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A CLIMATIC PREDICTABILITY INDEX FOR 
SOUTH WEST MONSOON SEASON IN 
DIFFERENT DISTRICTS OF WEST BENGAL 
WITH APPLICATION OF FRACTAL DIMENSION 
ANALYSIS 

 
1. Investigation of the relationship among climatic 

variables namely, temperature, vapour pressure and 
rainfall significantly play a predominant role in building 
model and prediction through modelling in the Himalayan 
and dooars region along with Gangetic plains but indicates 
limitations of the efficiency of the  model due to 
complicated geographical topography (Pant et al., 2018: 
Singh et al., 2016). The statistical variations among 
climatic variables limit one to point out the relationships 
among those and are lacking over some of the regions. 

 
Temporal dynamics can be formulated by 

considering the observations of different climate variables 
as a multi-dimensions arrays and combining fractal-based 
dynamics with clustering (Mingkai et al., 2016). Number 
of methods has been applied for analyzing the non-linear 
dynamics in the time series by noble researches (Eckmann 
and Ruelle, 1985; Tong, 1993; Diks, 1999). The 
predictability of climate models rests on the combination 
of dynamic and thermodynamic processes that results in 
non-linear responses in the atmosphere; thus for a proper 
identification, classification and mapping climate 
variations, long-term systemic observational data sets are 
required from a network of stations or districts in 
connection with the statistical technique. 

 
It is well known that rainfall events or variables are 

highly important not only for scientific purpose but also 
for all possible environmental and atmospheric purposes. 
However, with research field changed drastically with the 
contribution of Hurst and Mandelbrot, as well as many 
studies performed all over the world, the research leads to 
the relation between the variable and fractal behaviour 
(Turcotte, 1997; Peters, 1996). 

 
Fractal theory has been widely applied on diverse 

data sets in geophysics as well as climatological fields 
(Mandelbrot and Wallis, 1969; Rehman, 2009) to identify 
the pattern in time series data sets for describing irregular 

and complex behaviours of dynamical systems (Men           
et al., 2004). He and Gautam, 2016 analyzed the spatial-
temporal variation in rainfall for flood seasons during 
1958-2013 utilizing Hurst exponent in China and 
concluded that the rainfall would persist in future and 
have implication for the ecological restoration and 
farming operations. 

 
For this reason, we have chosen to work with fractals 

instead of methods involving probability, given that 
dynamic systems display in nature in self similarity and 
space-time fluctuations on their behaviour on all scales, in 
indicating correlation on large scale.  

 
The state of West Bengal is located at the east of 

Himalayan region and the Gangetic plains with the border 
with Bangladesh. Thus, the state has high impact on the 
climatic related risks on economy and agriculture along 
with the dense population. It is an important issue to find 
out the climate of each of the districts of the state for 
climate related issues. 

 
It is necessary to note that fractal dimension analysis 

is used as a necessary tool for few decades for the 
geophysical and climatological time series such as 
temperature, pressure as evidenced in the novel works of 
several scientists (Hurst, 1965; Mandelbrot and Wallis, 
1969; Fluegeman and Snow, 1989; Hsui et al., 1993; 
Turcotte, 1997; Rangarajan and Sant, 2004). These 
analyses have been concentrated on computation of fractal 
dimensions for individual time series. In the present paper, 
we attempt to link these dimensions to dynamics of 
climate as the underlying processes are dynamically 
linked together. Firstly, for individual series in a district, 
the Hurst exponent of the individual is extracted 
(Mandelbert and Wallis, 1969). Thereafter, th fractal 
dimension (Vose et al., 1992) is extracted for each of the 
climatological series. In the next stage, the Climatic 
indices (Rangarajan and Sant, 2004) are computed. We 
attempt to analyse the character of the indices and study 
the effect of the indices for the districts of the state of 
West Bengal. The index is shown to be useful in studying 
the interplay between various climatic components.  

 
The organisation of the paper is as follows. Firstly, 

we compute the Hurst exponent of the climatological 
series of temperature, vapour pressure and rainfall of 
South  West  Monsoon  (SWM)  season  for each of the 18 
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Fig. 1. District wise map of West Bengal state 
 
 
 
districts of the state of West Bengal, India. A district wise 
map is shown in Fig. 1. 

