e

ortcx o ayr /scm‘jmﬁmte reglon Wlth a.

2t 1sed ‘that mountain ranges do have ‘stro
1 ;,,typhoons
] rt

_series. of laboratory expen-f'
 carried out by Pao (1976) to
ical encounter of a vortex with
~ elliptical barrier. He has de-
rated :dmt many distinctive ﬂow characte

 low pressure systems.
o very compllmted and no
~* matical method is ava able to predlct their move—,

_phoons encountermg the 1sland of Taiw: o
- reasonably be simulated in the laboratory o
Chang ef al. (1975) have made some experi-
mental simulations on the structure and tropo-'

Many authors mcludmg Thomson (1960) in
their books have discussed motion of vortex in
presence of plane wall, two perpendicular plane

walls, and a vortex inside a circular cyclinder or rath ‘
> ~outq1de it,"in unbounded fluid. Lin (1943) has grapl legd mﬂuence of typhoon '
~ discussed the most general problem on the mo-  The hlgh mountam ranges, like the great :
; ~tion of vortices in two-dimensions. Smgh (1954) Hlmalayan ranges, can be regarded as a series
' studied the path of vortex in a channel with  of idealised barriers namely vertical walls. Their
~ rectangular bend. Banerji (1930) has shown base lines are not everywhere straight, but have
~ that on the rotating earth, a corner. formed by  concave or convex curvature. To the northeast
two mountain ranges will have tendency to  corner of Assam, the NEFA hills rise very
develop closed stream lines in its neighbour-  steeply and stand "like a distinct boundary wall
hood and that the peculiarities in the configura-  and its horizontal cross-section has a prominent
tion of the normal Indian ‘monsoon isobars are  ~ concave shape; the Northwest Frontier moun-
shown to be due to a very Iarge extent to the  tain ranges form another prominent curve over
. mountain ranges. Pakistan. These mountain ranges have an appre-
; s . ~ ciable influence on the movement of low pressure.
S Increasmg awareness of the 1mportance of the system.
: ‘topographwal effects on the atmospheric flow
bwe led in recent years to numerous studxes and  The ob]ect of the present paper is to study

oy
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analytically the dynamical aspects of the move-
ment of vortex in two-dimensional perfect fluid
with uniform stream when the boundary is not
only straight or curved but combination of both:

The vertical wall has curved part, in the first
case in the form of a semi-cifcular groove and
in the second case semi-circular hump otherwise
straight and extended to infinity on both sides.
The uniform stream is parallel to the straight
wall. The solutions for the motion of the fluid
in presence of the vortex and the velocity of
the vortex have been obtained in general. The
path of -the vortex has been calculated numeri-
cally from the equation in detail for the above
two typical cases and the solutions for other

ed.

In case of groove, the image system cannot
be obtained easily in the original (initial) z-
plane and hence the motion has been transform-
ed to another plane, so that the fluid region is
confined to. the upper half of a plane with a
straight rigid boundary. In general case also, the
image system can not be easily obtained in ori-
ginal z-plane; though in the case of semi-circu-
lar hump, the image system can be obtained in

. z-plane ; however it has been found easier to
study the motion in this case also in the trans-
formed plane. ‘

2. Transformation and formation of the prbblem

We take the plane of motion as z(x--iy)
plane with origin at the centre of the semi-cir-
cular bay. In Fig. 1, BNC represents the bay of
radius a; A,,B and CD,, represents the Bay of
the plane wall (y=0).

. The region above the plane wall and the bay
is occupied by an inviscid fluid, which has at a
large distance from the bay, a steady flow U,
parrallel to x-axis. Let a vortex of strength I'
be situated at a point zy(=x,-+1iyp).

To obtain the image system of the vortex, we
transform the region of interest into the upper
half of the real axis in the s(c+id)- plane. The
transformation is accomplished through two
sub-transformations; in the first sub-transforma-
tion, the entire fluid region of the z-plane is
transformed into an infinite strip between two

symmetrical curved boundary have been extend-

parallel straight boundaries (Fig. 2) in {(=¢£-ip)
plane by the relations: ‘ o

= q coth {/2 S

which is equivalent to

x sinh i
T MMhE L q¥ . sinm
a cosh £-— cosy a cosh £ — eos 9
: ‘ 2

The correspondence being E,,,A,,, D, —>{=0,i.e.
we have made E_, A and D, coincident and

made them correspond to { = 0; B>{ = —w,
Crl=00,0(="-in andN—}g—.:._i% .

