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ABSTRACT. The quasi-geostrophic omega equation has been numerically solved to get the vertieal velocity
distribution in a typical westerly disturbance. The effects of sensible heat and latent heat of condensation are also
included. Three dimensional relaxation was performed to get the numerical solution of the omega equation
for a 4-Jayer model. The computations were performed on HITAC 5020.

The numerically obtained vertieal velocity field is in good agreement with the observed weather pattern associa-
ted with the middle latitude large-scale disturbance, i.e., ascending motion in front of the trough and downward

motion in the rear of the trough.

1. Introduction

The problem of the vertical velocity computation
has been of vital concern to meteorologists. Being
small in magnitude but at the same time being
important for weather and weather systems,
especially in the study of ageostrophic divergent
motion and energy transformation, many attempts
have been made to find an accurate method of
computing the vertical velocity. Therefore, in
addition to kinematic and adiabatic methods,
today we have sophisticated multilevel dynamical
models to compute vertical wvelocity. Subse-
quent to a classical paper by Charney (1947),
the quasi-geostrophic system of equations have
been widely used. Although the system was
evolved on the basis of its applicability to large
scale systems of middle latitudes, and at present
there is no rigorous justification for its applicability
to the tropies, some recent studies (Hawkins
1967, Rao 1970, etc) indicate that the wvertical
motion obtained from the quasi-geostrophic omega
equation is a fairly good approximation even in
the tropics.

In the present study, an attempt has been
made to solve the quasi-geostrophic omega equa-
tion numerically. The finite difference form and
computational scheme etc have been elaborately
described.

Diabatic forcing due to latent heatand sensible
heat have been also introduced and the vertical
velocity induced by these diabatic factors has
been computed. In the present study, frictional
effects have been neglected.

.

As a test experiment, the program for a numeri-
cal solution of the omega equation has been run
on the data generated by another program for
an analytical pattern, which simulates the features
of a typical middle latitude westerly disturbance.
The reason for taking a typical middle latitude
westerly disturbance pattern is that, at present,
we have sufficient observational information
regarding the structure and associated vertical
veloeity distribution of such disturbances. The
vertical velocities obtained are in good agreement
(in magnitude and in spatial distribution) with
the observed weather pattern associated with
middle latitude large scale disturbances, i.e.,
we find ascending motion in front of the trough
and downward motion in the rear of the trough.

2. E7aations governing the model
2.1. Quasi-geostrophic system of equalions

Under the usual approximation based on the
scule considerations by Charney (1947), the vorti-
city and thermodynamic energy equations may
be written for frictionless and adiabatic motion
as follows —
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The omega equation is derived from these two
equations by eliminating the time dependent
term and by using the geostrophic relation. How-
ever, if the time dependent term is eliminated by
use ofa balance equation, the resulting diagnostic
equation in w will be a balanced baroclinic omega
equation.

In accordance with the scale theory of Charney
(1947) and energy considerations illustrated by
Lorenz (1960), the advecting wind (V,) is taken
to be the nondivergent geostrophic wind and f
istaken asconstant on the right hand side of (1).
£ is given by the expression —

{=K-V XV (2.4a)

where K is the unit vector along the vertical axis.
The constancy of f and g will be discussed later.

Operating equation (1) by 2/ap and equation (2)
by (1/f) /2, we get after the substitution,

Vg = ¢ (2.4b,
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where, § the geostrophic stream function is defined
by —-
fo V2 = V¢ (2.7)

When the time dependent term is eliminated,
we get the following diagnostic equation in w —

J 3% _1[. 3 ,
Viet g SR~ 3 [fogp (Vy. V) +

- \7’3{%.'\7 (~— :;)”

5| o 1
(-]

The above equation was solved numerically by
three dlmen_slmm] relaxition. The details of the
procedure will be discussed in a later section.

