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lkj & bl 'kks/k&i= esa lkIrkfgd ok"iksRltZu ds izlaHkkO; ekWMfyax dk v/;;u djus ds fy, egkjk"Vª 

ds v/kZ 'kq"d lksykiqj LVs’ku ds 1987&2008 dh vof/k dh dqy 1144 jhfMaXl ds vk/kkj ij lkIrkfgd 
ok"iksRltZu vk¡dM+s ekSleh ,- vkj- vkbZ- ,e- ,- ekWMy dk mi;ksx fd;k x;k gSA  

 
lkIrkfgd ok"iksRltZu Ja[kyk ds Lolglaca/k Qyu ¼,- lh- ,Q-½ rFkk vkaf’kd Lolglaca/k Qyu ¼ih- ,- 

lh- ,Q-½ ds vk/kkj ij izFke vkMZj ds ,- vkj- vkbZ- ,e- ,-  ekWMyksa  dk p;u fd;k x;kA ekWMy ds izkpyksa 
dks rhu ijh{k.kksa ¼;Fkk ekud =qfV] ,- lh- ,Q- vkSj ih- ,- lh- ,Q- ds vof’k"Vksa  vkSj ,dkbds lwpuk 
ekin.M½ dh enn ls vf/kdre laHkkouk i)fr dk mi;ksx djds izkIr fd;k x;k gSA p;fur ekWMyksa ds 
vkSfpR; dk fu/kkZj.k fd;k x;kA tks ,- vkj- vkbZ- ,e- ,- ekWMy ds mi;ksfxrk ijh{k.k ds [kjs mrjs mUgsa 
iwokZuqeku djus ds fy, pquk x;kA lksykiqj esa lkIrkfgd ok"iksRltZu ekuksa ds iwokZuqeku ds fy, fuEu     
vkj- ,e- ,l- bZ- okys ekSleh ,- vkj- vkbZ- ,e- ,- ¼1]0]1½ ¼1]0]1½52 dk varr% p;u fd;k x;kA 

 
 
ABSTRACT. This paper deals with the stochastic modeling of weekly evaporation by using Seasonal ARIMA 

model for weekly evaporation data for the period of 1987-2008 with a total of 1144 readings for semi-arid Solapur station 
in Maharashtra. 

 
 ARIMA models of 1st order were selected based on observing autocorrelation function (ACF) and partial 

autocorrelation function (PACF) of the weekly evaporation series. The model parameters were obtained by using 
maximum likelihood method with the help of three tests (i.e., standard error, ACF and PACF of residuals and Akaike 
Information Criteria). Adequacy of the selected models was determined. The ARIMA model that passed the adequacy 
test was selected for forecasting. The Seasonal ARIMA (1, 0, 1) (1, 0, 1)52 with lower RMSE is finally selected for 
forecasting of weekly evaporation values, at Solapur.  

 
Key words ‒ Stochastic model, Forecasting, Evaporation and Seasonal ARIMA model. 
 

 
 

 
 
1.    Introduction    
 

Several stochastic models have been developed in 
past (Box and Jenkins, 1994) for modeling of hydrological 
time series mainly rainfall, runoff and evaporation. These 
include autoregressive (AR) models of different orders 
(Davis and Rapport, 1974; Salas et al., 1980; Kamte and 
Dahale, 1984; Gorantiwar, et al., 1995; Narulkar, 1995; 
Mutua, 1998; Singh, 1998; Reddy and Kumar, 1998; 
Subbaiah and Sahu, 2002 and Patil, 2003), moving 
average (MA) models for different orders (Gupta and 
Kumar, 1994 and Verma, 2004), autoregressive moving 

average (ARMA) models of different orders (Katz and 
Skaggs, 1981; Chhajed, 2004;  Katimon  and  Demon,  
2004)  for  annual stream flow. For monthly or intra-
seasonal flows, seasonal or periodic autoregressive 
integrated moving average (ARIMA) model (Bender and 
Simonovle, 1994; Montanari et al., 2000; Trawinski and 
Mackay, 2008), Thomas-Fiering models (Srinivasan, 
1995) and fractionally difference ARIMA models 
(Montanari et al., 1997) were used. Often the historical 
series is short and inadequate for irrigation planning. 
Hence, stochastic models are useful for generation of long 
term evaporation data needed for irrigation planning.  
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Fig. 1. Weekly evaporation series in Solapur station from 1987 to 2008 

