 

Goudenhoofdt and Delobbe, 2009). But in this work, 

based on statistical performance modified local bias with 

20 classes slightly better than CM. Although classified 

ratio  of  the local bias must be done carefully since not all  

 
Fig. 4. Mean absolute error (MAE) in bloxplot of TRMM rainfall 

estimates, conditional merging (CM), original local bias 

(LB_ori), modified local bias with 8, 9 and 20 classes 
respectively LB_8c, LB_9c and LB_20c, mean field bias with 

mean (MFor_me), mean field bias with summation 

(MFor_sum) and modified mean field bias with 8, 9 and 20 
classes respectively MFB_8c, MFB_9c and MFB_20c 

 

 

 

classified of the ratio results better than original TRMM 

rainfall estimates. The both of these methods are better 

than MFB and its modified. Comparison with other the 

tropical region such as Thailand that states MFB is the 

best correction method (Mahavik, 2017), in around 

Makassar Strait, original MFB result the worst among the 

methods. Although added classes of ratio make better in 

accuracy than original, but it is still worse than original 

TRMM rainfall estimates. While, adding classing LB, it 

can be significant to reduce errors. Value of RMSE and 

MAE of modified LB is relatively smaller than others. 

Although this modified also can reduce correlation, but it 

is not very significant. Addition, modified CM by using 

IDW interpolation makes possible to avoid fail in 

semivariogram modelling and results close performance 

modified LB. 

 

 3.2. Corrected bias related to MJO phase 

 

 The MJO early develops over the Indian Ocean, then 

moves to eastward over the maritime continent (MC) and 

finally over the western Pacific (Wheeler and Hendon, 

2004; Birch et al., 2016). Impact of MJO to the rainfall 

varies respect to location and time (Seetharam, 2008; 

Zhang, 2013). While, increasing rainfall in Indonesian 

region related to MJO phase 3 and 6. Particularly in 

surrounding of the Makassar Strait, rainfall raises when 

MJO in phase 4 and 5. The magnitude of MAE of the best 

modified corrected bias of TRMM rainfall estimates can 

be seen in Fig. 5. 

 

 Grouping MAE based on MJO phase shows that 

phase 1 and 5 of MJO results the smallest error. The first
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Fig. 5. MAE of two the best corrected bias of TRMM rainfall estimates, conditional merging (CM) and 

modified local bias 20 classes (LB20) respect to MJO phase 

 

 

 

phase of MJO is phase where MJO is not active in 

Indonesia, so that rare event happens in Indonesian       

region. While the fifth phase of MJO make a lot of  

rainfall in IMC region include the Makassar Strait. The 

value of MAE and RMSE in TRMM rainfall estimates 

strong relate to rainfall intensity, mostly rainfall 

persistency (Giarno et al., 2018). This work apparently 

support this assumption, where the first phase and fifth of 

MJO relates the dry and moist of MJO impact in the 

Makassar Strait.  

 

4. Conclusions 

 

 Performance of modified mean field bias (MFB) and 

local bias (LB) can be increased by classified of the 

categorized correction factor, mainly in reducing root 

mean square error (RMSE) and mean absolute error 

(MAE). Although improvement of the correlation is rather 

difficult. Only conditional merging (CM) and modified 

LB with 20 classes can increase the value of the 

correlation. Moreover, choosing the class of a ratio also 

determine a goodness of the correction. LB and CM are 

better methods than MFB. Moreover, modified LB can be 

considered as the best correction method because of the 

stabilization of MAE, while CM is the best method to 

reduce RMSE. Adding, avoiding error in a correction 

factor by adding 1 mm is needed to rainfall in each 

station. 

 

 Deviation of correction methods relates to the 

persistence of rainfall or not of this region. Corrected bias 

can increase perform of TRMM rainfall estimates in the 

driest and the wettest MJO impact. It may be appropriate 

in a future study to variation pattern of the ratio, 

appropriate method in IMC region and verify in the long 

term. Also, its relation to the impact respect to primary 

rainfall driven in this region. 
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