2.2, Variation of static stability parameter

Eq. (2-8) has been derived under the assumption
that S is a funetion of p only and does not vary
with z and y. In order to maintain encrgetic
consistency, it is necessary that S should be func-
tion of p only (Sumner 1950, Wiin-Nielsen 1959,
Lorenz 1960 and Saito 1960). This assumption
makes it convenient to solve Eq. (2-8).

2.3. Variation of Coriolis parameter

It may be recalled that in (2.1), f istaken as
Jo- This condition is imposed to satisfy the cons-
traints of energy invariance and conservation of
vorticity. Some additional terms should appear
on L.H.S, to satisfy the constraints imposed by the
invariance of kinetic energy and vorticity, if f is
taken as a variable (Appendix I). However,
ibmay be noted that f is taken as a variable for
the purpose of computations of absolute vorticity.
As we are not concerned in the prognostic aspects
of the quasi-geostrophic model in this study, the
problem of a variable f does not pose any serious
problem here.

3. Quasi-gzostrophie system of equations ineluding diabatic
foreing terms

Taking into consideration the nonadiabatic
heating effects, the thermodynamic energy equa-
tion (2.2) may be written as —

(3.1)

wheve, dQ/dt is the nonadiabatic rate of heating
per unit time and unit mass. Following the
procedure given in Section 2, a new diagnostic
equation may be derived given as—
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Hereafter, we drop the subseript g for geostrophic
motion. :

As (3.2) is a lincar equation in w, it can be
resolved into components —
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where, w = wy + o* (3.5)

Because of the linearity of (3.2), solutions obtained
by solving (3.3)and (3.4) separately may be added
to get the final solution under appropriate boun-
dary conditions.

dQ/dt, is the rate of non-adiabsatic heating per
unit time and unit mass, may be produced by
latent heat of condensation, sensible heat transfer,
radiation and friction. In the present study only
the first two factors have been considered. Conse-
quently, if dQz/dt and dQs/dt are the rate of heat-
ing per unit time and unit mass by latent heat of
condensation and sensible heat supply respectively
we have,

dQ _ Ao . a0

dt dit dt

Therefore, (3:4) being linear may be further
split up into the following equations —

(3.6)
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where, @, and w, are the vertical velocities due
to the latent heat of condensation and sensible
heat supply respectively. Consequently,

o = w; + wz

and o "——‘wo+m|_+wg

(3.9)
(3.9b)

Three dimensional relaxation will be performed
separately to solve equations (3-3), (3-7) and (3°8)
and the final  will be given by the algebraic sum
of wy, @, and w, obtained from equations (3-3),
(3-7) and (3-8) respectively.

3.1. Inclusion of the latent heat of condensation

One of the obstacles in solving (3-7) is the
parameterization of dQ/dt in terms of known
or observable meteorological quantities. Here,
we follow the method adopted by the electronic
computation centre of Japan Met. Agency (1963).

For a saturated atmosphere,
e
W _ _

et (3.1.1)

where, L is the latent heat of condensation (assu-
med to be constant) and ¢* is the saturated speci-
fic humidity. Following Gambo (1963), it may
further be written as,

dQr _ _ rdg*
dt ol dt

= —Llf* (3.1.2)

where, F* is the condensation rate and is function
of p and T only. The exact mathematical ex-
pression for F* is given as,

P

RN

3.1.3
o (3.1.3)

(X = R/C, = 0.28)

In the above expression, subscript p or T' denote
the differentiation at p=const. respectively. The
derivation of the expression for F*is given in
Appendix II.

However it is seen, that in (3.1.2), @ which
is yet to be computed appears explicitly. There-
fore w, which is calculated by solving (3:3)
is taken as the first approximation of w. As a
matter of fact, if w, isalso known independently,
(wg + ws) may also be taken as a first
approximation for w. Since the formulation
for dQs/dt is such that w; can be found indepen-
dently by solving (3:8), (w, + wy) has been
takenfas the first approximation of w.

