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Seiches in a conical lake of large semi-vertical angle
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ABSTRACT, The problem of seiche-oscillations in lakes having the shape of solids of revolution has been
eonsidered by Lamb for the particular case of a paraboloidal lake,

This paper deals with a right conical lake of large semi-vertical angle, with and without a eircular eylindrical
coaxial iﬂEmd. The differential equation of seiche-oscillations, expressed in the vector form is solved by a variational
method, first used by Hidaka for seiche-problems. Period equations have been obtained for those modes of vibra-

tion, involving nodal diameters and nodal circles. The results obtained for a laks with a central island are
applied to Lake Toya, Japan.
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.713. I.Conical Lake

3. Solution of the seiche-equation for a conical lake

The type of lake considered is depicted in
Fig. 1. For a right circular cone. the depth at
(r, 0) is a function of axial distance r only.
given by the law—

r
)/ -_-h(,(]——— a)'

the origin being at the point of intersection of
the axis of the cone with the surface. Here 4,
is the central depth of the lake and a the
radius of the surface. Equation (2) can now be
put into the form—

k7% -+ (grad £) . (grad h) — :T
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div (h grad {) — -(]7

If £ o cos af, equation (3) reduces to
div (b grad {) + k2 =0 (4)

where k2 = o%/q.

Equation (4) has to be solved under the
boundary condition

ot

hoo- =0 (5)

at the periphery of the lake’s surface.

Syono (1938) has shown that the solution
of div (b grad ¢) + A* = 0 under the
boundary condition k. 8¢/@r = ¢ equivalent
to the problem of making—

F = [f h(grad §)?dS,
a minimum subject to the condition »(6)

G = [jedS=1

Here dS denotes an element of area of the
lake’s surface,
Eqn. (6) requires that —
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where the I);’s ar> parameters occurring
in the trial funection
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In polar co-ordinates
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and dS = rdr di)

(grad £)?

Therefore.
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If for a fixed » and fixed £, § o cos m 0. the
solution of (7) will be of the form

{=f(r)cosmOcosal

so that the seiche-oscillation would have m
nodal diametral lines. Further if f(r) vanishes
n times between 0 and a there would be »
nodal ecircles hetween 0 and a. A mode of
oscillation with m nodal diameters and »
nodal cireles would break up into Zm(n -+ 1)
cells if m and n are both non-zero and positive
but into (n-+1) cells if m=0 or into 2m cells
if n=0. The case m=~0. n=0is of course ruled
out. Consecutive cells of a zone bounded by
2 nodal circles will oscillate in opposite
phases and this zone as a whole would be
oscillating in opposite phase to an adjacent
zZone,
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A few typical examples are illustrated in
Figs. 2(A) to 2(H). For example, the number
of cells into which the surface is divided for
the case m=2, n=2 is 12. Those cells which
are shown hatched in Fig. 2 (H) oscillate in
the same phase, while those left unhatched
oscillate in the opposite phase.

The boundary condition

(k%)r a=0

implies that if %#=0 at r—a, then

( ac'if'i ) r=q

must be finite and non-zero. Further { must
be finite at the origin r=0. We therefore
choose

f('f)=‘; 4; (;)a

=P

where the values of p are as yet undeter-

mined. Under this assumption we have
o0 r P
[=.2 A; (— ) cosmbeogsot  (9)
1=p a

Subgtitution of (9) in (2), gives for the lowest
power of rfa, t.e., for (r/a)r-* the coeflicient
A, (p*la*—m?la®). Since A4, 7 0, this can
vanish only if p=-m. Ruling out p = —m
as ¢ has to be finite at the origin, we have—

o r\1
{= 2 4; () cosmDcosot (10)
= a

i=




468 S. JANARDHAN
(¢) As a first step, we take for ¢ the form—

ior \. m { [y ym—1

. P - o | — | cosm fcosof (11)
.G/ Rl W b=

Substituting (11) in (8), we obtan

0]
F=Fh mcos* sl [ A

1, after imtegration

2 § (Hf—-l] *.v,n'
1'“ = i (2m4-4) (2m+: }

[2(m—+ l}(rff*' )—2m?

