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Growth of random errors in temperature forecasts by
numerical method using centred time-differences

ABSTRACT. The growth of initial random errors in tem
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rature forecasts by numerical method using centred

time-differences is investigated. Horizontal advection in one dimension is considered. Assuming that there is no cor-
relation between the initial random errors at the different grid points and neglecting any correlation that may develop
in the course of computation, the random errors grow much more rapidly in this method than in forward time differen-
cing. In both methods, correlations develop between the random errors at different grid points in the course of computa-
tion. When these are taken into account, the growth of random errors is further enhanced in the forward differences,
In the centred time-differences method, these correlations keep the random error almost at the initial level.

1. Introduetion

In an earlier paper, Rao and Ramamurti
(1970) derived an expression for the growth of
random errors in temperature forecasts by nu-
merical method caleulated by forward time diffe-
rencing. In order to minimise truncation errors,
it is more usual to prognosticate temperature
using time-centred differences. Increase of random
errors in temperature forecasts by the latter method
is discussed in this paper.

The statistical method developed in the earlier
paper is briefly recapitulated below, as it forms
the basis of this paper as well. Let the functions,
A, B, and C be related as—

C=A4XB

Assuming that the errors in 4 and B are uncorre-
lated, it was shown that —

Var C = 42 Var B + B® Var 4 +

+ Var 4. Var B (1)

A and B represent the correct values free of error.
Var C is the variance of error in C, consequent
on errors in 4 and B. The other relation used
is that if,

M=P4Q @)
Var M = Var P 4 Var Q

provided P and @ are uncorrelated.

2. Error in forecasts by time-centred differences

The procedure of forecasts by time-centred
differences is outlined below. From the initial
temperature T (0), the temperature 7'(1) after
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the first time step is caleulated by forward time-
differencing as —

T(1) = Z(0) + (AT/At)y AL 3)

All subsequent steps are by time-centred diffe-
rences, so that,

T(2) = T(0) + 2 (AT/ At At (4)
and
T(n) = T(n—2) + 2 (AT/Al)ay At (5)

where the suffix of (AT/At) indicates the time for
which the ratio is caleulated.

Therefore,

Var(1) = Var(0) + (At)® Var (AT/At)y (6)

Var(2) = Var(0) + 4(At)2 Var (AT/At), (7

Var(n) = Var(n-2) + 4(At)? Var (AT At)a-y
(8)

In deriving these relationships it is assumed that
there is no correlation between the T term and
the corresponding AT/At term.

Neglecting diabatic heating and assuming that
motion is dry adiabatic,

LA o BT
at a3z
Assuming,

() Varu = Varv = Var U

(@) (AT).= (ATl = (AT)

+ v% +w(lq—T) (9)
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and that,

(#42) there is no correlation between the diffe-
rent terms in Eq. (9) and between the errors in
temperatures at neighbouring grid points, it was
derived in the earlier paper,

A (Ut s L 2 Var T 4 A _L\_T:"') Var U |
At 267 T3 S
Var T Var U w2 Var T
= ey
ar 7' Var 1
+ (Fq—T)*Varw + }&)7' naT_T_
20752

(10)
where, |V|? = u®+ 02

In Eq. (10), terms involving vertical velocity may
be of the same order as the other terms in certain
situations, as @, <<< G though w << |VI|. For
simplicity we neglect the terms involving vertical
velocity, and write,

AT |\VRVar ' (AT VarU

Var( z)_: Tom T
- Var T Var U

2 P TR Gl L)

noting that in convective situations Var AT/ At
will be more than the calculated value.

AT s Vardl [; s (AT): Var U
Var —E = 3m Vi T
+ 2 Var-l/ ]
Var T £k
(A?)?
where,
— L(&)z {‘."\\,T)2 Vill' I-r

262 [IVI“'-I- Var T
+ 2 Var U] (13)
We now substitute from equation (12) in equations
(6), (7) and (8).
Var (1) = Var (0) 4 ¢, Var(0) (14)
Var (2) = Var (0) - 4¢, Var (1) (15)
Var (n) = Var(n-2) + 4e,_, Var(n-1) (16)

The three items in brackets in Eq. (13) are in de-
creasing order and under strong wind conditions
it suffices to take into account the first term only.