Let, w' = wy +w, (3-1-4)
Therefore using (3:1:2) and (3-1-4), (3:7)
may be written as—
= f Wy ] o R -
Vzwj_ “l" S_ _‘? it S Cpp Va{—wLF"‘)
(3.1.5)
%
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It is interesting to note that unit of 8* (m? sec™®
mb~2) is same as that of S. Usually, (3-1-5) is
written as,

f02 Pwy gt g '

V3w + =3 —6’_?3 — Sk 5 @ (3.1.6)
Saito (1960) has evaluated the approximate
values of S* at different isobaric surfaces for
different ranges of temperatures. The mathema-
tical expressions are shown in Appendix I
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Fig. 1. Artificial land and sea distribution for calculating
the sensible heat cflect

In order that the solution of (3-1-6) may conve-
rge. it is always necessary to satisfy the criteria,

S — 8 <0 (3.!.7)

Wherever this criterion is not satisfied, S*
is forced to be equal to 0.8 S or below. The details
of this criterion for convergence are shown in
Appendix TII.

Normally we do not expect much precipitation
to take place above 400 mb; consequently o’ is
put equal to zero at or above 400 mh. For the
levels below 400 mb, it is assumed that,

%%-‘:_:ﬂ if & >0
d ’ ’
and T(‘:L-'-: —w LF* w <0

3.2, Inclusion of sensible heat

The role of sensible heat supply has also been
parameterized in the way similar to the one
adopted in the operational 4-level quasi-geo-
strophic baroclinic model in Japan (1963).

Following Jacobs (1951), Martin (1962) and
Spart (1962), the eddy flux of heat H per unit
time into an air column of unit cross-section lis
computed by the relation,

H= AV(T,—T,) (3.2.1)

where, A is a constant., V7 is the surface wind
speed, T, is the surface water temperature and
T, is the surface air temperature. It is further
assumed that the heating decreases with the
the decreasing pressure according to a power law.
Therefore, the rate of heating per unit time and
unit mass, at the pressure level p is given by,

dQs EE ey , P2\
L= AVI(T,—T,) (;*)

p* is surface pressure and A4, ¥ are constants.
The constant 4 has been given the numerical
value,

4 = 1.0 X 1073m sec? deg™?

Following the suggestion by Manabe (1958) that
rate of heating due to the sensible heat supply
decreases rapidly with height, ¥ has been taken
as 2, It may be easily seen that the order of
of magnitude of dQs/dt is comparable to the order
of magnitude of dQ./dt for the normally observed
surface winds, provided the temperature difference
between surface and the overlying air is of the
order of 1 ~ 10°C,

On physical grounds, upward motion may be
expected if there is sensible heat supply from an

~ocean surface to the overlying air, but a down-

ward current may not be obviously expected
if sea surface is colder than the overlying air.
Therefore, assuming downward flux of sensible
heat to be small, tentatively, if T, > T,

A = 1.0 x 107*m sec™! deg-1

is taken in this study. This reduction in the value
of 4 will not allow considerable descending
motion even if sea surface is colder than the
overlying air.

Sensible heat exchange between the a‘mosphere
and continent has not been considered. For the
purpose of the present study, an artificial
land sea distribution was made (as shown in
Fig. 1) and a pre-determined temperature contrast
was imposed between the land-sea interface and
atmosphere-ocean interface.

4. Gnorition of the input data

As mentioned carlier, a typical westerly distur-
bance superimposed over the basic zonal westerly
current of pre-specified wind shear has been taken
to obtain the associated vertical velocity distri-
bution by numerical integration of the omega
equation.