 
Thereafter, for each of the districts time series of 

temperature, vapour pressure and rainfall, Fractal 
dimension is computed utilizing the linkage formula 
between Hurst exponential and fractal dimension as 
explained in the next section.  

 
After obtaining the fractal dimension, the climate 

predictability indices of each of the series under 
consideration is obtained.  

 
2.1. Data - The data set of temperature, vapour 

pressure and rainfall in South West Monsoon (SWM) 
season of 18 districts for 100 years (1901-2000) are 
extracted from the website ‘www.indiawaterpool.in’. The 
temperature data (in °C), collected as monthly average for 
each year, are summed up for the months June to 
September to compute year wise SWM temperature data. 
In the same way, the vapour pressure (in “Hg) is 
assembled to extract the year wise SWM vapour pressure 
data. However, rainfall data (in mm) extracted as year 
wise monthly total and are assembled for SWM months to 
set up year wise SWM rainfall data. 

 
2.2. Hurst Rescaled Range Analysis - An approach 

to the correlation quantification in time series was 

developed by Hurst (1965) based on empirically 
introduced concept of R/S. Considering a time series, the 
summation of time series relative to their average value is  
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where the range is defined by 
 
RN= (yn)max  -  (yn)min `                          (2) 
 
with SN = ϭN                                                             (3) 
 
where Ny  and ϭ N are the mean and standard 

deviations of all the N values in the time series yn. 
Proceeding this way, from the previous equations, a value 
(RN /SN) is obtained for the time series yn. We substitute τ 
by N in equations (1)-(3). The Hurst exponent (H) is 
obtained as 

 
H

avs
R







 τ=









τ

τ

2
                                                     (4) 

 
The rescaled range (R/S) (w) is defined as: 
 

( )( ) ( )
( )wS
wRwS/R =                                                (5) 

 
where w is the window width and the symbol < > 

represent the average values of a number of values of 
R(w).  Based on the self-affinity, it can be expected that: 

 
(R/S)(w) = wH                           (6)

  

In  reality, for a determined value w, a time series is 
sub divided by a number of intervals of width w, then 
R(w) and S(w) are calculated for each one and  (R/S) (w) 
as the average ratio R(w)/S(w). 

  
The procedure mentioned above is repeated for 

determined number of window widths and the logarithm 
of (R/S)(w) are plotted against the logarithm of w. If the 
set has self-affinity, then plot will follow a straight line 
whose slope is equal to the Hurst Exponent H.  

 
H describes the correlation between the past and 

future in the time series. For independent random process 
with finite variances, the value of H is 0.5. 

 
When H > 0.5, the time series is persistent meaning 

that an increasing trend in the past is indicative of an 
increasing trend in the future. Conversely, as the reverse 
rule, a decreasing trend in the past signifies a persistent 
decrease in the future. 
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TABLE  1 
 

Values of H, D and PI for districts spread over the state of West Bengal in SWM season 
 

Districts HT   (Temp) DT                                  
= 2 - HT 

PIT 

= 2| DT – 1.5| 
HP (Vapour 
Pressure) 

DP                          
= 2 – HP 

PIP                                    
= 2|DP – 1.5| 

HR       
(Rainfall) 

DR                                   
= 2 – HR 

PIR 

=2| DR– 1.5| 
PIr 

= (PIT, PIP, PIR) 

Purulia 0.3780 1.6220 0.2440 0.3860 1.6140 0.2280 0.3988 1.6012 0.2024 (0.3544, 0.2280, 
0.2024) 

Mursidabad 0.3685 1.6315 0.2630 0.6067 1.3933 0.2134 0.6772 1.3288 0.3544 (0.2630, 0.3124, 
0.3424) 

Maldah 0.5486 1.4514 0.0972 0.6341 1.3659 0.2682 0.8385 1.1615 0.6770 (0.0972, 0.2682, 
0.6770) 

Kolkata 0.3427 1.6573 0.3146 0.5848 1.4152 0.1696 0.3403 1.6597 0.3194 (0.3146, 0.1696, 
0.3944) 

Bankura 0.3659 1.5341 0.2682 0.4659 1.5341 0.0662 0.3177 1.6823 0.3646 (0.3190, 0.0682, 
0.3646) 

