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ABSTRACT. Chrystal has worked out a number of formule for seiche-periods under various assumptions
regarding the shape of the bed of the lakes where these seiches are excited, Based upon his method, periods of
seiches that could be excited in Lake Fife at Khadakvasla have been computed, The periods of the uninodal,
binodal, trinodal and quadrinodal seiches are obtained approximately as 1} hours, 2/3 of an hour, 5/12 of an hour

and 1/3 of an hour respectively.

Hidaka's method of solving Chrystal’s differential equation by the use of the theorem of Ritz in the calculus
of variation, has been used for the case, where the lake’s bottom is assumed parabolic. The uninodal period there-

by worked out for Lake Fife comes out to be 1} hours.

For a test of these computed values, experimental observations are requirad and it is suggested that a suitable
limnograph ba set up for the purpose of recording these oscillations when natural phenomena excite them.,

1. Introduction

The term ‘seiches’ was originally applied
to rhythmic variations of the surface level,

observed at the Geneva end of Lake Leman
in 1730. Subsequently they have been observ-
ed at a great many places and it isnow known
that they are excited either by seismic acti-
vity or by certain meteorological factors such
as passage of a storm, barometric oscillations,
rapid changes in wind direction and magni-
tude ete, over bodies of water not sufficiently
big by themselves to be directly influenced
by astronomical tide-generating forces. In a
seiche-oscillation, the entire water mass
heaves up and down as one mess, the period
of oscillation depending only on the dimen-
sions of the water-body excited, except in
those cases where the body of water opens
into a sea.

The theoretical determination of ordinary
longitudinal seiches in lakes, the shape and
gize of whose transverse sections vary only
slowly, has been reduced by Chrystal (1905 a)
to the solution of a linear differential equation
of second order, in the normal form, with
certain boundary conditions. The solution
was then applied by Chrystal (1905 b), to
Loch Earn and Loch Treig, with encouraging

results. In a subsequent paper Chrystal (1908)
has investigated the effect of a number of
types of pressure disturbances on a special
lake,

Wedderburn (1910, 1912) who discovered
the temperature seiche (where the water-body
has stratification due to temperature differ-
ences) hes reduced the problem of such
seiches to the solution of a second order
differential equation, very similar to that of
Chrystal for ordinary seiches.

The problem of seiches in its most general
aspects, involving any kind of configuration
for the bottom of a lake has been tackled by
Proudman (1914) and an application of
Proudman’s method to Lake Geneva by
Doodson, Carey and Baldwin (1920) has
vielded highly satisfactory results.

Chrystal’s seiche-equation has also been
solved in various other ways by Defant
(1918), Ertel (1933) and Hidaka (1936).
The concapt of the equivalent electric and
acoustical circuit for 2 lake has been used
by Derbyshire and Darbyshire (1957) in
determining the seiches of Lough Neagh.

by earthquakes are
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such seiches generated by the Lishon earth-
quake of 1 November 1755 is given by Davison
(1936) and of those by the Assam earthquake
of 15 August 1950 hy Kvale (1955) and by
Mukherjee (1955).

The object of the present paper is to apply
the results obtainad by Chrystal for determin-
ing the seiches that could be excited in Lake
Fife at Khadakvasla, under simplifving
assumptions, The seiche periods are also
determined by Hidaka's method for one of
the cases and the results compared.

2, Chrystal’s method

This method is applicable when the length
of the lake is considerably greater than the
breadth and the depth.

Let » denote the surface area of the lake
from one end up to anv transverse section,
Let this transverse section be at distance &
measured from any arbitrary fixed transverse
section along the lake’s length. The range
for v is 0 to @, where o denotes the total
surface area of the lake.