It may be noted that points on the real axis in
z-plane between B and C is represented. by
n = —mw, the semi-circular arc BNC by
7= -——;77 and the semi-circular region OBNC

is transformed to the region —-j-,,g-q{ .

In the second sub-transformation, the infinite
strip of breadth 3-7 in the {-plane is trans-
formed into the upper half of the real axis of the
s (c+-id)-plane (Fig. 3) by ‘using the theorem
of Schwarz and Christoffel. Let us open out the
upper edge of the strip at the origin 0, and shift
it to infinity in s-plane and regard all points
at negative infinity and positive infinity: coinci-
dent separately and map the points B,, B,
on s=—1 (B) and C,,, Cy on s=1(C) so that
N becomes the origin s=0. the said theorem gives

dllds=K"(s—1)"1 (s+1)~1

K’ §—1

~whence [ = 7 log m-{— ! ’ (3)

K and K’ being constants. From the correspon-
dance of the points, we get K= — 3 and K'=0

B
. § '“”‘2_" IOg s—1 ’ (4)

or s =coth (/3 ; (5)

which gives the transformation relation between
the { and s-plane. To obtain the relation thg




theorerf, th ’path*“ :

of the vortex m the z—plane 1s glven by x—cons- o
- tant, where, ' . _

! z‘the rhs. are to beex-
he co-ordinates'in the z-plane.
ult in non chmensanal form
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__ 4 R2P R2P sin § (4 — b)) r 32 o, |
X = — gk\“U R?/s + R —2R.21 B2 605 2(py—by) - —2-10g [T31R28m5(¢2w¢1)]

X

G ” | 3a?
or putting A = exp. ( 7 -log 1 )

R2BR,2 sin 3(dy — b1
RA® 4 RyA3 — 2R3 R213 cos § (¢ — $1)

A= RyRy sin §(dy— $) exp.a

B

I AR - o ’ : - i i
where, o= 8;;.,[] » z=uared, zta= aRle1 ' andz—a= aR, ;ﬁz
The Eqn. (12) gives the entire family of paths of the vortex in the orignial z-plane. N

4. Velocity components and stationary points

- Let u and v be the velocity components of the vortex in the directibn of x and y - i
‘therefore, . x4 ‘lféspec‘tlve’ly,

_ A r ds ”_k I 4 ds
@fﬂ—ey -—[%aU-{‘ Qd]real-gg 5 -5§log _&?l s
V 9 ____ . -_11‘ . ds r K] ds
P = _maw = [%aU -+ od ] Imaginary T + 3 92 log - S (14) -
W s . 8a 1 /
Ry i R el (R e
Therefore, the velocity components in bipolar co-ordinates are given by :
= 16a >< RAE cos 1 (5¢y + o) +‘R24"3 608 §($y + 5¢a) — 2R,23Ry2/3 cos (¢ + $2) ‘
9 (ByRp)' B[Ry 4 R4 — 2R,213R,218 08 (s — $1)]? p
: ; -
L g Bt 008 35T ) o Bt con Yy + 5) — DRAEL oon (- gy

ByB, sin §(fy — LB, + By*® — 2B 23R,2P cos 3y — ¢)]

r .
. | 2) gin § —
+ ET R [31* (a+72) sin @ R 4B 4 RA3 — 3R 213 R,218 gog 3($s — 4

2(Ry*3 — Ry%B) r* sin 20 4(a®—12 cos 20) R2BR,2/5 sin $ba—y) ]
(15)

16aU % R4B sin 4(5 ¢1+¢s) + Ry/2 sin 3 (41 1 5¢s) — 2R, 2/ By’ sin (11 b5)
9 ' (By Bo) 1B[RAP + R,A3 — OR 218 By2B cos 2 (p2—1)]?