If ¢ is the geopotential field corresponding to
the basic zonal current and ¢’ is the geopotential
field for the perturbation, the field ¢, which has
been used for our computation, is given by —

¢=¢@p +¢ (4.1)

The values of zonal westerly wind speeds which
have been taken for the present computations
are shown in Table 1. Temperatures for a standard
atmosphere have been also given [or each pressure
level.
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TABLE 1

Vertica] structure of the model atmosphere taken
for the computations

Temperature Zonal wind
ke for standard speed
Pressure atmosphere
(mb) (°A) (km/hr)
0 200 217-0 130
1 300 22840 115
2 400 241-0 100
3 500 252+0 85
4 600 261-2 70
5 700 ~ 268+5 85
6 800 275+5 40
7 900 281+5 25
8 1000 287-0 10

Using the geostrophic relation and the equation
of state, we have,

AL L
ap  Jp 3
Knowing 3ii/gp and preseribing the value of 7'
along the middle of the domain from the above

table, T (y, p) can be found for all the levels.
From T (y,p) the hydrostatic relation,

(4.2)

5 ’F
e _ BT (4.3)

ap y 4
may be integrated with the boundary condition
¢ = 0 for k= 8. This choice of the boundary
condition is arbitrary. However, any constant

value of ¢ will also give the same w field.

Therefore, ¢ = —J‘% dp (4.4)

Since T'(y, p)is known by (4:2) ,$ (#p) may be
calculated from (4-4).

In order to compute ¢’, a sinusoidal disturbance
of wavelength 6500 km was considered. In order
that there may not be any inflow or outflow from
the northern and southern boundary, the distur-
bance is made to vanish along the northern
and southern boundaries. Therefore, if D is the
width of the computation domain, the analytical
form of a sinusoidal disturbance having a tilt
p along the vertical is,

o

¢’ = A sin A (z— p) sin %— (4.5)

where L is the wavelength of the disturbance and
A is the amplitude.

It may be noticed that p is a function of p
only. p has been taken to be half the unit grid
interval d (d = 250 km) for 100 mb. Since the
domain considered for the computationsis (23 % 17),
t. €., 23 and 17 grid points along z and y respe-
ctively the value of D is,

D = 16 x d = 4000 km
Differentiating (4:5) w. r. to # we have,

¥ 2m 2m sch X
el An T o8 = (z— p) sin oY

By the geostrophic relation, therefore,

i 2m am | Moy
fv= Amv-i—{ €08 F (& — p) sin T)-y}

Therefore, f ( v'max ) = Am (27/L), because the
maximum - possible value of the expression
under curly brackets is one. Specifying, therefore,
the value of ¥z, 4w can be evaluated.
In the present computation, v'max has been
taken’as 5 m sec-1,

Since,

e L.é‘:m

Eq. (4+5) may be written as,

(4.6)

L.f.v'm 27 N
¢ = __.‘{w— sin g (x— p) sin D y (4.7)
Now, since all the variables on R. H. 8. have
been specified 4" may be computed for different
values of # and y. The amplitude and wave-
lengths of 4’ has been taken as constant along the
vertical, therefore, (4°7) holds for all the levels.

Thus, adding (4-4) and (4:7), ¢ can be computed.
Since the finite difference forms of these equations
are straightforward, they will not be discussed
separately.

The contour pattern of geopotential for the
300 mb surface has been shown in Fig. 2. The
vorticity distribution for the corresponding level
is shown in Fig. 3. For economy in space, contours
and vorticity patterns for other levels have not
been presented.

5. Finile difference forms of the differential equations and
numerical computation

The finite difference forms of the differential
equations which appear in Sections 2 and 3,
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suitable for numerical coumputation, will be
presented in this section. The vertically staggared
grid, which has been used for the computation
of vertical derivative has been shown in Fig.
4(b). The number of grid points in the ¢ and ¥y
directions, and the corresponding grid interval
has also beer shown in Fig. 4(a) . It may be scen
from Tig. 4(b) that, we need to know the infor-
mation regarding height at the levels k=1, 3, 5

|
|
Fig. 8. Vort city field for level k=1 (300 mb)
Unit : 10-5 sec?

and 7 and knowing  at k=0 and 8 (as boundary
condition),  at levels k=2, 4 and 6 may be
computed by the three dimensional relaxation of
the relevant equation. Finite difference forms
suitable for numerical computation of static
stability parameter S, will be discussed separately.