Let A(v) and b(v) represent the area and
surface breadth respectively, in the undis-
turbed state, of the transverse section cor-
responding to v. Further let Fand § denote
the forward displacement of a particle and
the elevation of the free surface at the same
section so that & and ¢ are functions of v
and time / only. If now u denotes the product
A(v) & i.e., the total volume of water which
has passed the section A(v) upto a time f,
we have the following equations —

v

— i) (Al 1

dx () ()

yo_ M \

¢ = 7w (2)
ou

¢ = — o 3)

Equation (3) represents the equation of
continuity, Assuming the atmospheric pres-
gure over the entire lake to be uniform and
neglecting the squares and products of dis-
placements, as is the case with small

Ill“‘]-ll;l.(‘l']ll'.‘“'l'-. one ohtains tle
free motion as

equation of

0® 714

ﬁg = =l (4)

ot= ca )
Introducing now another variable 5 =

A(v) b(r). we obtam from equations (3)
and (4). a single differential cquation —

o%u I &*w "
e S e = 5 (H
o qa(r) €12

s (1) is alwavs positive and we  wiil

consider only thosa types of lakes for which
& (r) 18 continuous, and da'dr does not vanish
at an end point. where » vanishes,

The curve which has 6 os the ‘vertical®
and ¢ 2s the “horizontal’ co-ordinates, s called
the ‘normal’ eurve of the lake.

Let the motion ba periodie with angular
\'r'llli‘i[_\' . SO I]!iI.T

w—=2d¢, smu(l 7)

where ¢, is a function of @ only. Equation
(3) then reduces to —

%,

der

-4 VH-?&"' — 0 (m
ga(v)

n solving (6), Chrystal assumes the three
simple forms for the normal eurve-—linear,
parabolic and quartic. He also assumes a
uniform surface breadth for the lake, and

rectangular  transversz  sections.  These
assumptions further simplify (6) fo
ol B IO (7)
7 ()

where o can be regarded as measured from
the origin of the (g, #) curve, Further g (x)
is now equal to A(r) b(z), where h(z) is the
uniform depth of the transverse section at
«. The results obtained for various forms of
the [L(r), #] curve are summarised below,
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(i) Rectilinear symmetric lake, with two
slopes shelving at both ends (Fig. 1)— Let
OA=0A’=I, be the semi-length of the lake.
Let depth OO’ at the origin be 1. If z is
measured along OA and z' along OA’, the
2 parts OA and OA’ of the normal curve AOA’
will have the equations —

I(x) = h(1—z/l) and M(z") = h(1—a'[l)
oml(1—afl)}

(gh)t

then the period of seiche-oscillation of the

2nl(1— a"&'i
(gl

Let W =

and W' =

gt 3, 4zl ;
lake isgiven by Ty = ———= where v i8

IV gh

the number of nodes (v = 1, 2, 3, . ...
Jv 18 a root of Jy(z) = 0 forv =1,3,5.. ..
and of Jy(z) =0 for v=2,4,6.... Ju (2

being a Bessel function of the nth order,

The nodal points are given by —
Jo(W) = 0 for OA
and Jy(W’') = 0 for OA'

(17) Rectilinear lake, with one slope, shelving
at one end (Fig. 2)—The seiches for such a lake
ate the same as the seiches of even nodality
for the symmetric lake shelving at both ends.
The period is. therefore, given by

where v = 0,1, 2,. ..., the number of nodes.
The nodal equation remains the same as
for the first case.

A< £

(tit) Concave symmetric complete parabolie
lake (Fig. 3)—As before semi-length =1 and
central depth = h. The equation to the
normal curve AO'A’ is h(z) = h (1—a?/1?)
and if W=uz/l, the period of the v-nodal
seiche is —

2l
3 :
+

/(v 1) gh

If ¢u =n? 1%/gh, where ny is the angular
velocity corresponding to  the v-nodal
oscillation, the nodal points are given by
(' (ey, W)=0, for seiches of odd nodality, i.c.,
v—odd and by S’ (ey, W)=0 for seiches of
even nodality, 7.e., v—even. (' (¢, W) and
S" (6, W) are the derivatives with respect
to W of the seiche-cosine function C(ev, W)
and the seiche-sine funetion S (¢y, W),
defined by :

Olow W) =1 — =% W24

S(os, W) = W —

Oy (Gv—'?z 5 3)

V5
2.3.4.5 L
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(1v) Concave semi-parabolic lake (Fig. 4)—
The seiches for such a lake are again the
sciches of even nodality for the symmetric
complete parabolic case. The period of the
v—nodal seiche is therefore —

2l

‘\/ E‘J (Zv

TU =

The nodes are given hy—

S’ (ty, W) = 0 when v is even;

where ¢, = »% Bjgh and »n, = 2=/T, .