Using equations (13), (14), (15) and (16), it is
possible to follow the growth of random errors
in any actual computation, making some suitable
assumption about Var U, [V|, (At) and Var T
values in € may vary at each step and appro-
priate values will have to be substituted.

In an attempt to estimate the growth of random
errors under different wind and temperature re-
gimes, we assume in the first instance that [V, (A¢f)
and Var U are constant. Var 7' in the right hand
side of equation (13) is taken as remaining equal
to the initial value, wiz., Var (0). As the first
term in the brackets dominates, this will not
materially affect the computation of Var (n).
With these assumptions e becomes a constant
and,

Var (1) = (1 4 €) Var (0) (17)
Var (2) = (1 + 2¢)? Var (0) (18)
and

Var (n) = Var (n—2) 4 4¢ Var (n—1) (19)

As € is positive and as variance is necessarily
positive the solution of (19) ean be written as

Var (n) = [A(g)* + B(—¢)™™] Var (0) (20)

where,
¢ = 2+ 1+ 4 (21)
Substituting for Var (0) and Var (1) in Eq.(20},
A+ B=1
and Adg—Bfg=1+¢
Hence,
1+ g(1+e)
A =g 77?2' + 1 =
and
p e
¢+ 1
e
A+

As € is one order of magnitude smaller than 1,
§=2%+/TTde ¥1+2+2 (22

q is greater than but near about 1. 4 is nearly
one and B about }e. Hence for larger values of
n, the term with coefficient B in (20) can be
neglected and

Var (n) =! 4¢" Var (0) (23
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TABLE 1

Values of o (n)/a(0) by c2nired time-differences method
(assuming that temperature errors at neighbouring grid
points are uncorrelated at all time steps of computation)

n
R0 e o S AT
g 0 20 100 200 300

0:2 6:6

0-1 2:6 -1

001 1-2 2-9

0-001 1-1 1:2 1-3

Equation (19) and solution (20) appear similar
to those for growth of truncation errors, but apply
to random errors here.

3. Comparison of errors

Table 1 gives the ratio of o (n)/o (0) for different
values of ¢ and =.

Comparison may be made of the growth of
random errors in this method with that by for-
ward differences. For € of the order of 0-1 or less,
expressions for ¢ and A can be further simplified
by neglecting terms with 2nd and higher powers
of e

g~ 14 2

2ihide L 1 €
B3 S i 4 )
Eq. (23) becomes,

A =

Var (n) = (1-_ :) (1 4 2¢)" Var (0)] (24)

Denoting the value by forward differences Varm (n)
Varm (n) = (1 + ¢)* Var (0) (25)
as given in the earlier paper.

It is clear that growth of random errors is much
more in time-centred differences than in the fore
ward differences provided the assumption holds
that no correlation exists or develops between
error values at neighbouring grid points. Table

2 gives values of o'(n)/e(0) for the same values of
e as in Table 1.

4. Numerical experiment to study the growth of errors

In the earlier paper a simple numerical experi-
ment was conducted to test whether the growth
of errors by forward differences was according to
the theory presented. The result was encouraging,
Nevertheless, it was considered that a more
thorough test should be carried out,

TABLE 2

Values 'of o'(n)/o(0) by forward differences (assumir g
that temperature errors at neighbouring grid points are
correlated at all time steps of computation)

02 2-5

0-1 16 26

001 11 1.6

0001 106 1-10 1.15

The propagation of temperature (in one dimen-
sion) along a closed circle is considered as in the

earlier paper. The relevant differential equation
is,

alfat = —U 3T [px (26)
We shall again assume that U is a constant
throughout the period of integration.

This may be written in a finite difference form
in forward differences as,

OAT
2—% [TJ‘+1(%—1)- T 5-1(n~1)]
(27)

20 grid points were taken along the circle. Setting
U At[2G=p, the equation may be written in the
matrix form as, i

Ti(n) = Tjn—1)—

5

Lep 0 0 — — 7y (n—1) 7y (n)
2 1-p 0 — — o |T,m Ty (n)
O R U e =]} — e
=p 0 0 — — p T'yo(n—1) Tyo(m)
(28)

Or

[P| |T(n—1)| = |T(n)

As by our assumptions p is a constant, Eq. (28)
leads to,

1 - 0 — — — »p 7y (0) T, (n)
g 1 -p — — — @ T, (0) T, (n)
-p 0 0 — — p 1 T,(0) Top(n)
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Or
|B® 1T(0)] = T(n)] (29)

where the matrix in p is raised to the »'h power.
The initial temperature 7'(0) at any point may
be regarded as composed of a true value #(0) and
an error ¢(0).