Uttar 
Dinajpur 0.4497 1.5503 0.1006 0.4497 1.5503 0.1006 0.8310 1.1690 0.6620 (0.1006, 0.300, 

0.6620) 

South                  
24 pgs. 0.6662 1.3338 0.3324 0.5958 1.4052 0.1896 0.4876 1.5124 0.0248 (0.3324, 0.1912, 

0.0678) 

Medinipur 0.6850 1.3150 0.3700 0.4160 1.5840 0.1680 0.3104 1.6896 0.3792 (0.2630, 0.1680, 
0.3446) 

Coochbihar 0.4831 1.5169 0.0338 0.6983 1.3017 0.3966 0.3177 1.6823 0.2642 (0.0338, 0.3996, 
0.2602) 

Jalpaiguri 0.5542 1.4458 0.1084 0.7858 1.2142 0.5716 0.6718 1.3282 0.3436 (0.1084, 0.5716, 
0.3436) 

Howrah 0.3776 1.6224 0.2448 0.5617 1.4383 0.1234 0.4199 1.5801 0.1602 (0.2446, 0.1234, 
0.1602) 

Darjeeling 0.6650 1.3350 0.3300 0.8990 1.1010 0.7980 0.8161 1.1839 0.6322 (0.3300, 0.7980, 
0.632) 

Dakhshin 
Dinajpur 0.4143 1.5857 0.1714 0.5477 1.4523 0.0954 0.8280 1.1720 0.6560 (0.1714, 0.1154, 

0.6560) 

Birbhum 0.3850 1.6150 0.2300 0.5248 1.4052 0.1896 0.7818 1.2182 0.5636 (0.2300, 0.1896, 
0.5638) 

Bardhaman 0.3974 1.6026 0.2052 0.6124 1.3876 0.2248 0.1618 1.8382 0.6764 (0.2052, 0.2248, 
0.4750) 

North 24 pgs. 0.4780 1.5220 0.0440 0.5256 1.4744 0.0512 0.6775 1.3225 0.3550 (0.1926, 0.1000, 
0.2375) 

Hoogli 0.3879 1.6121 0.2242 0.4781 1.5219 0.0438 0.4199 1.5801 0.1602 (0.2242, 0.0438,  
0.1602) 

Nadia 0.4781 1.5219 0.0109 0.5721 1.4280 0.1440 0.6773 1.3227 0.3546 (0.0109, 0.1440, 
0.3546) 

 
 
On the other hand, when H < 0.5, the time series is 

anti-persistent meaning that an increasing trend in the past 
implies decreasing trend in the future and vice-versa. 

 
Lastly, if H is almost equal to 0.5, it indicates that 

the time series concerned is random. 
 
2.3. Computation of Fractal Dimension - The Hurst 

exponent H is related to the fractal dimension D of the 

time series curve by the Hurst exponent-fractal dimension 
formula D = 2 – H (Voss, 1985; Vose et al., 1992).  

 
If the fractal dimension D for the time series is 1.5, 

there is no correlation between amplitude changes 
corresponding to two successive time intervals. Therefore, 
no trend in amplitude can be discerned from the time 
series and hence the process is unpredictable (Mandelbrot 
and Wallis, 1968).  
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However, as the fractal dimension decreases to 1, the 
process becomes more and more predictable as it exhibits 
‘‘persistence’’. That is, the future trend is more and more 
likely to follow an established trend (Hsui et al., 1993). 

 
As the fractal dimension increases from 1.5 to 2, the 

process under consideration exhibits behaviour of “anti-
persistence”. That is, a decrease in the amplitude of the 
series is more likely to lead to an increase in the future 
and vice-versa.  Naturally, the predictability again 
increases.  

  
However, it may be mentioned that almost all 

geophysical and climatological time records analyzed 
(Mandelbrot and Wallis, 1969; Fluegeman and Snow, 
1989; Hsui et al., 1993) exhibits persistent behaviour. 

 
2.4. Formulation of index  - We obtain the fractal 

dimension of the time series corresponding to 
temperature, vapour pressure and rainfall in SWM season 
for a given location using R/S analysis.  First we obtain H 
and then equation (D = 2 – H) (Voss, 1985; Vose et al., 
1992) is utilized to extract fractal dimension. The fractal 
dimensions denoted by DT, DP and DR correspond to 
temperature, vapour pressure and precipitation 
respectively.  