(v) Concave symmetric quartic lalke truncated
at the two ends at equal distances fram the
seetion of maximum depth (Fig. 5)—Unlike the
above cases. we consider the lake truneated
at both ends since the ends of the untruncated
lake are essential singularities for the corres-
ponding solution of the seiche differential
equation. As hefore, let | denote the semi-
length OA=0A" and / the ceniral depth 00",
Let BOB’ be the untruncated lake. Let OB
OB’=!". The equation of the normal curve
BO'B’ is h(x)=h (1—2%/1"%)%  Let the depth
at A and A" be 7.

The period of the v-nodal seiche is

where A

K = 2log 5
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k' 1s obtained from the equation of the normal
curve as A(1-—21'?)3, The equatien deter-
mining the nodes of the lake AO'A’ is
{=—0u/ér = 0. Here u — h(r)E. TItcanbe
shown that u is of the form -

= [4(I'+ 2) (I'—z)f L
B(l' + x)f (I' — )¢ ] sin s

where A, B are constants and e. f are the
roots of pg—f;\ il I r."‘-'J(.""2 = (- -

42ghT?.

: — I\
It s=+ (=Y
+(_”,2 ) ,

thene = 3 4+ 78, f=1— 48,

¢ = n¥gh =

where 7 = 4/ K

We now have —

9 "' I" 4 )
I’ '.L' o —Sf-
B (—{-'_.7.7.,. } sin nt

4 and B are determined from the conditions

w= 0 at == 41  We thus obtain —
4 - -3 D (tan 8o - 7)
B = —1 D (tan 8x — )

where D is an arbitrary constant and g is
defined ]l‘\'

V-1

= log 7

log
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Nodal equation du/ér = 0 now becomes—
(' 4+ z)e! (V' — )~ (tan 8x + i) X
(@—208)+ (I' 4+ «)f7 (V' —a)e! X
(tan dae —7) (2421 8¢) =0

The period of the half-lake OO'C'A" is for
the v-nodal seiche,

7y

s 16 7% v2
gh xr ot

8. Application of Chrystal’s method to Lake Fife

The following details of the lake are extrac-
ted from Data on High Dams in India,
(Central Board of Irrigation 1950)—

Length of the lake

Surface area

A

=11 miles

=0 sq. miles
=0-75 mile
=4000 x 10° cu. ft

Breadth at dam site

Storage capacity
Observed max. depth at dam =935 ft

(1) Lake assumed to have a reciilinear bottom
with one slope, shelving at one end; surface
breadth is uniform and transverse sections are
reatangular—Fig. 21s a longitudinal section of
the lake, in which OO’ represents the dam.

The volume of the whole lake is obviously
1/2 Ib k. Taking the surface area of the lake
ag 6 sq. miles and the volume ag 4000 million
cu. ft, the height % at the dam end works out
to be 48 ft. This represents, under our assump-
tions, the average depth of the lake at the
dam.

The period of the v-nodal seiche is given by
4wl
Tv - T
; Jov Vgh
Taking j, = 3.8317,
jg = 10-1735,

v=10,1,2....

js= 70156,
Js = 13-3237,
we get after computation

7]

Ti=1hour 21 min, 7'y = 44 min,

T3=31 min, and 7, = 23 min.
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(7i) Lake assumed to have a concave semi-
parabolic bottom; surface breadth is uniform and
transverse sections rectangular—¥ig. 4 is a
longitudinal section of the lake with OO’
representing the dam.

The area of this longitudinal section can be
shown by quadrature to be 2/3 (Ik). The
volume of the lake is, therefore, 2/3 (IbA).
Taking the volume of water impounded on
the Lake Tife as 4000 million cu. ft and
its surface area as 6 sq. miles, we obtain
I =36 ft.

The period of the v-nodal seiche is given
by_

2wl .
.’[’V e ———————— Y= 0’ 132...'_
A 2 (2v+ 1) gh
We thus get
T, =1 hour 13 min,
T4 = 28 min, and

T's = 40 min,
T,y =21 min.

(tii) Lake asswmed to have a concave semi-
quartic bottow; surface breadth is uniform and
transverse seclions rf*rtrmgﬂ.hcrﬁFor reasons
already stated, the case of the complete
quartic lake cannot be considered.