T(0) = #(0) + e(0)
Equation (29) may be written as

|P[* [4(0) + e(0)] = [t(n) + e(»)]
whefe

P [t(0)] = |t(n)]
and

[PI* |6(0)[ = |e(n)]

The t(n) series of temperatures would be subject
to growth of truncation errors but not random
errors while e(n) series represent the growth of
random errors. This shows the growth of random
errors can he studied independent of the real
temperature variation along the circle. Here-
after T in equation (29) will be regarded as re-
ferring to random error only. There is advantage
in separating the treatment of truncation and
random errors as the latter can be developed by
statistical methods,

Twenty normalised error series of twenty values
each, with zero mean were constructed. These
twenty series were associated with the twenty
grid points. In the first computation, the first
values of the twenty series were assigned to the
twenty grid points and the temperatures after
ten time steps were computed at all the grid points,
Next the second set of values in the series were
assigned to the grid points and computations
were made up to ten time steps. Similarly com-
putations were made with all the twenty sets in
the series.

‘To_make the point clear let us represent the

twenty values of the twenty series as —

Sy5ni o Biag < Ry . o == == By

€31 €353 €31y — - = - &3,39

€ops1  €apr2  Caosa = =l = — g
The series €;,15 €gyqeavessa. €y9,1 18 normalised

with zero mean. Similarly the other columns,
The column number shows association with the
grid point. Values with the same row number
are used as initial values for computation,

After the computation, twenty final tempera=
ture values are available for each grid point. The
mean and standard deviation of the twenty values
at each grid point were calculated. It was found
that the mean of the final values was zero. The
standard deviations at the twenty grid points
ranged from 1-47 to 2-51 with a mean value (cal-
culated from the mean variance) of 2:02. In the
computation the following values were used :
U=50kt, =100 n. miles, p =025 and e =
0-125. By Eq. (25) the value of o'(#)/ o(0) should
have been 1-8, while the average value is 2-0,
Though the expected and computed values are
reasonably close, the latter is definifely higher.

Similar computation was made for the centred
time-differences method. Surprisingly the stan-
dard deviations at the twenty points ranged from
0-72 to 1-23 with a mean value of 1'05. As per
Eq. (23) the value should have been 3-3.

To sum up, accumulation of error is more in
the forward differences and less in the centred
time-differences method than the expected values
derived on the assumption that there is no correla-
tion between the errors at various grid points
at any time step. The discrepancies are explain-
ed in the next section as due to the correlation
which develops between errors at neighbouring
grid points in the course of computation.

5. Correlation between grid points— Forward difference
From Eq. (27),
Ti1) = Tj(0)—pT;+,(0) + pTj4(0)
Tjia(1) = Tja(0)—pT12(0) + pTy(0) = (30)
Tia(l) = Tjsy(0)—pTi0) + pTi5(0) |
Similar equations for the next time step are:
Tq2) = Ti1)—pTin(1) + pTia(1)
Tj14(2) = Tjpa(1)— pTies(1) + pTi(1) %(31)
Tj4@2) = Tja(D)—pTi(1) + pTje(1) |

As in the previous section we shall consider that
we are dealing with errors in the initial values
T(0) which are mutually uncorrelated.

From (30) we may write,
Varm (1, §) = Varm (0, j) + p* Varm(0, j - 1)+
-+ p® Varm(0, j—1) (32)
In deriving (32) correlations between neighbour-

ing grid points do not arise as we have assumed
that the initial values are uncorrelated,

b REEERRR i i E
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We had also set,
Varm (0,7) = Varm (0, j 4+ 1) = Varm (0, j—1)
= Varm(0)
which is the same as Var (0) = L
Hence,

Varm(1) = (1 + 2p?) Var(0) (33)