 
 
 
The models used for generation and forecasting of 

the annual evaporation series were Thomson-Firing, AR, 
MA, ARMA and ARIMA models of different orders. The 
models SARIMA, PARMA and FARIMA were used for 
seasonal and periodic evaporation series. The studies 
indicated that stochastic models can be successfully used 
for the generation of the synthetic sequence of rainfall, 
runoff and evaporation. ARIMA class of models was also 
used for forecasting of runoff/evaporation few time 
periods ahead. For appropriate planning of the water 
resources available to farmers, they must match with the 
water requirement. The reasonable forecast of water 
requirement at least one year ahead water would enable 
them to manage water resources efficiently, as the 
ARIMA models showed possibility to forecast the other 
hydrological events.  

 
In this study, the applicability of the ARIMA models 

to forecast evaporation for Solapur station were 
investigated and finally the appropriate ARIMA model 
was identified for the forecast of evaporation for Solapur 
station and then used for assessing  water requirement.  

 
2.  Material and methods 

 
This study was concerned with the forecast of 

evaporation by using ARIMA class of models.  
 
2.1. Development of ARIMA model 
 
Seasonal autoregressive integrated moving average 

(SARIMA) are useful for modeling seasonal time series in 
which the mean and other statistics for a given season are 
not stationary across the year. The basic ARIMA model in 
its seasonal form is described as (Hipel et al., 1976; Box 
and Jenkins, 1994) a straightforward extension of the non-
seasonal ARIMA models. 

The different approaches involved in fitting of 
ARIMA models to historical hydrological series as 
suggested by Hipel et al., 1976 and Box and Jenkins, 1994 
are standardization and normalization of time series, 
identification of the models, determination of the 
parameters, diagnostic checking and selection of the best 
model.  

 
2.1.1. Standardization and normalization of time 

series variables 
 
The first step in time series modeling is to 

standardize and transform the time series.  In general, 
standardization is performed by normalizing the series as 
follows.  
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Where, yi,j - Stationary stochastic component in the 

mean and variables for week i or the year j; xi,j - Weekly 
evaporation in the week i of the year j; xi - Weekly mean 
and i - Weekly standard deviation. 

 
2.1.2. Identification of the model  
 
An important step in the modeling is the 

identification of a tentative model type to be fitted to the 
data set. In the present study, the procedure stated by 
Hipel and McLeod (1994) were adopted for identifying 
the possible ARIMA models. A time series with the 
seasonal variation may be considered stationary if the 
theoretical autocorrelation function (k) and theoretical 
partial autocorrelation function (kk) are  zero after a lag    
k = 2s + 2 (Where, ‘s’ is the seasonal period; in  this study, 
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Figs. 2 (a-c).  Evaporation time series, Autocorrelation 
and partial autocorrelation pattern of the 
differenced time series of evaporation           
(d = 0, D = 0) 

 

 
s = 52). The requirement of identification procedure is as: 
i.e., Plot of the original series, Plot of the standardized 
series, ACF analysis and PACF analysis. The estimates of 
theoretical autocorrelation function (em), i.e., rm is given 
by equation (2).  
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Where, n - The number of observations; x  - The 
average of the observations, rm - Autocorrelation function 
at lag m. 

The estimate of theoretical partial autocorrelation 
function (ekk), i.e., mm is given by the equation (3). The 
partial autocorrelation function varies between - 1 and      
+ 1, with values near ± 1 indicating stronger correlation. 
The partial autocorrelation function removes the effect of 
shorter lag autocorrelation from the correlation estimates 
at longer lags. 

(a) 

E
va

po
ra

tio
n 

 

 
  

 







1m

 






1

1
1

1 11

1
m

i
rm

i mmm
mm

rr




                  (3)   

Week 

(b) 
                                                                                                             

Where,  

A
ut

oc
or

re
la

tio
n 

 
mm -  Partial auto correlation function at lag k. 
  