In Fig. 5, 00’C "A’ represents the Jongitudi-
nal section of the lake under consideration,
00’ denoting the dam. It can be shown by
quadrature, that if OA’=I, OB’ =I', 00’ =h,
the area of the section O0'C’'A" is —

hl [a
Iz

12
2ol 9B — 10 e
= [ 16— 10 75 + 3
The volume of the lake is therefore

bl

— | 15—=10p? -3-1‘]

5 [ p*+ 31

where p = I/l is the ratio of the lengths of
the truncated and complete lake. Since the
surface area and the volume impounded are
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known for Lake Fife, we can work out #, if
p is known.

(a) Let p =3. Then A works out to be
36 ft. This gives depth 7' = A'C
shallow end = & (1 — p?)? =
seiche-oscillation with v-nodes lms a peri(_)d

A = 24/1 — (W'[h)} and

9
Bl

1:5 and K =1-

These values yield—
= 1 hour 2 min,

21min and 7y = 16 min.

(b) Let p = 0-95.
h = 42-6ft,

We then obtain

and these values yield —

1 hour 2 min,

=22 mmn and T, = 16 min.

4, Computation seiche-oscillation

Hidaka's method

In Hidaka’s
Chrystal’s differential equation (5), namely,

solution of

is subject to
u(0) =u(a)=0 (8)

and ¢(0)=oc(a)=0 (9)

The substitution z = v/a, where @ is the
total surface area of the lake, then reduces
the above differential equation to

d2 A
2 4(2)

=0 (10)

where u is assumed periodic, N = 4722/ T2k

and « (z), a dimensionless function of z, is
given by

6 (2) = hy (2) (11)

*The solution of (10), subject to (8), is

equivalent to finding the stationary value of
the integral

1
d+
I (u) A—-af{( ”.f ) kz) jdz (12)

Hidaka assumes that

e

u= & z(l—2)% 4;

where the 4;'s are constants. The (m-+1)
constants Ay, Ay, ... A,,, must be so
chosen as to make the integral (12) a mini-
mum. This necessitates that

a1 oI ol
od, o4 ~ T T4, 0 (13

al

—— =0 leads to the condition,
3 ‘!J

*For an application of the ealenlns of variations to eigen.value problems, n general treat ;. .
Methods of Mathematical Physics by R. B a4 Benursl Sreatmsut is iound

Courant and D,

Hilbert, 1, Chap. VI, 1053
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BofGHED G+ GEDGED F GEDGHD
=0 G+7+D (+i+2)

+2 G+2 _ ., . L

EYEE) ”‘*’} =0

22 (1 —z)? X zi+]
Here I._H—f ( e

Equation (14) gives rise to the following (m--1) simultaneous equations —

1 1 1 !
(E—-In?\.) Aﬂ +(?)‘*‘11 ?L) Al + (_IT} -—Izl) A,

+{ ”L+ ) - Im)‘- }Am = 0

m -+ 1) (m -+ 2) (m 4+ 3)

1

4(m—|—1)
{{ (m—+2) (m+ 3) (m+ 4) _'I"‘“)‘}Am =40

1 1
('m'_lz"\- 4, + (—--—-137\. A, + (—1#1 r )A2 -

b 6 (m -+ 1) I
T M) mrHmED) m+2 N dAm = 0

................................................

(m-+1) 1, 4 (m—+ 1)
{(m+1)(m T myy > J>A°+ { (m+2) (m+ 3) (m+ 4)

6 (m-+1)
m—+- 4) (m - 5)

m+111A1+{(7n+3 _'Im_*_zl}Az-{-...-

(2m-+2) (m+ 1) v
""+{(2m+l)(2m-}—2)(2m+3) i I“""R}A"‘ = 1
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(14)

(15)

(16)
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E]illlill?tfi]l:’_{ .-fu_ ,f] ___________ 1,, between these (= 1) ‘-|111;|!_'1(1]|~‘_ we obtaln an
equation in n of the (m - 1) th order and thisis the per 10d '-(,u,:?j-nu. This equation is

f '_’lrl-‘f; 1)

T & <L (m=1)(m=-2)(mn—+3)
“fa % &
i
f  4(mH 1)
-L '.'7' 2 (m-+-3)(m-+4)
—Tg1 )
J’ G(m=T) |:”

o 1 (u—r - 3)(mi+4)(mn ;7-‘:?5

--J'm—;-23‘~}.

f Q(HI 1 “ { 'r G(m A] ) f (2m - 2)(m+1) -
3)