We have omitted the subseript j on the left hand
side as the value on the right hand side has no j
in it, that is, the variance is the same at all the
grid points.
_ Considering the first of the equations (31)
Varm(2,j) = Varm(1, j)+p* Varm(1, j-+1) +
+ p?Varm(l, j—1)—
—2pr(Lj, 1i44) o'(L,5) o'(1, 54+ 1)+
+ 2pr(13, L-1) 0'(L,7) o'(1, j—1)—
—2p*(Ljgy, Lioy) (L, 41)0' (1, 5-1)
(34)
The correlation® 7(1; 1; ;) between T(1) and Ty,
(1) can be obtained from the common terms
between their expressions in Eq. (30). (The method
of deriving this is given in Appendix B).
(15, lj-l-l) =0,
T(]'J'I ].J'_l) - 0,
— :p'a
7(Li41, Lioy) = PR

Using (35) and noting that o'(1) iz the same
at all the grid points, (34) becomes,

(35)

_ 2
Varm(2) = Varm(l)[l +2p*+ 7 fz p"]

'l
= (14 zpe)[l +2p* + T ] Var(0)
(36)

Again the subscript j on the left hand side has
been omitted. Neglecting the correlation that
has developed between neighbouring points, the
corresponding expression would have been (1+4-2p2)2

As 2p® =€, (36) may also be written as,

2 Iven
are] VO
(37)

Varm(2) = (1-|—e)[l +e+

For the third time step,
r;3)=T (’)"_'PTJ 1(2) + pT'5-4(2) (38)

Values of T'(2) in terms of 7(0) will be given by
IP® [T(0)| = |T(2)I (39)

The expression for variance from (38) is,

Varm(3,j) = Varm(2,7) +* Varm(2,j+1)+
+p* Varm(2, j— 1)—
—2pr(2, %51) 0’ (2,5) o' (2 j+1)+
'~Pr(‘2g. 2j-1) ' (2.5) o' (2,5 —1)—
— 291211 2j-1)0’ (2,5 +1)e'(2,j—1)
(40)

From common terms in (40)

"2, 2%m) =0
"(2;,244) =0
; ; — 2p3(14-2p2
r(‘zj 13 zj—l) _—'_(1+];152+6;‘))

In Eq. (35) similar correlation was only ——p‘/
(1 +2p?) whereas at the next time step it is
(—2p*—4p")/(1 4 4p* + 6p*). Thus the numerical
value of correlation entering into the error growth
equation increases with the number of time steps,

Eq. (40) can be written with usual simplification
a8,

Varm(3)

4048
(1 + 2pf 4 —- 1+4p? _}_];;4) Varm(2)

= a2 (14224 2]

9 4pA4-8p°
T T i i e L
x (14 2+ 4p° i) Vax(0)

@ 9+ e g
+
X [1+ €+ I—J:zm] Var(0)

(41)

Neglecting the correlations, the expression was
(1+¢€)®. In the actual calculation the correlation
(-1, Mj_4) increased from 0:05 at n=1to 0+45
at n=9. Taking these into consideration o'(10)/
o(0)=2-05 instead of 1+8, while the mean compu-
ted value is 2-02,

6. Correlation between grid points—centred time differences
method

The effect of correlations in the centred time
differences method will now be considered. The

*As T8 ropmsent. errors, 7)j(0) can be taken to represent a series of error values, Correspondingly 7'j(n) has a series of values,

Correlations are between these series.
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- first step is by forward differences and no corre-
lations enter on account of the initial assump-
tion. Hence,

Var (1) = (1 4 €) Var(0)

The expression for the second time step in finite
difference form is—

TI5(2) = T50)-— 29T 1, (1) + 2pT;4(1)
T';y4(1) and T;_,(1) are to be taken from (30).

(42)

Var(2,5) = Vax(0,7) + 4p2 Var(1,j+ 1) +
+ 4p2Var(l, j—1)—
— 4pr(05, 1j1,) 0 (0,5) o (1,j 4 1)+
+4pr(05, 1;_1) 0 (0, §) o (1,5 —1)—
—8p%(1j11, 1-0) o (L, +1)o (1,5—1)

(43)
705, 1i41) = p[(1+2p)}
"0, 1) = —p/[(1+2p?}
(i1, L) = — 2/ (14 2p%)
Substituting o (1) at all grid points,
Var(2) = Var(0) (1 + 6¢2) (44)

Neglecting the correlation Var (2)/Var (0) is
(14-2¢)?, whereas it is now only (1-6e2). This
is even less than the ratio after the first time stop
which is (14-€).