"[m,;,.l Am-—L‘ { (2 _{J{',,, L 4)

Similarly,
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and A,,.»

Fhe conditions [F—k*G] . 8/84; =0 give three simultaneous equations in Am, dm1
2. These are—
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The elimination of Am. Am -1, Am + 2
from equations (14). (15) and (16). then yields
a cubic equation in (k%?/h,). This equation is
then the period equation to determine the
oscillatory periods of the lake.

Calling (k2a?/h,) as o, the period equation
gives the following results for three simple
cases.

(a) Caseim =0
The cubic period equation is—
o (02—300 + 120) = 0 (17)

The roots of the equation are 0, 4-75 and
25-25.

(h) Casem =1

The period equation is —

ad —355e2 4+ 266°75 o — 291 = 0 (18)

The roots of the equation are 1-31, 8-43
and 26-25.

(¢) Case m =2
The period equation 1s —
o3 — 4560+ 472

The roots are 2-39, 1172 and 31:5.

~878 =0 (19)

(12) If instead of (11), we take for { the
simpler form—

Nm

[Zim ( :; ) e m “!m 421 X
; +1
{ g )m ] cosm Bcosot  (20)

or the more general form

rN\m
{=|4dm i + Am 1 X
r m -+ 1 r \m-+2
(E ) + Am & .‘-(?) +

ro\m-3
Am+3(—) ]cosmﬂcosot (21)
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it is found, as is evident from Table 1, that
barring one exception, the two lowest values
of « yielded by (20) and (21), for each of the
cases m=0 and m=1 seem to agree reason-
ably well with the corresponding values
obtained from the assumed solution (11).

Now, the two lowest values of &, for any
value of m, pertain to the two simplest modes
of oscillation, in which there is either no
nodal circle or there is only onenodal circle.
Since these two modes of oscillation are far
more important than those consisting of 2 or
more nodal cireles, it is obvious that the first
three terms on the right hand side of equation
(10) could adequately represent the actual
mode of oscillation of the lake.

Lamb (1930) dealt with a lake having the
shape of a paraboloid of revolution, for which
the law of depth is h=h, [1—(+*/a?)]. He
solved the differential equation of seiches by
the series solution method. The values he
obtained for the dimensionless number
a=c%a?/gh, are shown in Table 2 for the
cases m=0, m=1 and m=2. The values for
the same three cases obtained by the author
for a conical lake are also shown in the table
for the purpose of comparison.

4. Determination of the nodes

The nodal diameters are determined by the
equation : cos mf=0.

The equation to
circlesis =0, i.e.,

pr(Am~+ Am 11 P+ Ap 4-2 P?) = 0

where p==r/a. The ratios A, 41 /4, and
Am 42 [Am can be obtained from equations
(14) and (15). The values of these ratios,
obtained for the three cases m=0, m=1 and
m=2, then yield the following results—

determine the nodal

(1) Case m =0: The equation, whose roots
give the radii of the nodal circles as fractions

of a, the radius of the lake’s circular surface,
is

R
1+§0P+Z(',P =0

w
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TABLE 1
Values of o yielded by three different assumed solutions of the seiche differential equation

Values of & =k%a* /h,=c%a?/gh,

r —A -
Form of the m=0 (no nodal diameter) m=1 (one nodal diameter)
solution ’ A \ ’ A ———
No One Two Three No One Two Three
nodal nodal nodal nodal nodal nodal nodal nodal
circle circle cireles circles circle circle circles circles
First two terms of 0 -35 — —_ 1-31 9-52 — —
solution (10)
First three terms of 0 475 25-25 — 1-31 8:43 26-25 -
solution (10)
First four terms of 0 4-72 15-25 7004 1-35 8-42 20135 6G3-08
solution (10)
TABLE 2
Values of « for a conical lake and for a paraboloid of revolution
m=10 m=1 m=2
r A Al r A, 2] — A ~
Nature of No One Two No One Two No One Two
the lake nodal nodal nodal nodal nodal nodal nodal nodal nodal
circle circle circles circle circle circles circle circle circles
Conical lake
(Author) 0 4-75 25-25 1-31 8-43 26-25 2.39 11-72 3145
Paraboloid of
revolution
(Lamb) 0 8 24 2 14 34 4 20 44