1) (m—+2)(m (m2)(m+3)(m+4) (L3 mt)(m+5) U (ZmF1)(2m-2)(2m1-3
L )

j I >.} o } el e, } (17)

In practice, accurate results even for complicated forms of the normal curve, are
obtained by taking m = 2, which then reduces (17) to

10 —I3x 35

On development, equation (18) gives the cubic in A

"‘Il Xs i 4"!2 ?\-2 ‘}_ -'13}. 'E .’11 = “

where 4,

% (—Lls+ I, I, + I, I)

1
b Iy + - 3 (—I I, —I;* + I Iy + I, I, "132):]

3 53 1 i
! Jb
I5 60 Iy

o

S 700 T 7350 1T 900 Y2 T 3
1
Ay = — —=
10500
The three values of A\ given by (19) when substituted in 7 = E:f:f\/):lﬁ determine the
periods of the uninodal, binodal and trinodal seiches,
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5. Application of Hidaka's method

We consider a lake whose normal curve is
as shown in Wig. 3. If the portion A’OO’ of
this lake corresponds to Lake Fife, then

1=11 miles, i = 36 ft and surface breadth
is uniform.

Chrystal’'s formula 7y = 2xl/4/v(v + 1)gh
yields for the periods of the uninodal, binodal
and trinodal seiches of the complete lake

AO'A

T, = 2 hours 7 min.
Ty = 1 hour 13 min.
Ty = 52 min.

The equation of the normal curve in
Fig. 3 is h(z) = h(1—2?[1%). Since breadth
is assumed uniform, the variable z of equation
(10) may be regarded as givenby z = x/2l,
so that the normal curve will be given by

Ix) = h (1 —422)

Transferring now, the origin in Fig. 3 to
the end A'(z = —1), the equation of the
normal curve becomes

h(z) = h{l—4(z—1)*}
The differential equation (10) now becomes
du A
PZ R pTP—TTY

From (15), we then have

1
_ [ A=z
b= fom

1 1_ 1
T 4|ln+2 WE&

(20)

1 1 1
Thus Igrﬂ, IIRIS’ Iﬂ:gﬁ
1 1

With these values the equation (19) becomes
A —8N2+ 1728 A—9216 =0
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The substitution N —= g 80/3 leads fo a
cubic equation not involving 2, namely,
B* — 4058 — 1062 = 0 and the roots
of this equation are B, = -~ 18-65,
B = — 2:670 and B, = 21-33. The
corresponding values of A are A; = 8§,
=24 and A; =48,

These values, when inserted in the formula,
T = daljs/Agh determine Ty, Ty, T, for

the uninodal, binodal and trinodal seiches, as

7'y = 2 hours T min.
T, = 1 hour 13 min.

Ty = 52 min.

(21)

These values are identical with those
in (20). Out of the three values in (20) or
(21) the second one, corresponding to the
binodal oscillation of the complete lake
would be the period of the uninodal seiche
for Lake Fife.

The binodal and trinodal  oscillations
of Lake Fife, by Hidaka’s method, would
require consideration of higher order terms
in the power series expression for u.,

6. Conclusion

It is seen from the computed seiche pe-
riods for Lake Fife that, surface breadth
remaining uniform, changes in the confi-
guration of the bed of the lake cause only
slight variations in the seiche periods, pro-
vided the volume impounded remains con-
stant and there are no large irregularities
in the bed. However it has to be pointed
out, that as far as actual lakes like TLake
Fife are concerned, the assumption of uni-
form breadth is rather much of an appro-
ximation. Tt is likely that seiche periods
are predominantly determined by the first
few miles upstream of the dam, where
changes in surface breadth are likely to be
marked. This difficulty can, however, be
surmounted, if recourse is taken to the
numerical methods, now available, in the
solution of Chrystal’s equation,
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The numerical computation of seiche
periods and nodal positions requires detail-
ed data of the three-dimensional confi-
guration of the lake such as the values for
a number of transverse sections of (/) the
surface breadth, (/i) the surface area from
an end and (i) the dimensions of the
transverse section,

Actual experimental observations of
seiche oscillations are not available for Lake
Fife for a comparison with the above com-

S. JANARDHAN

recording of water levels at Lake
Fife. as well as at the numerous dam sites
recently constructed.

tinuons
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