It is considered that k and kk equal to zero if (Maier 

and Dandy, 1995) 
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Where, rk - Sample autocorrelation at lag k;              
rkk - Sample partial autocorrelation at lag k; T - Number of 
observation. 

 
If the sample autocorrelation function (ACF) of 

analyzed series does not meet the above condition, the 
time series needs to the transformed into a stationary one 
using different differencing schemes. For example, for     
(d = 0, D = 1, s = 52) according to the expression given by 
equation 

Lag (Week) 
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Where, yt -  Original time series , d - order of non-

seasonal differencing operator, D - Order of seasonal 
differential operator, B - Backshift operator, s - Seasonal 
length, t - discrete time,  E0,t - Evaporation series, k - lag 
period and xt - Stationary series formed by differencing 
series.  

 
The time series yt is stationary if the ACF and PACF 

cut off at lags less than k = (2s + 2) seasonal periods. 
Thus, it is necessary to test the stationary status of the 
transformed time series obtained by differencing the 
original times series according to different orders of 
differencing (seasonal and non-seasonal). The differenced 
series that pass the stationary criteria needs to be 
considered for   further  analysis. The following guidelines  
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Partial autocorrelations pattern p
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Figs. 3(a&b).  Autocorrelation and partial 

autocorrelation pattern of the differenced 
time series of evaporation (d = 1, D = 0) 

 

 

 
were used for selecting the orders of AR and MA terms 
(Gorantiwar, 1984).  
 
(i)  If the autocorrelation function cuts off, fit ARIMA     
(0, d, q) (0, 1, Q)52 model to the data, where, q is the lag 
after which the autocorrelation function first cuts off, and 
Q is the lag after which seasonal ACF cut off. 

 
(ii)  If the autocorrelation function cuts off, fit ARIMA    
(p, d, 0) (P, 1, 0)52 model to the data, where, p is the           
lag after which the partial autocorrelation function first 
cuts off and P is the lag after which seasonal PACF       
cuts off. 

 
(iii) If neither the autocorrelation nor partial 
autocorrelation functions cuts off, fit the ARIMA            
(p, d, q) (P, 1, Q)52 model for a grid of values of p, P, q 
and Q. 
 

Thus, on basis of information obtained from the ACF 
and PACF, several forms of the ARIMA model need to 
the identified tentatively. 

 
2.1.3. Estimation of parameters of the model  
     
After the identification of model, the parameters of 

the selected models were estimated. The parameters of the  
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Figs. 4 (a&b).   Autocorrelation and partial 

autocorrelation pattern of the 
differenced time series of evaporation         
(d = 1, D = 1)  

 
 

identified models are estimated by the statistical analysis 
of the data series. The most popular approaches of 
parameters estimation is the method of maximum 
likelihood. 

 
2.1.4. Diagnostic checking of the model  
 
Once a model has been selected and parameters 

calculated, the adequacy of the model has to be checked 
iagnostic checking). Here, following three tests were 

used. 
(d

 
2.1.4.1. Examination of standard error 
 
 A high standard error in comparison with the 

rameter values point out a higher uncertainty in 
parameter estimation which questions the stability of the 
model. The model is adequate if it meets the following 
condition. 
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Where,  
 
cv - parameter value and se - standard error.  
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TABLE 1 
 

Basic statistics for Solapur station of weekly evaporation data (mm) 
 

No. of observation Mean St. Dev. Var. Min Max 

1144 7.5 2.80 7.88 2.1 13.5 

 
2.1.4.2. ACF and PACF of residuals  
 

If the model is adequate at describing behaviour of a 
time series (evaporation), the residuals of the model 
should not be correlated, i.e., all ACF and PACF should 
lie within the limits calculated by equations (4) and (5) 
after lag k = 2s + 2, where s = number of periods. 

 
2.1.4.3. Akaike information criteria (AIC)  
 
The AIC (Akaike, 1974) are computed as 
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Where, k - Number of model parameters,                

 - Residual variance, T - Total number of observations. rv

 
2.2. Selection of the most appropriate model 
 
The root mean square error (RMSE) were estimated 

for each model 
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Where, Eact - Actual value of evaporation (mm),    

Efor - Forecast value of evaporation (mm), N - Total 
number of observation 

 
3. Results and discussion 
 

3.1. Evaporation analysis 
 
Weekly evaporation (Fig. 1) shows a seasonal cycle. 