Solving this equation we have—

(¢) For @=4-75: The positive root, the
only admissible root is - 706,

(#i) For ee=25-25: Theroots are -413
and -787.
(2) Casem = 1: The solution of the
equation
14 (Ag,';ﬁ[ﬂ p + (-"13.“‘ 1) P2 =

gives —
(i) For «=1-31: Roots are imaginary.

(77) For ¢=8-433: The positive root, the
only admissible root is * 81,

(727) For a=26-25: The roots are -5H71

and -909,

(3) Case m=2: Proceeding as in (1) and
(2), we obtain from the solution of

1 + (43/4,) p + (dy/4,y) p2 =0
(f) For «=2-39 : Roots are imaginary.

(i) For a=11:72: The positive root, the
only admissible root is -877.

(2¢7) For 2=31-5: Therootsare - 667 and
926.

The diameters of the nodal cireles increase
as the number of nodal diameters increases.
Figs. 2A to 2H represent the eight cases,
(m=0, n=1), (m=0, n=2), (m=1, n=0),
(m=1, n=1). (m=1, n=2), (m=2, n=0),
(m=2, n=1) and (m=2. n=2).
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5. Conical lake with a circular, coaxial, cylindrical island
Let @ and b be the outer and inner radii of the surfaca of the' lake as shown in Fig. 3.
Proceeding as before, we have now to obtain F and G given by equations (6) and

(11), for r ranging from b to a, and 8 as before ranging from 0 to 27, Carrying out the integ-
rations, we have

W (4 1 b \2m )m-" g N
F ‘?"0 meos ol [A m mA}—l ( ) ( 2 ¥ l)} =

b m2(m-+1)2
T :;‘)}*

PRI G g ot 2

l (2m +4)(2m- l—"; 2m-+4 2m—+b

oo

12,0 ( (wz-f—l)um-_ (b) +2 mP-(mt-1)E

f( 2m—+-2 (’m—rJ T om42

=

2m+1 T e (22}
Am Ami1 ) s ( )" (’n li ’"_’()ﬂi_l) l +

’m,+ 2 2m-+-2 )

gk N 2mE-4-2(m-+-1) er ( )’m-ﬁi (’J112—|—) m-H (m—{—‘))
A1 Am-2

U (2m+3) 2m+ om+3

, N 2m( n(2m—+2 ’
Zm — — .
73 "m—l—d

and
G = a*n cos®al [zf"m {._;,ml_ 5 (b'f;):iz } H A ’N: He %} N
A2y 2 { ‘-3,-7:1—6 e Q@gg } + 24m Amt1 {_)T,«.l+.5 ' | (23)
(b/f)';n:']; } 4 24m+1 Am+2 {%:_;_r, (U‘)‘,)’:i:"} +
24m Am--2 {2”:_1_4 "rr::-l:} ]
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F?.B.Com‘ca/ Lake with a near{y-cyﬁndm}:a! coaxial

/sland

The conditions [F—}2G].
On eliminating the constants .L.,. A1, dm-
following period equations :

2 {rom

(1) Case m =0
The period equation is—
| - ~k2a(1—b2/a?)