  
Particularly, indices PT, PP and PR for temperature, 

vapour pressure and rainfall are defined as follows (Hurst 
et al., 1993; Fluegeman and Snow, 1989; Turcotte, 1997). 

 
PT   = 2|DT – 1.5|; PP = 2|DP– 1.5|; PR = 2|DR– 1.5|; 
 
where |D| denotes the absolute value of the number 

D. The absolute value is used since predictability 
increases in both the following cases-(a) when the fractal 
dimension becomes less than 1.5 and (b) when it becomes 
greater than 1.5. In the case (a), we have persistence 
(correlation) behaviour and in case (b), we have anti-
persistence (anti-correlation) behaviour. In either case, the 
process retains same predictability with D = 1.3 and           
D = 1.7.  

 
It is noted that climate predictability index PIC is 

defined as collection of 3 indices, namely, (Rangarajan 
and Sant, 2004): 

 
PIC   =   (PT, PP, PR) 
 
If one of these indices is close to zero, then the 

corresponding process approximates the usual Brownian 
motion and it is therefore unpredictable. 

  
If one of the indices is close to 1, the process is very 

much predictable. We would note that PR value is not 

related to amount of rainfall but to how precipitation value 
changes from year to year. It is the predictability index. 
The same logic holds good for temperature and vapour 
pressure also. In this paper, we are interested in the 
interrelationships between the two climatic components 
from a view point of fractal dimension. Then, it is useful 
to have all three of sub-indices represented as a single 
index PIC. It is easier to see how the 3 sub-indices changes 
from district to district. Also, introducing predictability 
indices instead of fractal dimension, we focus how 
predictable the process is, specially the precipitation. All 
the sub-indices (viz., PT, PP, PR, temperature, vapour 
pressure and rainfall in SWM season) for all the 18 
districts are presented in Table 1. 

  
Sometimes, it may be argued that three sub-indices 

may be presented into a single number using appropriate 
norm. This may not be quite all right as the processes are 
independent of others. For that, we formulate PIC as a 
collection of three climatological parameters of the 
particular location that has vital role in determining the 
weather of the region. One important factor which has not 
explicitly included in making up PIC is the geographical 
parameters in the location, but the fact is that the above 
sub-indices include the effect of geographical parameters 
implicitly.  

 
3. Application- We arrive at the actual calculation 

of PIC, presented in Table 1. As mentioned, we 
concentrated on the temperature, vapour pressure and 
rainfall series of SWM season of 18 districts spread over 
the state of West Bengal. From a climatic point of view, 
we understand that summer heat leads to low pressure 
over the Tibetan plateau, northern India including state of 
West Bengal, induces a strong monsoonal flow over the 
region from Bay of Bengal in SWM monsoon during the 
months June to September.   

 
We first extract separately temperature, vapour 

pressure and rainfall series of SWM season. Fractal 
analysis is performed for each of the categories as 
mentioned in the section 2.2-2.4. Firstly, R/S is computed 
as mentioned in section 2.2. From the R/S analysis, Fractal 
Dimension and also the climatic index PIC is computed as 
mentioned in the last sections 2.3 and 2.4. We restrict our 
attention mainly to the districts where any of the entries of 
PIC, that is, PT, PP or PR are greater than or equal to 0.4 
and assign the district strongly predictable (denoted by S) 
with respect to that entry. For example, if PR is ≥ 0.4 for 
Darjeeling district, then we assign Darjeeling as strongly 
predictable for rainfall. 

 
However, if the entries are between 0.1 and 0.4, then 

the concerned district would be assigned as weakly 
predictable (denoted by W) with respect to that entry. 
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Lastly, if the entries are less than 0.1, the district would be 
considered as unpredictable with respect to that entry 
(denoted by U). 

 
3.1. Temperature - Investigation of Table 1 

indicates that temperature index is mainly weakly 
predictable (0.1 < PIT < 0.4) (Rangarajan and Sant, 2004) 
for all the districts under investigation.  Except a few 
cases, it is weakly predictable irrespective of geographical 
position of the districts starting from hilly areas like 
Darjeeling, dooars area like Jalpaiguri to semi-arid areas 
like Mursidabad, Bankura, Uttar and Dakhshin Dinajpur 
and dry zones of Birbhum, Maldah, Purulia and districts 
over gangetic plains like Bardhaman, Hoogli, Howrah, 
South 24 parganas and Medinipur. It may be understood 
that the nature of temperature distribution is such that they 
are not completely random but keeps possibility of some 
kind of model with less efficiency for all the districts. The 
model thus generated would not be very much efficient 
and accurate. 