For a square grid system as shown in Fig. 4(c),
of grid interval d the expression for Laplacian of
the variable ¢ 18,

.2

Vip= T Gk bt b b — ) (B.])

For the sake of convenience, hereafter, we shall
use the notation Y2%p for the expression under
parentheses. Considering the map factor to be
unity (.., m=1),

o 1
Vig= ] y e .]|
"1 s (5.2)
Similarly, J(a, b) = d_2J~’ (@, b) J

Following these notations the “finite difference
form of (2+8) which was used for computation is,

2F2
V2 wk *d‘ — | wk-2 + wkt+2 — 2wk
- ‘\k(QP)z
7 7 r
- J A — AlS
blk.ﬁp {p("h/)kv—l s("h/)kl-l}
e
sy ¥ [ 0]
(5.3)
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As the vorticity is caleulated only for the
points internal to the outer boundary, the value
of vorticity is needed for the points on the outer
boundary to calculate the Jacobian [J (n, Z)].
The absolute vorticity for any point on the bounda-
ry was made equal to the Coriolis parameter at
that point if there is inflow in the domain across
that point and was set equal to the absolute
vorticity at the adjacent grid point if there was
outflow . This criterion was adopted to have
partial control over undesirable inflow and out-
flow of vorticity from the computation domain.

Similarly, we also need the value of Jacobian
[J(¢y, $5)] at the outer boundary in order to
compute its Laplacian at the points internal to
the outer boundary. The values of the Jacobian
at the adjacent points has been taken, in the prese-
nt study, as the value of Jacobian at the outer
boundary points.

5.2, Computation of static stability parameter

The static stability parameter S, is given by
the expresgion,

a glné

§=—
0 ap

(6.2.1)

Taking the logarithmic differentiation of Poi-
sson’s equation and using the equation of state
and hydrostatic relation, the above equation may
be written as,

i 3 |
Cr p ap

Referring to the vertical grid in Fig. 4(b), the finite
difference form of (5:2-2) may he written as,

_|_.

(6.2.2)

Ac'a:q[g(Z;-:l + Z{—,_l—

22.) [ (2o }—

where, Ap = pi— piy = Phia— Pi

In the actual computations, Ap, was taken as
200 mb. As information on Z is available for
levels =1, 3, 5 and 7 the above formulation will
enable us to get S at k=3 and 5. From these
two values, S is obtained for the levels k=2,
4 and 6 with suitable weighting funetions.

The following interpolation was used —

S = S5 + (S5 — 8)/2

8, = (5, + 8) /2 L
S, = S, (600/800)2 J’

(5.2.4)

As discussed in Section 2-2, S has been taken
to be a function of pressure only. For any level,
the value of S is taken to be constant and the
appropriate value for that level is,

N

3 S

=1

A

MxN (5.2.5)

where, M and N are respectively the number of
grid points along the z and # directions.

5.3. Finite difference form of the omega equation
involving diabatic forcing

Following the procedure adopted in Sec. 5-1,
the finite difference form for the equations (3 8)
and (3-1-6) may be written as follows —

T (wnht s e =2on)}
R 1 dos
= ey (dt )k Gt
2 @)+ gln s et nega 2o,)c

= V1 (*f"; w) (5.8.2,

It may be recalled that—

LR

S* =
Op. P

W
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(a)
Fig. 5. Vertical veloeity field (adiabalic)

(b)
at leve! (a) k=2(400 mb)

(¢)

(b) k=4 (600 mb) (c) k=6 (800 mb)

Unit : mb/hr

(SENSIBLE MEAT)
LEVEL Wa 2 (400mm) Jla

(SENSIBLE  HEATI
LEVEL K=4L600 mb)
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LEVEL K3BCOOO mb)

a)

(b)

()

Fig. 6. Vertical velocity field (sensible heat) at level (a) 1:-=2 (400 mb) (b) k=4 (600 mb) (c) k=6(800 mb}
Unit: mb/hr
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g x LEVEL %= 4(S00mb

LEVEL® M=2 (400mu)

(LATENT HEAT)
LEVEL ® $(QO0mbL)

(a)

(b)

(e)

Fig. 7. Vertical velocity field (latent heat) at Ieval (a) k =2 (400 mb) (b) k=4 (600 mb) (¢) k=6 (800 mb)
Unit ; mb/hr

Following Saito (1960) the expressions given below
were used for the computation of 8% for k= 2,
4 and 6.