Similarly,
Var(3) = Var(0). [1 4+ e—12¢ 4 40é?]

Without taking into account the correlation Var(3)/
Var(0) would have been 1-+-5e-}-16<2-16€3 whereas
it is now only 1-+4e—12¢2440€ which is much
smaller. This process repeats itself and the value
of Var(n) is kept low, almost at the initial value.
The. correlations between different terms in the
formula of the centred time differences method
{is such as to keep the growth of random errors
very low, Taking into account the correlations,

(45)
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o(10)/(0) should according to theory have-been
1-05 while the actual in the computation was 1-03.

One important point in the numerical experi-
ments is that the value of p has been kept con-
stant at all the grid-points. This arises, from assu-
ming the same wind speed at all points which
remains constant throughout the period of in-
tegration. Though this is not likely to be realised
in actuality, the wind speeds may not vary much
at neighbouring points. Hence the error growth
in this method may be restricted and the error
may not change radically from its original value.
The above result of the etfect of correlation has
been derived for motion in one dimension. The
effect in two and three dimensional grids and for
more generalised motion in the atmosphere re-
quires further study.

In the earlier paper it was made out that due
to the increase of random errors with each step
in the numerical prognostication by forward
differences, some time limit is set for the period
of a useful temperature forecast. In the centred
time differences method due to correlation bet-
ween computed error values, the period for which
useful forecasts can be made appears to be con-
siderably extended.

7. Conelusions

(1) In temperature forccasts by centred time
differences method growth of random errors is
much more rapid than in the forward differen-
cing if correlations that develop between computed
errors at different grid points are neglected.

(2) 1f these correlations are taken into account,
the increase in the errors in the centred time diff-
erences method seems negligible while in the for-
ward differencing the errors are further enhanced
by these correlations,

(3) The effect of correlations on growth of
random errors has to be investigated in the case of
two and three dimensional grids, and for a more
generalised motion in the atmosphere.
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74 =

T p) i

Tiny j)

[
T \n) il

O(msf) =

T'(n) —
T's(n) =
¢ =4
STl B~
(AT —
G 4,
Gz '
(g, 86) —
Var A —
Var T —-

Var(n) -—

Var(n,j) —

Varm(n) —

Varm(n,j) —

r P,

APPENDIX A

Explanation of Symbols

Standard deviation of errors in A.

Standard deviation of errors of temperature after n time steps, by centred time
differences method.

Standard deviation of errors of temperature after n time steps of integration at
4% grid point, by centred time differences method.

Standard deviation of errors of temperature after »n time steps, by forward
differences.

Standard deviation of errors of 10mpera.ture after n time steps at 7t grid point
by forward differences.

Temperature after » time steps of numerical integration.
Temperature at the 7% grid point after n time steps.

Time.

Difference in temperature between two grid points in the x-direction.
Difference in temperature between two grid points in the y-direction,
Horizontal grid distance.

Half the vertical interval used to calculate the lapse rate,

(. C. between temperature values at j*» point after ¢ time steps and £*™ point
after s time steps.

Variance of error in 4 = 942,
Variance of error in temperature.
Variance of error in temperature after n time steps.

Variance of error in temperature after n time steps at j' grid point by centred
time differences.

Variance of error in temperature after n time steps by forward differences.

Variance of error in temperature after » time steps at j* grid point by forward
differences,

Lapse rate of temperature.

Dry-adiabatic lapse rate.

Horizontal zonal velocity component of air.
Horizontal meridional velocity component of air.

Vertical velocity component of air.

1
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APPENDIX B
Let P and @ be two functions of z, y, ;
P=agi24b Y+ iivesannans
Q o (1-2 I + llg y "I esessennnsas
LAY P Bl L I L take a series of values such that 2z =2y = ............ =0
SRYR=a TN . =0, Wl o, =0y ="\ s iews = o. The expression for the correlation
coefficient between P and Q then is —
N PO
P, = v, 0,
e 4 @y ay 7% 4 Ll__(fg__gf_+ ..... A+ (@ by + bag)ry + .....
(a2 + b2y + ..... + 2a,b, 2y + ... B (afz® b2 4 ... + 2ay05zy + .. .. )}

ayas + by by ...,

BT L0+ ..... W (@2 + b2 + ..... )