 
However, the temperature index is unpredictable          

(PT ≤ 0.1) for the districts Coochbihar, Maldah, North 24 
parganas and modelling exercise would not be fruitful. 

 
3.2. Vapour pressure - Table 1 indicates that 

Jalpaiguri and Darjeeling districts possess remarkably 
high predictability of Vapour pressure (PIP ≥ 0.4). It 
indicates strong persistence or anti-persistence in those 
series. As a result, the increasing /decreasing tendency of 
the series, it is followed by increasing /decreasing 
tendency or decreasing/increasing tendency. These 
tendencies can be modelled with a suitable empirical 
formula. 

 
However, the districts Kolkata, Medinipur, Howrah, 

Nadia, Bardhaman and South 24 parganas are located at 
the plain and Purulia, Mursidabad, Malda, Coochbihar, 
Birbhum located at the semi-arid region possess weak 
predictability. A modelling exercise may not be very 
efficient for the districts. 

  
The unpredictable districts (PIP  ≤ 0.1) are Hoogli, 

Bankura, Dakhsin Dinajpur and North 24 parganas. 
Modelling exercise may not be fruitful for those districts. 

 
3.3. Rainfall - It is observed from Table 1 that 

rainfall in SWM season in the districts of Maldah, 
Bardhaman, Uttar and Dakhshin Dinajpur, Birbhum and 
Darjeeling are strongly predictable (PIR ≥ 0.4). The 
districts Maldah, Uttar Dinajpur and Dakhshin Dinajpur, 
Birbhum are situated at the semi arid region of the state of 
West Bengal. Darjeeling district is located in the upper 
hilly portion of the state and Bardhaman is located at the 
Gangetic plains of the state. Accordingly, a suitable model 
may  be  constructed  with selected parameters. Moreover, 

TABLE 2 
 

Quality of Predictability index of Darjeeling district 
 

Predictability indices PT PP PR 

Nature of prediction W S S 
 

 W: (0.1 < PI < 0.4), S: (PI ≥ 0.4) 
 

 
 

TABLE 3 
 

Quality of Predictability index of Jalpaiguri district 
 

Predictability indices PT PP PR 

Nature of prediction W S W 
 

 W: (0.1 < PI < 0.4), S: (PI ≥ 0.4) 
 
 
 
SWM rainfall is weakly predictable (0.1 < PIR < 0.4) for 
the districts Purulia, Mursidabad, Kolkata, Howrah, 
Hoogli, Coochbihar, Jalpaiguri, Nadia, Bankura, North 24 
parganas, of which Purulia, Mursidabad, Bankura are 
semi-drought prone regions and Kolkata, Howrah, Hoogli, 
Nadia and North 24 parganas are located at the Gangetic 
plains of the state along with Coochbihar and Jalpaiguri 
located at the plains in the lap of Himalaya. Only South 24 
parganas in the Gangetic plain does not show any 
predictability at all. 

 
4. Identification of patterns of climatic index of 

different districts of West Bengal - Examination of 
climatic indices (PT, PP, PR) of districts leads to identify 
some interesting features. ./As mentioned earlier, an 
index, say PT  would be strongly predictable if its 
magnitude is greater than or equal to 0.4, i.e., PT ≥ 0.4 
denoted by ‘S’, weakly predictable, if 0.1 < PT < 0.4, 
denoted by ‘W’ and unpredictable, if PT  ≤ 0.1, denoted by 
‘U’ (Rangarajan and Sant, 2004). The seven identifiable 
patterns emerged in the following way. 

 
4.1. Uniqueness of pattern of climatic predictability 

of Darjeeling district - The Table 2 extracted from Table 1 
indicates that for Darjeeling district temperature 
predictability (PT) is weak; however, vapour pressure (PP) 
and rainfall predictability (PR) are strong. This indicates 
that for temperature, the previous year’s data is not likely 
to interpret the future temperature data in the correct way. 