=

3T R,*13 sin %.(5?51 + 42) -+ Bo*P® sin § (¢y + 5ds) — 2R, BR,2 sin (¢, $2)
s Ry By sin 3 (6, — 1) [R*P + B3 —2RBR2P 05 3(dy — ¢,)]

B

Yoo k ‘ 2 (72 cos 20— a2) (Ry*13 — R,418) 4 492 "20}32}8 273 o
3r (a2 —r2) cos 0 + Ml 2 sin 1*"% By?'3 5in £ (B )
[ Bu% o+ B — 2RP R €05 § gy — ) ]

- r
+ sm7R?

((‘16)
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~ x-axis_ and no sta.tzonary pomt can. exi

;opposﬂ:e sign and at a di
form, the str. gh

, It can be shown from Eqn (16) that v vamshes :
- on y-axis for any finite values of U and I, whe-

ther positive or negative. At any point on y-axis,

 u can also become zero, when the value of 4,

: v’sa’usﬁes the equatlon

L a=— 2 tam A/S et Gg sin® A/3 + 2 sm2A/3

d = 80&17/311 -

s 3 w 3
- ;,,mce as A-->«—-2——~, y->——1 and a-—> -
y—>oo: and

‘a,nd as A-—>0 ~a-—>0

m the range 0 < A

e ass1gned va,lues\qf ‘

ie., the path of the vortex becomes parallel to the ;

istance y_;_. 1" /2U i
«boundary Wall the ve10c1ty Ofg

~ in each case by dashes.

 the imaginary axis.
(17) -

ity gradually it becomes strzught influence
- of the curved wa;[l on the path with dxstance fdlmx- :

. ~ nishes w1th the i increasing value of @ :
- 31r/2 rhs of'Eqn (17) et
1s negatwe, therefore, the statlonary point can.
~ exist on y-axis only for negative values of

,fa, ie., when U and 1" have opposﬂ:e 31gn e pomts always do ex1st on the 1magmary axxs';

0 param

P
] boundary and gr
sing y. But for negati
o onstant value of x, A
S from zero at the boundary, attains a~
mum value and again decrease to zero at
nfinite value of y. A cntlcal curve (of partial

- maxima) for negative o, joining different maxi-

mum values of X on different x, has been drawn
Using computer a few

- curves in each case for four typical values of «,

viz.,, a== 1, 4 2 have been calculated numeri-

cally as shown in Fig. 4(e=1), Fig. b (a—~ 2),
Flg 6 (a* —-1) and Tig. 7(a----«2)‘ ;

6. stcuss:on of the results

In all cases the paths are symmetncal abaut“‘

For the positive values of a
(Figs. 4 & 5) the paths are open and simple, as

~if, the vortex floats with the stream and no sta-
“tionary point exists.

In the vicinity of the curve.
wall the paths are curved but away

~ For nega.tlve values of «, the path show some
distinctive features. In this case the stationary
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- " Fig. 7

and its position-on it changes from y=—1 to y==00
as a varies from —oo to O respectively. At the
stationary point, the value of X is maximum and
the paths make loops around it. The stationary
point is the vortex point of the path of the vortex.
As shown in Figs. 6 and 7, the critical curves of
partial maxima of A, shown by dashes, always
pass through the stationary point and at a large dis-
- tance from the curved boundary, it become very
nearly parallel to the straight boundary wall.
- The velocity of the vortex along the tangent of
the curve is zero. As the stagnation point shifts
away from the boundary with the increasing
value of «, this critical curve, gradually becomes
straight and loops become more flat. At large
distance where the effect of the curved boundary
is not significant, these curves become parallel
to the straight boundary and vortex moves in
opposite direction above and below it.

7. The path of the vortex in case the wall has a semi-
circular hump
In this case of z-plane (Fig. 8 the transforma-
tion relation (6) becomes: '
s = (2%+}a?)2az (18)

To obtain the results in non-dimensional form
in the original z-plane, as in earlier case the length
will be referred to g, the radius of the semi-circu-
lar hump.

The relation (18) is equivalent to:

(r2-+1) cos 6 i (r2-1)
2r N

sin g (19)

where, z=r eil

The complex potential I¥, at any point, s for the
motion of the fluid in presence of uniform stream
and a vortex at s, is given by :

W=—2aUs - ¢I'log (s— s,)—I" log (s—s,) (20)

Hence the stream function y, for the path of the
vortex in the z-planein non-dimensional form in -
presence of uniform stream at infinity is given by :

— Ua(r*—1) .