. %.2,,2(1;},3/,‘3]
: - rl b2l r.\n r
—2k202(1 ]38/ ,3 e - —
| 31 a*(1 b [67) [ ]'E] L" a \ 2 ;{“./ ’?‘ ["U 3

1| — Iujﬁ— (1—4*at) ] - :{
)

fid h
— 1211 ) [Lnj 1 b4 \ 1. r 2 {]'

3 @\3 / L
7.‘:--

} - ]\"r{ (] B tt) ] —

(2) Case m=1

The period equation is—

[ (3 —5(-3 ) [{ 2 5C- 19} [n{3 5=
-i, (l — b u')] - " Fat (1l — u-‘-,]

S B
—g ka® (1 — b% a®)
[ {2-%(

l.sel B8t
=t u(——;u;] —

n'(

§ k2a® (1—05 a%) ]

LU

Fa* (1 — b7 a7 ]

|
,,(1 —0%/a%) ]

—32)r [W{E-50G -39} [{3-

0. give rise to three long simultaneous equations,
these

equations. we obtain the

MPa(1—0a")

’f\]

@/ |

B /4
1:'_3_- “_ 5

E2a*(1—19[ad) ] '

B(i-s0
o)

it @

(24)

LY

- ; k2 (1 —b'{'ﬂ")]!

)} [Ma-=G-

L) =
3 J
2

- k2t (1—b7 a )'”
pf-(a 10 b 1‘
a*\3 T a |

-— : ka2 (1 — b8 n‘"]]. (._,'-))
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TABLE 3

Values of = and the corresponding periods of oscillation of lake Toya for the cases m

0 and m =

m—0

Cumputml —

(No nodal diameter)
—A

m—1
(One nodal diameter)
A

R L=
quantitity No nodal

circle circle

-
One nodal  Two nodal

P——
No nodal
circle

Two nodal
circles

One nodal

circles circle

%z 5-35

Period T 3 min

28 sec

35-31 0-96

8 min
10 see

1 min
21 see

1 min
57 sec

6. Evaluation of the periods of the various modes of
seiche-oscillations of lake Toya, Japan

Lake Toya is situated in Sonth Hokkaido,
Japan. It has a circular form of radius
4770 metres with a nearly circular island
at the centre. of radius 1240 metres. The
lake is made up of 2 sectional regions (Fig. 4)
of mean depths 60-4 metres and 131-5
metres respectively, the sector of mean
depth 60-4 metres, subtending an angle
of 67° at the centre.

If lake Toya is treated as a conical lake
having (i) a circular surface of outer radius
a=4T770 metres and (#7) an almost cylindrical
coaxial circular island of radius b=1240
metres, shown hatched in Fig. 3, we have—

(a) By = by (bja)

(b) Volume of the island at the centre
— 752 (hy—  Iy)

(¢) Volume of the rest of the cone
= (hgm/3a) (a® — 3a®b + 207)

In lake Toya, the depth of water varies at
different points of the lake. The volume
of water computed from the mean depths
of the'lake in the two different sectors
works out to be 78-86:< 108 cubic metres,

Equating this volume to the volume

_F:D-:r

ad — 3ah + 26° ]

.

for a conical hottom we obtain jAy=the
central depth of the equivalent conical lake
with a central island as in Fig. 3=397-4
metres.  Substituting £=397-4 metres and
bja=-26 in the period equations (24) and
(25), the period equations reduce to

o2 — 4066 « 4+ 189°1 = 0
and 3 — 24-88 02+ 140462 —113.15=0
where, a = k2a®/hy = o*a®/gh,

The values of «, yielded by these two
equations and the corresponding oscillation
periods, obtained from the formula

2na
v /ghy

are given in Table 3.

I =

7. Comparison with observations

According to Koenuma (1934), Honda
has observed a period of oscillation of 9-3
min for lake Toya, while Mori has observed
a period of oscillation of 4-5 min for the
same lake.

The values computed by the author for
the conical approximation of lake Toya,
with a civcular cylindrical island ave (7)
8-17 min for an oscillation with one nodal
diameter and no nodal circle and (i7) 3-65
min for an oscillation with one nodal circle
and no nodal diameter.
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Assuming a cylindrical form for the lake
with a circular cylindrical icland at the
centre. Syono computed a value of 10-25
min for the oscillation with one nodal
diameter and no nodal cirele and a value
of 3-9 min for the oscillation with one nodal
cirele and no nodal diameter (¢f. Koenuma,
1934). He conecluded that the former corres-
ponds to the period observed bv Honda
and the latter to that observed by Mori.

AN
PTH=131"5 meters. \
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