 
The situation is quite different for vapour pressure 

and rainfall indices as PP and PR are very strong. The 
previous increasing/decreasing pattern of vapour pressure 
and SWM rainfall are likely to indicate correct prediction 
pattern of increasing/decreasing or decreasing/increasing 
pattern in future. 
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TABLE 4 
 

Quality of Predictability index of South 24 Parganas district 
 

Predictability indices  PT PP PR 

Nature of prediction  W W U 
 

 W: (0.1 < PI < 0.4), U :( PI ≤ 0.1) 
 

 
 

TABLE 5 
 

Quality of Predictability index of Purulia, Murshidabad, Midnapur, 
Kolkata, Howrah and North 24 Parganas districts 

 
Predictability indices PT PP PR 

Nature of prediction W W W 
 

 W: (0.1 < PI < 0.4) 
 
 
 

 
The district is located at the hilly area of Himalayan 

range. 
 
4.2. Uniqueness of pattern of climatic predictability 

in Jalpaiguri district - The pattern of climatic index of 
Jalpaiguri is displayed in the following Table 3. The table 
indicates that vapour pressure of the district Jalpaiguri is 
strongly predictable indicating that previous/increasing/ 
decreasing pattern likely to indicate correct prediction 
pattern of increasing/decreasing or decreasing/increasing 
pattern in future; however, temperature and rainfall are 
weakly predictable indicating that for temperature and 
rainfall, the previous years’ data is not likely to interpret 
the future temperature and rainfall patterns. The district is 
located at the dooars area of sub Himalayan region. 

 
4.3. Uniqueness of pattern of climatic predictability 

in South 24 parganas district - The pattern of climatic 
index of South 24 parganas is displayed in Table 4. The 
table displays that both temperature and vapour pressure 
are weakly predictable indicating possibility of model 
with less effiency whereas the rainfall is unpredictable. 
The district is located at the Gangetic plain of the state. 

 
4.4.  Similarity of pattern of climatic predictability 

of districts Purulia, Murshidabad, Kolkata, Midnapur, 
Howrah and North 24 parganas districts - The Table 5 
indicates that all the predictability indices such as 
temperature, vapour pressure and rainfall are weakly 
predictable for the districts Purulia, Kolkata, 
Murshidabad, Midnapur, Howrah and North 24 parganas. 
All the districts are located in the Gangetic plains of the 
state except the districts Purulia and Mursidabad which 
are located at the dry and semi-arid zones of the state. The  

TABLE 6 
 

Quality of Predictability index of Maldah, Birbhum, Bardhaman, 
Uttar Dinajpur and Dakhshin Dinajpur districts 

 
Predictability indices PT PP PR 

Nature of prediction W W S 
 

 W: (0.1 < PI < 0.4), S: (PI ≥ 0.4) 
 

 
 

TABLE 7 
 

Quality of Predictability index of Hoogli and Bankura districts 
 
Predictability indices PT PP PR 

Nature of prediction W U W 
 

W: (0.1 < PI < 0.4), U :( PI ≤ 0.1) 
 
 
 
previous pattern of increasing/decreasing pattern of 
temperature, vapour pressure and SWM rainfall are likely 
to indicate inaccurate prediction pattern of 
increasing/decreasing or decreasing/increasing pattern in 
future. 

 
4.5.  Similarity of pattern of climatic predictability 

of districts Maldah, Birbhum, Bardhaman, Uttar Dinajpur 
and Dakhshin Dinajpur - For the districts of Maldah, 
Birbhum, Bardhaman, Uttar Dinajpur and Dakhsin 
Dinajpur in terms of predictability form a common     
Table 6. 

 
The Table indicates that the predictability indices 

such as temperature and vapour pressure are weak for the 
districts Maldah, Birbhum, Bardhaman, Uttar Dinajpur 
and Dakhshin Dinajpur. However, for these districts, 
rainfall predictability indices are sufficiently strong so that 
a proper model to be built up considering the persistency 
or anti-persistency of the rainfall series where SWM 
rainfall occur in abundance.  The rainfall mostly boosts 
agriculture and economy in the state. 

  
Of the districts, Bardhaman is located at the 

Gangetic plains of the state and other districts are at the 
semi-arid region of the state. 