2 1\ai
4D o _1_’2_ log ar(r?—1) sin §

(r*—2r2cos 6+1)1/2

x =
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Fig. 12

(a) Stationary points o
At stationary points both ¢, and g, must be
zZero. S e

The radial component of velocity g, has two
factors in its numerator, so in order g, to be zero.
either cos =0 or terms within [ ] is zero.

Case (1) : When 6=, cos 6 =0 and ¢, =0
Putting ¢ = O from Eqn. (23) we get :
. 74yt —p )
& =g (24)

Since for, 1<<r, r.h.s. of Eqn. (24) is always,
_negative so on the imaginary axis gy also can be
zero only for negative values of o’ : :
-as r-1, ' >—o0
and r-00, a' -0
. Therefore, the stationary point on the imaginary
axis moves from r=1 to r=o0 as, ¢’ increases
from — oo to 0. cee :

Case (i) : cos §£0

In this case the second term in the numerator

of ¢, and numerator of gy to be zero; which on

simplification reduce to the following two equa-
tions in r and 6 : ‘

L p2(r2=1) sind 94a’(r>—1)? sin 64 #(r2 —~1)2=0

(251)

4a/r2(r2—1)(r2-+1)sin? 6 - 8r®sin26 -
o (r2—1)3 (r2-+1) sin §-+Hr(r2—1)3=0  (25ii)
Though these two equations are sufficient to get

the values of r and @ in terms of «' for the statjo-
nary points, yet is-is difficult to solve it.

Multi}glying Eqn. (25i) by (r2-+-1) and subtract-
ing it from Eqn. (25ii), we get the following rela-
tion between r and 0, «' being eliminated :

. 1y .
sin = 4 1 (1 — 2 ) (26)

These are equations of two symmetrical curves
about imaginary axis and the second set of stagna-
tion points must lie on these curves for different
values of «'. Using Eqn. (26) and eliminating

sin 8, from either of the two Eqns. of (25),

we get a relation between r and «’, as below which
will locate the stagnation point on the stagnation
curves of Eqn. (26) for particular value of o’ -

) R R o
YTTEI e @n

|
!
|
!
|
|




~+ it ‘becomes stralght

exist, only for :
on (the curvesfof Eqn, (26) fi

od to draw the paths 'bf t'he‘vyortex‘ Tak'mg:

four typical values of o
Fig. 9 = )7 F1g;; 10 (a
dF

For the i:osmve valuse of o (F1gs 9 and 10
the paths are open and s1mp1e, as if the vortes
floats with the stream. No stationary point axist:

" in this case. In the vicinity of the curved wall,

. 'the paths are curved but - from it, gradua]ly
uence. of kthe curved

“wall on the path w1th dlstance

" increasing values of a’. For negative

~ and, 12), there are three sets of stationar k

the curves sin 0= 3(1-
partial maxima of A has b

E *_The velocity of the vortex

 critical curve is zero and it always pas: «
‘the sﬁgnatxon points.” Above ‘and below o the
curve, the movement c > Vi
ite direction. - At aﬁlaa'ge d.lSt ‘ce to the

o

,ppo te directior

: 'pomts as g1ven‘kl'3y & [

osec2 7 mlth z——plane passmg .

, the centre being on y-axis
presents a bay or hump on
z-plane acc ding

~—"0t0'q‘

e represents semi-infinite region Wlth _bay
in z~p1ane (F1g 13).

Any mﬁmte ip m\thefz-plane can. be trans

' ',;formed to the upper hal

he Eqn. (3), in- ; ; .f
will be ldxﬂ‘ere for dlﬁ‘arent w1d ~
the range

cle "paSSntlg throﬁgh twvoyjivixed‘ @

of this seenon it can :

(t(a on 'a]ready used the nal tr
on for general case (Fug 14) 1s glven by

the. opposite dir ct10n§ from = fion

The :v .

: ;armmd the second

statlonary pomts
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~~ Since, this paper deals with the motion of
- vortex in perfect fluid and in two dimensional
_uniform stream it has its own limitation when
~applied to natural atmospheric vortices, in
~which case the effect of friction and the varia-
tion of strength of the vortex with height are to
be considered and also the stream in which it is
embedded is not uniform. However, the orogra-
phical effect on the motion of vortex as found
out in this paper may be helpful in practical
cases. - : :
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