(S*)s = {25.0'+ (T>—249.0) X 2.0 } x 10-3)

(5%, = { 8.0 + (T,—249.0) x 0.81} X 103

(5%) = { 3.0 + (T, —249.0) X 0.46} x 103
(5.3.3)

The forcing due to latent heat of condensation
was made to vanish at k=2, because condensation
at 200 mb is negligible.

The approximation relations given as (5-3-3)
hold for the temperature range of 249° €' to 286°C.
From the temperature profile S* was calculated
at every grid point.

5.4, Three dimensional relaxzation

We used the accelerated Liebman relaxation

technique, with an over-relaxation coefficient
of 0:3.  The tolerance for the residual of

vertical velocity was taken as 0-00001 mb/sec.

6. Results

Figs. 5(a), 5(b) and 5(c) give the vertical
velocity distribution due to differential vorticity
advection, and the Laplacian of thermal advection.
A detailed study of these vertical velocity fields
reveal a westward displacement with height
in the centres of ascending (descending) motion
ahead (rear) of the trough. This is because of the
fuct that the westward tilt was prescribed while
specifying the vertical structure of the disturbance.
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Fig. 8. Vertical veloeity fleld (adiabatic--1atent hea’--sensible heat) at level (a) k=2 (400 mb)
(b) k=4 (600 mb) and (¢) k=6 (800 mb)

Unit : mb/he

This is also commonly noticed on synoptic charts.
However, the displacement in the present case
was only by one grid length (250 km) at 200
mb. This is so because the initial disturbanee also
had the same tilt.

Figs. 6(a), 6(b), 6(c) and 7(a), 7(b), 7(c) provide
the vertical velocity distribution cansed by sensible
heat and latent heat of condensation. It may
be seen that ascending motion due to sensible heat
is found only in those regions where sea surface
is warmer than the overlying air. This factor
may be of importance only in those cases where
sea surface is sufficiently warmer than the over-
lying air. Buch a situation may arise in the case
of polar out-break when very cold air spreads
over the warm oceanic waters. The role of latent
heat of condensation, if introduced in the way
being done as in the present study, is to enhance
the magnitude of the ascending motion in those
regions where ascending motion already exist
due to vorticity advection and the Laplacian of
thermal advection.

Figs, 8(a), 8(b) and 8(c) give the vertical
velocity distribution due to the combined foreings
on the right hand side of equation (3:2). It may
be recalled that the vertical velocities given in
Fig 8 are the algebraic sum of the vertical veloci-
ties in Figs. 5, 6 and 7.

It is seen that the magnitudes of the vertical
velocities and also the spatial distribution is in

agreement with the observed weather distribution
associated with westerly disturbances of middle
latitude. Ascending motion in front of the trough
and descending motion in the rear is readily
inferred from the given figures.

Acknowledgement

This study could not have been completed
but for the cooperation so kindly extended to
the author by the staff members of Electronic
Computation Centre of Japan Met. Agency,
Tokyo, while author was on deputation to
Japan, The author would express his gratitude
to Dr. Gambo, Dr. Saito, Dr. Itoo, Dr. Nitta
and many other members of E.C.C. for their
guidance and kind cooperation. Grateful thanks
are also due to Dr. Mohri, Chief, E.C.C. for provi-
ding with the excellent facilities to use the comp-
uter (HITAC 5020).

This work was carried out while the author
was in Japan on a WMO Fellowship. The author
wishes to record his grateful thanks to India
Meteorological Department, World Meteorologial
Organization and UNDP Office in Tokyo ete
for their help and cooperation during the depu-
tation.