 
4.6.  Similarity of pattern of climatic predictability 

of Hoogli and Bankura district - The predictability of the 
Hoogli and Bankura districts are similar in terms of 
predictability and are presented in Table 7. 

 
It is observed in the Table that temperature and 

rainfall are weakly predictable; however, vapour pressure 
is totally unpredictable in those districts. Hoogli is located 
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TABLE 8 
 

Quality of Predictability index of Coochbihar and Nadia districts 
 

Predictability indices PT PP PR 

Nature of prediction U W W 
 

   W: (0.1 < PI < 0.4), U :( PI ≤ 0.1) 
 
 
 
in the Gangetic plain and Bankura is located at the semi-
arid region of the state. 

 
4.7.  Similarity of pattern of climatic predictability 

of Coochbihar and Nadia district - Table 8 indicated that 
temperature for the districts of Coochbihar and Nadia is 
unpredictable whereas, vapour pressure and rainfall are 
very weakly predictable. The contrast of predictability is 
that Coochbihar is located in the dooars region but Nadia 
is located in the Gangetic plains of the state.  

 
5.  Conclusion - We now proceed to the actual and 

realistic conclusion for the construction of climatic index 
PIC. The three constituents of the index, namely, PT, PP 
and PR of SWM season are the basic components of a 
climate of a district. The high or low values of a 
component indentify the predictability pattern of the 
component limited to the district. The strong predictability 
of a component (say, PT ≥ 0.4) at a district indicates only 
strong matching of the model with the actual data set of 
the district. These points out that particular component can 
be modelled suitably with a modelling exercise as the 
pattern of correlation (persistence or anti-persistence) of 
the model matches with data set to a high extent. A 
multiple regression or ARIMA model would be suitable in 
that case.  

  
However, if predictability index is sufficiently low 

(say, 0.1 < PT < 0.4), then the pattern of correlation 
proceed towards random process and consequently 
construction of model become more and more 
complicated, if at all it may be formulated.  

  
The contribution of climatic index highlights one 

more interesting feature. The effort of simple regression 
modelling exercise may be of no use if climatic index is 
weak (say, 0.1 < PT < 0.4) or do not exist at all (say,              
PT ≤ 0.1) pointing out the presence of a random noise 
(Brownian) in the data. Then, we are to approach for other 
complicated methods like Principle Component Analysis, 
Intrinsic Mode Function and other methods for the 
modelling purpose (Iyenger and Raghukant, 2005;        
Basak, 2014). Thus, before proceeding into modelling 
exercise, one has to check the nature of the climatic index 
for predictability. The present paper points out the 
interesting feature.  

6.  Discussion - In the current paper, we have 
taken a step forward in quantification of climatic 
uncertainties by proposing climatic predictability index. 
These indices so developed are computed through a fractal 
dimension analysis of the time series of three major 
components of climate - temperature, vapour pressure and 
rainfall in SWM period. These indices provide additional 
information of how predictable the climate is for a given 
district. It is particularly useful when a wet/dry season 
pattern caused by monsoon dominates climate in sub-
tropical Asia including the state of West Bengal as a result 
of planetary atmospheric feature; in general, we indicated 
that predictability indices change quite significantly as an 
effect of climate dynamics from district to district. Thus, 
one has to be very careful in handling year wise data. 
Also, since predictability indices give a single dimension 
less number, it can roughly quantify the interplay between 
temperature, vapour pressure and rainfall in SWM season. 
The Table 1 explicitly demonstrates how temperature or 
vapour pressure affects the predictability of rainfall. 

 
PIC can be useful when developing climate models 

of a region. In climatic prediction models, one looks for 
trends in the time series of climatic variables and 
correlation between those can help specify the model. In 
that case, one should avoid districts that have a low PIC 
components (PT, PP, PR) since data from such a district 
would contain random amplitude variation, perhaps, 
caused by local conditions specific to that district. Such 
anomalous districts distract the entire model.  

 
The shift in emphasis from fractal dimension to 

predictability may itself be useful as the later concept is 
more intuitive. Instead of working out in terms of fractal 
dimension and then making the association with its 
implications for the time series, one has to straight way 
switch directly to concept of predictability. Even though 
we have used predictability in the concept of climate,            
the basic concept used would have applicability in other 
fields also. 
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