The ACF and PACF of the original evaporation data are 
not stationary. The descriptive statistics for evaporation 
data are shown in Table 1. 

 
3.2. Fitting of ARIMA model 
 
The weekly evaporation data were used for 

generating and forecasting of development and validation 
of stochastic model. The results obtained from the study 
have been presented and discussed under the following 
heads. 
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Figs. 5 (a&b). Autocorrelation and partial 

autocorrelation pattern of differenced 
time series of evaporation (d = 0, D = 1) 

 
 
3.2.1. Standardization and normalization of time 

series variables 
 
The ARIMA model has the provision to differentiate 

the time series. Hence, standardization and normalization 
was not performed. 

 
3.2.2. Identification of the model 
 
The ACF and PACF of weekly evaporation time 

series were estimated for different lags. These are shown 
with upper and lower limits. It is seen from Fig. 2, that 
ACF lie outside the limit after lag k = 2s + 2, i.e., 106. 
Thus, ARIMA model cannot be applied to the original 
time series of evaporation. Therefore, the time series was 
transformed differencing schemes by using d = 0; D = 1,  
d = 1; D = 1, d = 1; D = 0, d = 0; D = 0. The ACF and 
PACF along with the upper and lower limits were 
estimated by equations (4) & (5). It is observed from the 
Figs. 3 to 5, that ACF of d = 0, D = 1 and d = 1, D = 1 lie 
within the limits of range specified by equations (4) & (5) 
after lag 104. However, for d = 1, D = 0 and d = 0, D = 0, 
ACF does not lie within the limits after the lag 104. 
Therefore, differencing schemes (i.e., d = 0; D = 1, d = 1; 
D = 1) were used for developing ARIMA model for 
weekly evaporation time series.   

 



 
 
578                            MAUSAM, 63, 4 (October 2012) 

 

TABLE 2 
 

Parameter estimates, standard error, corresponding t values and AIC values for different ARIMA models 
 

Models 1 1 1 1 c Models 1 1 1 1 c 

ARIMA (1, 1, 1) (1, 1, 0)52 ARIMA (1, 1, 0) (1, 0, 0)52 

Estimate 0.528 0.947  0.51 0.0001 Estimate 0.2007  0.103  0.005 

SE 0.031 0.011  0.02 0.0033 SE 0.0297  0.030  0.036 

t-value 16.9 80.82  19.4 0.05 t-value 6.75  3.43  0.01 

AIC 5077     AIC 4863     

ARIMA (1, 0, 0) (1, 0, 1)52 ARIMA (1, 0, 1) (1, 0, 1)52 

Estimate 0.716  0.996 0.950 7.508 Estimate 0.8431 0.2658 0.99607 0.949 7.503 

SE 0.023  0.009 0.015 0.372 SE 0.0248 0.0395 0.00994 0.016 0.47 

t-value 30.91  110.0 63.49 20.18 t-value 33.96 6.73 100.23 58.21 15.96 

AIC 4690     AIC 4650     

ARIMA (1, 0, 0) (0, 1, 1)52 ARIMA (1, 0, 1) (0, 1, 1)52 

Estimate 0.646   0.959 0.012 Estimate 0.8431 0.2658 0.99607 0.949 7.503 

SE 0.023   0.021 0.016 SE 0.0248 0.0395 0.00994 0.016 0.47 

t-value 27.97   43.94 0.73 t-value 33.96 6.73 100.23 58.21 15.96 

AIC 4675     AIC 4650     

ARIMA (1, 0, 1) (0, 0, 1)52 ARIMA (0, 1, 1) (1, 1, 0)52 

Estimate 0.907 0.178  0.112 7.478 Estimate  0.4861 0.495  0.002 

SE 0.014 0.033  0.030 0.378 SE  0.0266 0.0267  0.016 

t-value 63.37 5.29  3.71 19.76 t-value  18.3 18.52  0.01 

AIC 4791     AIC 5209     

ARIMA (0, 0, 1) (1, 0, 1)52 ARIMA (0, 1, 1) (0, 1, 1)52 

Estimate  0.527 0.991 0.850 7.351 Estimate  0.3696 0.9963  0.000 

SE  0.025 0.006 0.018 0.32 SE  0.0279 0.0123  0.055 

t-value  20.7 163.3 46.26 22.96 t-value  14.23 80.77  0.01 

AIC 5509     AIC 4746     

 