The author thanks Mrs. 8. G. Gurjar (ITM)
for typing the manuseript and personnel of the
drafting unit of ITM for preparing the diagrams.

REFERENCES

Charney, J. G,

E. C. C. Staff members, Japan
Gambo, K.

Hawkins, H. F.

1947
1963
1963
1967

Geofys. Publrs, 17, 2.
Period Report on NWP, I11, July-Dee.
J. met. Soc. Japan, Ser. 11, 41, pp. 233-246,

Comparison of geostrophic omegas with vertical velocities
determined by using the balance equation in a diag.
nostic model. Fifth Tech. Conf, on Hurricanes and
Tropical Meteorology, Caracas, Venezuela (November),




14 J. SHUKLA

REFERENCES (contd)

Jacob, W. C. 1951 Bull. Seripps Instn. Oceanogr, Tech. Ser., 6, pp. 27-122,
Krishnamurthi, T. N. and Baumhefner, D. 1966  J. appl. Met., 5, pp. 396-406,
Lorenz, E. N. 1960 Tellus, 12, pp. 364.373.
Manabe, S. 1958 J. met, Soc. Japan, Ser. 1T, 86, pp. 123-133.
Martin, D. E. 1962  Proe. Inter. Symp, on NWP in Tokyo, pp. 283-296,
Rao, K. V. and Rajamani, S. 1970 Indian J, Met. Geophys., 21, 2, pp. 187-194,
Saito, N. 1960 Tech. Rep., 3, Japan met. Agenoy.
Spart, J. 1962 Proe. Inter. Symp. on NWP in Tokyo, pp. 185-201,
Sumner, E. J 1950 Quart. J. R. met. Soc., T8, pp. 384-392.
Wiin-Nielsen, A. 1959  Mon, Weath, Rev., 8T, pp. 171-183,

APPENDIX 1

Variability of f
Recalling (2-1), we have,

T
A iy upg=52=

3t ap
If we integrate for the whole domain, we have,

W < fvom= 5

(A.1.1)

In order that vorticity and kinetic energy are conserved, f should be constant, However,
if f is taken as variable, some additional terms should be mcluded in order to satisfy the conser-

vation eriterion, and the equation should be taken in the following form —

e 7 7. Uf — fiO@
™ V.V9+ V. Vf "fap

where, V="Vs+V¥x
APPENDIX II
Caleulation of condensation rate, F*

Recalling (3-1-2), we have,
dg*

— wF*
a
*
dgz may be written as,
dq* a2q* - eq*
= —=— V.V g¢* . —
it o G T+ o ap
At a constant pressure surface, ¢* is function of temperature only.
Hence, agq*[at = (a9 [aT) (3T | &)
We also know that —
Le
= f L+ —— g*
Infe = In G T. q

(A.1.2)

(A.11.1)

(A.11.2)

(A.IL.3)

where, subscript ¢ refers to condensation level. In moist adiabatic ascent, the equivalent potential

temperature is conserved; whenoce,

The above expression may be expanded (dropping the subscript ¢) to,

-??(ln_8)+V.7(lnB)+w—_%;'ln8=— -

Co. T @t

(A.11.4)




DIABATIC QUASI-GEOSTROPHIC,OMEGA EQUATION 45
On an isobaric surface,
a 3
(8__‘5 —|—V.‘§7)ln8: (sﬁ +V.v)1nr §
Therefore, (A. II. 4) may be written as,

Ino L dg*
ALLISSE Y. (A.11.6)

(-% 8 v) T4 Tw
Making the substitution (A. IL 3), (A. IL. 6) may be written as,

aT 3 L § ag* (3T a7* |
A Lv.vr ( s ]nG)T _g__(__ Y. ) 7 R G
Therefore, arranging the terms we have,
ar

57 = — V. VI — ) () (A.IL.7)

T 26 L ag* L og*
here, =(ﬁ—-;-_-__) d z=(1 ____)
FE R\ T £ T ee) AR T

Making the substitutions, (A. IL. 3) and (A.IL7) in (A.IL2) we have,

L a—q*—g-—V.VTJrV.vT—w(a)(b)-l}4-.-,.,ﬁ
L ap

at oT

dg* q* oq* bt 2 @ ag* g% - T oo

L RO o G B S g . W) it

at i { ap o ®) | 3p 3T 6 23p it

In the above expression, 99*/3p denotes the variation of ¢* as the particle goes across the constant
pressure surface. But, as we know that in this process, the particle experiences not only the variation
of pressure but also the temperaure, therefore, we may write,

g (L!‘) ( 39‘.) T
ap ap)r T \Gr ), o (A.IL.9)
where, subscript p or I' refers to the differentiation for p = constant and 7' = constant.

By differentiating (logarithmically), the equation

6=T (&)R‘m”
P
we have,
LAV T
¢ a» @ 0O »
Making the substitutions (A.IL9) and (A.IL10) in (A.IL.8) we have,

(A.11.10)

£ - {00, % -9, 3)
~ TS )+ o |
Recalling (A.IL1), we have,

e {2 (V) + & 2(35).]
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Saito (1960) has calculated the approximate value of the expression (LRF*/Cy.p) for different ranges
of temperature at different isobaric levels. The approximate expressions are given below —

LRF* SR 1L
C = {17.0 + (T, —244.0) X 0.18 } x 1073
p-]! fﬂr
= { 504 (T;—244.0) X 0,6 } X103 - 244 < T (k)
< 24
= { 2.5+ (Ty—244.0) X 0.3 } x 103 ] 2
LRF*
~CTF— = {25.04+(T,—249.0) x 2.0 } x 10 ]
P for
— { B.04(T,—219.0)x0.81}x103 { 249<T(k)
< 286
— { 3.0+ (T,—249.0) X 0.46 } x 10-3 .
#*
LRF® ¢ 99.0 4 (T,—286.0) x 1.23 } x 10 7
Cp.j? fOI‘
= { £8.0 + (T, —286.0) X 0.70 } X 10-3 v 286 < T (k)
30."
— {20.0+ (T, —286.0) x 0.41 3 x 10-3 ki

(k = 4, 6, 8)

where, T,, T, and T denote the temperature (in Kelvin scale) at 400 mb, 600 mb and 800 mh

respectively.

APPENDIX III

Convergence criteria for diabatic omega equation

Recalling (3-1-7), we had,
S . 8 < 0

as the uecessary condition for the convergence
of the omega equation with diabatic forcing.
If FD denotes the forcing due to vorticity ad-
vection and the Laplacian of thermal advection
and w(® is the corresponding vertical velocity,
following (2-8) we have,

fuz 82(91
S 3}92
Similarly following (3-1+6), we have,

— FD (ATIT.1)

V2ol +

-k
Vit fg—z %;‘;’2 — FD + ( i\d ol )
(A.TI1.2)
(where, w!, w?, o? ete refer to omega with different
foreing).
Subtracting (A.I11.1) from (A.1II.2), we have,
I & .. 1= 2S*]
Vw2 —o')+ 75 5;;( —al)=V (3—0))

Therefore, approximating the above equations,
we have,

W — ol & o
[

S*
W = (1 $ T) wt  (A.II1.3)

S

>

Similarly, @®—@? = wd

Substituting (A.1I1.3), we have,

S* S*
3 = —— =] 1
“ “ S (1 r S )w

( S* S%3\2
-{7 + (&)}

Therefore, in general we have,

! ( S S 2 S* n-1
gl — V2 A R (e 1
@ | 8 +(S)+ % S) o

Therefore, it may be inferred that in order that
solution may converge, i.e.,

w’n

™ = g1 2 E

where, E is some prespecified tolerance limit,
it is necessary to satisfy the condition given in
(3.1.7). In actual numerical computation, when-
ever this criteria is not satisfied, it is artificially
imposed in order to make the solution converge,