 
 

 On the basis of information obtained from ACF and 
PACF, the orders of autoregressive (AR) and moving 
average (MA) terms were identified as one. Based on this, 
36 forms of ARIMA models were identified and 
parameters computed. 

1. 1   2.  1  3. 1  4.  1   5. c 
 
Out of the 36 possibilities, ten ARIMA models 

satisfied the test for all parameters. Standard error and       
t values for these ten models are given in Table 2. 

  
3.2.4. ACF and PACF of residual series  3.2.3. Determination of parameters of model and 

diagnostic checking  
For a model to be considered by adequate at 

describing behaviour of evaporation time series, the 
residuals of model  should be correlated, i.e., all ACF  and  

 
The following parameters of the selected models 

were calculated by maximum likelihood method. 
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Fig. 6.  Comparison of forecasted and actual values of evaporation by using ARIMA (1, 0, 1) (1, 0, 1)52 model 

 
 
 
 

TABLE 3 
 

Root mean square error values of first five models 
 

Models RMSE 

ARIMA(1, 0, 0)(1, 0, 1)52 0.18 

ARIMA(1, 0, 1)(1, 0, 1)52 0.16 

ARIMA(1, 0, 1)(0, 1, 1)52 0.45 

ARIMA(0, 0, 1)(1, 0, 1)52 0.17 

ARIMA(1, 0, 1)(0, 0, 1)52 0.29 

 
 
 
 

PACF should lie within the limits calculated by equations 
(4) & (5) after lag k = 2s + 2, where s = number of 
periods. In this case, for the value of k is 106, 
computations showed that, ACF and PACF residual series 
of 15 models lie within the prescribed limits.  

 
3.2.5. Selection of the best model 
 
First 5 models with less AIC that satisfied the 

standard error and ACF and PACF of residuals criteria 
were finally used (Table 2) for generation of weekly 
evaporation values. For this purpose, the evaporation 
values were forecast for one year with the help of 
identified ARIMA models. These values were compared 
with the actual values for one year by calculating the root 
mean square error (RMSE) between them (Table 3). It is 
observed from the Fig. 6, that seasonal pattern of 
evaporation series is maintained in generated values by all 
the ARIMA models. 

Based on RMSE, the ARIMA (1, 0, 1) (1, 0, 1)52 of 
models are selected for forecasting. The values of the 
parameters of the ARIMA model which is finalized for 
forecasting of parameters are: 1 = 0.8431, 1 = 0.2658,    
1 = 0.9960, 1 = 0.9498 and C = 7.503. 

 
3.3. Comparison of forecast and actual values of 

evaporation 
 
The ARIMA models that were finalized to forecast 

the values of evaporation for Solapur station are presented 
in Fig. 6. These values were developed using the 
climatological data up to 2008. The evaporation values 
were forecasted with the help of best model and forecast 
weekly evaporation values were calculated with the help 
of weekly evaporation series. Forecasted values were 
compared (Fig. 6) with actual values of evaporation of 
2009.   
 
4. Conclusions 

 
 The study indicates that the seasonal ARIMA model 
is a viable tool for forecasting the evaporation at Solapur 
location. The system studies reveal that, if sufficient 
length of data is used in model building, then frequent 
updating of model may not be necessary. This forecasted 
evaporation can be advantageously used in deriving the 
optimal irrigation system. The ARIMA (1,0,1) (1,0,1)52 
gave the lower values of RMSE and hence is the best 
stochastic model for generation and forecasting of weekly 
evaporation values for Solapur, Maharashtra, India. It is 
concluded that seasonal ARIMA models can be 
successfully used for forecasting of evaporation having 
inbuilt seasonal pattern. 
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